Conflict Handling Strategies
in an Integrated Information System

Jens Bleiholder and Felix Naumann
Humboldt-Universitat zu Berlin
Unter den Linden 6
D-10099 Berlin, Germany

{bleiho|naumann}@informatik.hu-
berlin.de

ABSTRACT

Integrated information systems provide users and applica-
tions with a unified view of heterogeneous data sources. To
provide a single consistent result for every object represented
in these data sources, data fusion is concerned with resolv-
ing data inconsistencies within and among the sources. We
present a classification of conflict resolution strategies and
show how these are implemented within an integrated infor-
mation system, the Humboldt-Merger.

Categories and Subject Descriptors

H.2.5 [Database Management|: Heterogeneous Databases

General Terms
Algorithms, Design, Languages, Theory

Keywords

data integration, data fusion, conflict handling, conflict res-
olution

1. DATA FUSION

Integrated (relational) information systems provide users
with a unified view of heterogeneous data sources. The tasks
of querying the underlying data sources, combining the re-
sults, and presenting them to the user are performed by the
integration system.

We assume an integration scenario with a three-step data
integration process as shown in Figure 1. In such a scenario,
when multiple, heterogeneous sources are to be integrated
into a single and consistent view, at least the following three
steps need to be performed: First, one needs to identify
corresponding attributes that are used to describe the in-
formation items in the source. The result of this step is a
schema mapping, which can be used to transform the data
present in the sources into a common representation (re-
naming, restructuring). Second, the different objects that
are described in the data sources need to be identified and
aligned. Duplicate detection techniques find multiple, possi-
bly inconsistent representations of same real world objects.
Third, as a last step, the duplicate representations can be
combined and fused together into a single representation
while inconsistencies in the data are resolved. This last step

Copyright is held by the author/owner(s).
WWW2006, May 22-26, 2006, Edinburgh, UK.

S —
Data sources I

Step 1: Schema Mapping
v

Step 2: Duplicate Detection
v

Step 3: Data Fusion

v

I: Application ::|

Figure 1: A data integration process

is referred to as data fusion and is the main focus in this
paper.

Inconsistencies and data integration. In data integra-
tion there are two main kinds of inconsistencies. First, there
are schematic inconsistencies between data sources; tables
not having the same attributes, attributes meaning the same
concept but having a different name, or data stored in a dif-
ferent structure. We assume that these inconsistencies al-
ready have been resolved in the first step, the schema map-
ping step. Referring to the small example in Figure 2, a
schema mapping has been established marking the corre-
spondences shown by the solid arrows, for instance identify-
ing that ‘Title’ and ‘Titel’ have the same semantics.

The dotted arrows show the result of duplicate detection.
This step answers the question of which objects are repre-
sented multiple times in the data sources and marks these
with a common global id, as shown by the ID column. For
instance, we have identified that the first tuple of both rela-
tions represents the same real-world movie, namely ‘Snatch’.

Given these multiple representations of same real world
objects, there remain data inconsistencies. For instance, the
movie ‘Snatch’ is inconsistent in the attribute representing
the year the movie was produced. In the remainder of this
paper we refer to these data inconsistencies as data conflicts
and present some strategies on how to handle them. We also
show how these strategies are realized within our research
prototype—the Humboldt-Merger or HumMer. The overall
goal in this last step is to fuse these multiple representations
into a single one, while resolving any data conflicts.

; I

Title Year | Director Genre |(ID
Snatch 2000 |Ritchie Crime 1
Troy 2004 |Petersen 1L 2
Vanilla Sky| 2001 |Crowe Sci-Fi 3 |e
Shrek 2001 |Adamson |Anim. 4
The Matrix | 1999 |Wachowski |Fantasy 5

ID Titel Jahr Rating Genre
1 |Snatch 1999 R Crime
2 [Troja 2004 R History
----» | 3 [Vannila Ski | 2001 R Sci-Fi
" | 3 [Vannile Sky | 2000 16 Comedy
5 |Matrix 1999 16 Fantasy

l

Figure 2: A small example showing two tables with matched attributes and detected duplicates. An uncer-
tainty is shaded with dots; a contradiction is shaded with lines.

Data conflicts. In a typical data fusion setting, there are
two types of data conflicts: contradictions and uncertainties.
A contradiction is a conflict between two or more different
NON-NULL values that are all used to describe the same prop-
erty of an object. In our data integration scenario, this is
the case if two or more data sources provide two or more
different values for the same attribute on the same object,
sameness as given by the correspondences established by
schema mapping and duplicate detection. An example of
such a contradiction is given in Figure 2, the production
year of the movie ’Snatch’ being 2000 in the left-hand and
1999 in the right-hand data source.

An uncertainty is a conflict between a NON-NULL value
and one or more NULL values that are all used to describe
the same property of an object. In our scenario, this is
either caused by missing information, e.g., NULL values in
the table, or caused by an attribute completely missing in
one table. In the latter case, we assume that the missing
attribute values are padded with NULL values.

Outline and contributions. First, we describe and clas-
sify common conflict handling strategies in Section 2. Then,
in the same section we describe how conflict handling func-
tions are used within our research prototype to implement
those strategies before presenting related work in Section 3
and concluding in Section 4. A more detailed definition,
description, and analysis of conflict handling functions that
are used to carry out different strategies can be found in [4].
Further details on both the general setting and the role of
functions, together with a list of function properties, can
also be found in [4]. In this introductory paper we describe
and classify different conflict handling strategies and show
how they can be realized by using low level conflict handling
functions within an integrated information system that fuses
information from multiple heterogeneous sources.

2. CONFLICT HANDLING STRATEGIES

Conflict handling strategies are high level strategies on
how to handle inconsistent data. They model an intuition
on what to do with inconsistent data. Some of them even
describe a decision on what value to take, how to combine
values, or how to invent a new value, and in that way de-
scribe the single, consistent representation created during
data fusion. In this section we classify these strategies and,
show how these are implemented as functions and finally lay
out the actual implementation in the HumMer prototype.

2.1 Classifying conflict handling strategies

There are several simple strategies to handle inconsisten-
cies, some of which are repeatedly mentioned in the liter-
ature [10, 13, 15, 16, 17]. They can be classified as seen
in Figure 3 and fall into three main classes. The first divi-
sion of strategies into the three classes is based on the way
they handle (or do not handle) conflicting data: ignorance,
avoidance, and resolution.

conflict handling

strategies
conflict conflict conflict
ignorance avoidance resolution
instance metadata instance metadata
based based based based

/N

deciding mediating

/N

deciding mediating

Figure 3: A classification of strategies to handle in-
consistent data.

Conflict ignorance. Conflict ignorance describes strate-
gies that do not make a decision with respect to conflicts
at all. When employing such a strategy the system does
not even need to be aware of conflicts in the data, as this
information is not needed and not used. These strategies
are feasible in any integration situation and are easy to im-
plement. Two representatives are the PASS IT ON and the
CONSIDER ALL POSSIBILITIES strategy:

PAss 1T ON. This strategy simply takes all conflicting val-
ues, passes them on to the user or another application
and lets the user or application decide how to handle
possible conflicts among the values.

CONSIDER ALL POSSIBILITIES. This strategy tries to be as
complete as possible by enumerating all eventualities
and giving the user the choice among all ”possible
worlds” [6], all possible combinations of attribute val-
ues, occasionlly creating combinations that are not al-
ready present in the sources. Sometimes, as is possible
with the MatchJoin operator [19], the user sees only
part of all possibilities.

Conflict avoidance. Conflict avoiding strategies do not
actually resolve conflicts, but they nevertheless handle in-
consistent data. They do not regard the conflicting values
before deciding on how to handle inconsistencies. These
strategies take a quick decision on whether to handle incon-
sistencies at all and if yes, which data value to use. Because
the decision is often made before regarding the data values,
or without looking at all data values, these strategies are not
always aware of each individual conflict. Therefore the name
of conflict avoidance. They are more efficient from a compu-
tational point of view than the conflict resolving strategies
considered later on, as the decision can be reached faster.
On the other hand they lose precision as not all available
information that can be valuable in resolving the conflict is
taken into account.

This class can further be divided into two classes, one
that takes metadata into account when taking a decision
(metadata based) and one that does not (instance based).
Two instance-based strategies are TAKE THE INFORMATION
and NO GOSSIPING:

TAKE THE INFORMATION. The basic idea here is that exist-
ing information is taken and information not present is
left aside. This strategy leaves aside NULL values and
is the natural way of dealing with uncertainties. The
concept of subsumption, which filters out unnecessary
NULL values and is used in the Minimum Union oper-
ator [11], and the use of COALESCE and outer joins in
the Merge operator [12] are good examples for the use
of this strategy. TAKE THE INFORMATION is reasonable
if there are only uncertainties but no conflicts in the
data.

NoO GOSSIPING. If you are unsure how to handle inconsis-
tencies, why not leave them out and report only on
the certain facts? This is the strategy used by the
consistent query answering approaches [1, 10]. Here,
only consistent answers, fulfilling certain constraints
on the query, are included in the result of a query
leaving aside all inconsistent ones. Because the deci-
sion is based on the data values and inconsistent an-
swers are ignored, this strategy reflects instance-based
conflict avoidance. It is not, as one may think, a con-
flict ignorance strategy, because it correctly separates
conflicting from non conflicting data.

An example of metadata based conflict avoidance is TRUST
YOUR FRIENDS:

TRUST YOUR FRIENDS. The intuition behind this strategy is
to trust a third party to either provide the correct value
or the correct strategy. Whom to trust is decided once
and carried out for all data values, no matter if there
is a conflict or not. This strategy can prefer data from
one source over data from other sources and can be ob-
served in the TSIMMIS [15] and Hermes [17] systems.
Intuitively the source preference is given by the user,
but this can also be done automatically by choosing
the cheapest, most reliable, largest source or by using
other quality criteria as in the Fusionplez system [13].

The main feature in conflict avoidance is that there is an
initial decision on whether to handle inconsistencies or not.
If they are handled, the decision on what data value to take

or not to take is done first, before looking at all the data
and returning a result.

Conflict resolution. In contrast to the previous classes,
conflict resolution strategies do regard all the data and meta-
data before deciding on how to resolve a conflict. This ap-
proach is computationally more expensive than other strate-
gies but provides means to resolve the conflict as flexibly as
possible.

In contrast to the conflict ignoring and conflict avoiding
strategies, conflict resolution strategies are further subdi-
vided into deciding and mediating strategies. The main
characteristic of a deciding strategy is that it chooses its
value from all the already present values. Depending on the
class, this choice depends on only the data values or takes
metadata into account as well. Mediating strategies on the
other hand may choose a value that does not necessarily ex-
ist among the conflicting values. They may come up with a
new value, that has not existed before.

Deciding strategies usually enable and allow for data lin-
eage [5], in particular where-lineage. In all cases (if ties are
broken by additional criteria) it is clear where the value is
coming from and therefore can be traced back to its origin.
Data lineage information is usually not attached to values
created by a mediating strategy as these values can be arbi-
trary and do not necessarily correspond to one of the existing
values. Instance-based, deciding strategies are:

CRY WITH THE WOLVES. The intuition of this strategy is
that correct values prevail over incorrect ones, given
enough evidence. It reflects the principle of follow-
ing the decision of the majority, of choosing the most
common value among the conflicting ones. Of course
appropriate tie breakers are necessary.

RoLL THE DICE. This strategy considers all conflicting val-
ues and picks one at random. Although this may not
seem to be a very intelligent decision, it is still a valid
strategy to resolve conflicts. Lacking any input to de-
cide upon a value, a random value is a good choice. It
is still required that one is aware of a conflict, but it
has the advantage of being computationally inexpen-
sive.

An example of a mediating strategy is:

MEET IN THE MIDDLE. This strategy follows the principle
of compromise and does not prefer one value over the
other but instead tries to invent a value that is as close
as possible to all present values. Another principle
used can be to minimize the error, or to take the av-
erage.

A representative for a deciding strategy based on meta-
data is:

KEEP UP TO DATE. This strategy uses the most recent value
and requires some additional time-stamp information
about the recency. This information can be present in
the tables as a separate attribute or can be provided by
other means, such as data lineage facilities. In a data
stream environment there is a naturally given order of
the tuples coming in so that the recency lies in the
data itself.

Function

Description

COUNT Counts the number of distinct NON-NULL values, i.e., the number of conflicting values. Only
indicates conflicts, the actual data values are lost.
MIN / MAX Returns the minimal/maximal input value with its obvious meaning for numerical data. Lexico-

graphical (or other) order is needed for non numerical data.

SuM / AvG / MEDIAN

Computes sum, average, and median of all present NON-NULL data values.

VARIANCE / STDDEV

Returns variance and standard deviation of data values.

RANDOM Randomly chooses one data value among all NON-NULL data values.

CHOOSE Returns the value supplied by a specific source.

COALESCE Returns the first NON-NULL value appearing.

FIRST / LAST Returns the first/last value, even if it is a NULL value.

VOTE Returns the value that appears most often among the present values. Ties can be broken by a
variety of strategies, e.g., choosing randomly.

GROUP Returns a set of all conflicting values. Leaves conflict resolution to the user.

SHORTEST / LONGEST

Chooses the value of minimum/maximum length according to a length measure.

(ANNOTATED) CONCAT

Returns the concatenated values. May include annotations, such as the names of the data sources.

HIGHEST QUALITY

Returns the value of highest information quality. Requires an underlying quality model.

MosT RECENT
metadata about tuples/values.

Returns the most recent value. Recency is evaluated with the help of another attribute or other

MoST ACTIVE
evaluating this function.

Returns the most often accessed or used value. Access statistics of the DBMS can be used in

CHOOSE DEPENDING
and c are given.

Chooses the value v in column A that belongs to a specific given value ¢ in another column B. B

CHOOSE CORRESPONDING
B. B is given.

Chooses the value v in column A that belongs to the value v” already chosen for another column

Most COMPLETE

Returns the value of the source that contains the fewest NULL values in the attribute in question.

MOST DISTINGUISHING

Returns the value that is the most distinguishing among all present values in that column.

MOST GENERAL CONCEPT
/ MOST SPECIFIC CON-

Using a taxonomy or ontology this function returns the more general value (lowest common
ancestor) or the more specific value (if the values are on a common path in the taxonomy).

CEPT
Table 1: Conflict handling functions (from[3]) to implement conflict handling strategies.
[Strategy [Possible functions to realize the strategy
PASS 1T ON GROUP, CONCAT

CONSIDER ALL POSSIBILITIES [6, 19]

TAKE THE INFORMATION

COALESCE, LONGEST

NO GOSSIPING [1, 10]

TRUST YOUR FRIENDS

CHOOSE, CHOOSE DEPENDING, HIGHEST QUALITY, FIRST, MOST COMPLETE,
CHOOSE CORRESPONDING

CRY WITH THE WOLVES VOTE

ROLL THE DICE RANDOM

MEET IN THE MIDDLE

AVERAGE, MEDIAN, MOST GENERAL

KEEP UP TO DATE

MosT RECENT, FIRST

Table 2: Strategies and functions that can be used to realize them.

2.2 Implementing conflict handling strategies

Conflict handling strategies are carried out by using con-
flict handling functions in a specific integration framework.
Table 1 shows some possible functions; properties of these
functions are defined and discussed in [4]. Some of the
strategies from Section 2 have a direct equivalent among
these functions and can easily be realized by just apply-
ing this function to conflicting data. First to mention is
the simple conflict ignoring strategy PASS 1T ON, which is
easily carried out by the functions GROUP or CONCAT, the
former requiring for a special set data type. As already men-
tioned in Section 2, the COALESCE function can be used to
implement the TAKE THE INFORMATION strategy. TRUST
YOUR FRIENDS is best illustrated by the CHOOSE function,
as source preference. This is also a good example that there
may be different ways of realizing a strategy. Source prefer-
ence can also be accomplished by using CHOOSE DEPENDING
with a column that contains the source name and the de-
sired source name as second parameter, or with HIGHEST

QUALITY and a quality measure as parameter that favors
the desired source. Our further findings are summarized in
Table 2.

2.3 Conflict handling in the HumMer system

We are currently developing the integrated information
system HumMer' (short for Humboldt-Merger) [2]. The
system performs virtual integration in querying and fus-
ing data from distributed, heterogeneous, relational data
sources. In our system we assume a three step information
integration process as presented in Section 1, where after
resolving schematic conflicts and finding duplicate objects
only data conflicts remain.

Potential users can interact with the system in two dif-
ferent ways. First, one can use a wizard that interactively
guides through the entire integration process, and gives the
opportunity to influence how schemata are matched and how

"Mttp://www.informatik.hu-berlin.de/mac/hummer/

duplicates are detected. At the end users are able to spec-
ify conflict handling at attribute level. Second, users and
applications have the opportunity of formulating FUSEBY
queries (see [3] for syntax and semantics) and pose them to
the system. A FUSEBY query allows the specification of
attribute level conflict resolution in a single SQL like state-
ment. Using this interaction mode, schema matching and
duplicate detection are triggered automatically, using de-
fault parameters.

In both ways of interacting with the system, conflict han-
dling is specified on an attribute level by choosing one con-
flict handling function per column. Figure 4 shows the last
step in the integration wizard, during which users can spec-
ify conflict handling functions. In the background are orig-
inal tuples already grouped as determined by duplicate de-
tection. Also, function MAX has been selected for the Age
column and function VOTE for the Student column.

4" HumMer-Demo oo ©
File Extra Help
Duplicates and Conflict Resolution

back | nex!

t'a. Conflict COALESCE COALESCE | MAX VOTE _[COALESCE|[TAXABSTRACT
(CLUSTER SID NAME AGE | STUDENT | CAR LOCATION

b 13 PERS2.EESTUDENTS Mary 24) 1 n HU|
h 13 PERS2.EESTUDENTS Mary 24 1 n HU

b 5 PERS1.CSSTUDENTS Paul 26 1 Chevrole Germany
ryp——— EEE . x| P 1 1 Chevrole A
Choose Conflict Resolution Frank 23 0 N L
5 COALESCE Returns the first non-null value. = Frank 23 0 n n
5 CONCAT Returns all values concatenated. Charly 25| 1 Pontiaq Massachusetts
5 VOTE Majority vote among all values. Charly! 24 1 A U

O COUNT Returns the count (with duplicates, without nulls). Bob, 4 1 German
© MAX Returns the maximum of all values. Bob 27 4 4 HY
MIN Returns the minimum of all values. s 2z g L Al
)SUM Returns the sum of the numeric values. Allce &l 9 4 oY
5 COUNT_ALL Returns the count (including nulls and dupli Alicq 4 g i
- Peter N 0 Ford Berlin

) AVERAGE Returns the average value.
O LAST Returns the last value. ¥ -
|
5 LONGEST Returns the longest value.
5 =
TAXABSTRACT Returns the lowest common ancestor ac| Sone
 TAVARSEDENIEIN Dahiivme tha mara snansifin farme ann

Figure 4: Screenshot of the integration wizard (data
fusion step), where a user can specify conflict han-
dling functions at attribute level.

2.4 Implementing conflict handling functions

Conflict handling functions in HumMer are implemented
as extended aggregation functions, operate at attribute level,
and can handle different numbers of conflicting values (e.g.,
two for Bob, three for Alice and only one for Peter, see
Figure 4). The system stores and uses some function meta-
data like in- and output domain type, and information on
some properties (currently only order sensitivity and func-
tion type). The functions are used in a fusion operator,
which first groups tuples and then applies the functions to
all values from each group.

Additional parameters (e.g., a taxonomy for the taxo-
nomic functions) are given to the function before the values
are processed, multi-column functions are realized by pass-
ing the values from all necessary columns to the function.
Conflict handling functions in HumMer build on the concept
of metadata functions from XXL [9] and are extensible in
the sense that new functions can be easily incorporated.

3. RELATED WORK

Apart from the systems already mentioned in the clas-
sification of the strategies in Section 2, we briefly give an

overview on related work. There are many integrated in-
formation systems that provide a unified view to multi-
ple heterogeneous sources. However, the problem of data
conflicts—first identified by Dayal [8]—and how to resolve
them, is mentioned or tackled by only a few. Among them
are TSIMMIS [15] and Fusionplez [13], which both use the
TRUST YOUR FRIEND strategy by choosing data from a spe-
cific source, source preference either given by the user or
by some data quality criteria. The Hermes system [17] ex-
plicitly mentions and is able to use five different strategies
based on data and metadata. ConQuer [10] is a system that
handles inconsistencies by filtering them out and therefore
realizes a NO GOSSIPING strategy. The FraQL system [16]
uses a predefined set of user defined aggregation functions
(some of them with two parameters) to realize some of the
strategies mentioned in this paper. This dovetails with the
work of Wang and Zaniolo [18] who show how to implement
arbitrary single column aggregation functions.

Purely relational approaches, such as standard or more
advanced relational operators (join, minimum union [11],
match join [19] or merge [12]), are only able to handle un-
certainties but not contradictions. There are results on ag-
gregation functions from the fuzzy systems community [7].
There, aggregation functions are defined as single column
functions on the interval [0, 1], fulfilling a boundary and
monotonicity condition. Our functions extend this notion
of aggregation functions. A special case of data fusion is the
resynchronization of replicated databases where conflicts be-
tween attribute values of two different database versions are
resolved using some of the strategies mentioned before [14].

In summary, all approaches so far are somehow limited to
a few predefined strategies or functions and do not allow for
a flexible on-demand specification of conflict resolution as in
the HumMer system.

4. CONCLUSIONS AND FUTURE WORK

We consider a three step data integration process and are
mostly concerned with the third step of data fusion, where
multiple representations of the same real world entity are
fused to a single representation. In this step the difficulty
lies in handling the conflicts at data level. We described and
classified different high-level conflict handling strategies and
show how they are realized using low-level functions in our
integrated information system HumMer.

Future work includes the further investigation of relevant
and interesting properties, such as order-/duplicate sensitiv-
ity and associativity, of both strategies and functions, the
classification of functions as well as more robust and effi-
cient implementations of already existing or completely new
conflict handling functions in the HumMer system.

Furthermore, knowledge on the properties of the functions
will enable the optimization of queries posed in the HumMer
context, that do not only contain conflict handling functions
but also other relational operators as well. The definition
of algebraic reformulation rules for the data fusion operator
and such functions will be a next step in this line of research.
We are also working on the automatic recommendation of
conflict handling functions based on past user decisions on
conflict resolution.

Acknowledgment. This research was supported by the
German Research Society (DFG grant no. NA 432).

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
Proc. of PODS, pages 68-79, Philadelphia, PA, 1999.
A. Bilke, J. Bleiholder, C. Béhm, K. Draba,

F. Naumann, and M. Weis. Automatic data fusion
with HumMer. In Proc. of VLDB, pages 1251-1254,
Trondheim, Norway, 2005. Demonstration.

J. Bleiholder and F. Naumann. Declarative data
fusion - syntax, semantics, and implementation. In
Proc. of ADBIS, pages 58-73, Tallinn, Estonia, 2005.
J. Bleiholder and F. Naumann. Conflict handling
strategies in an integrated information system.
Technical Report Informatik-Berichte, Nr. 197,
Humboldt-Universitat zu Berlin, 2006.

P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
Proc. of ICDT, pages 316-330, London, UK, 2001.
D. Burdick, P. Deshpande, T. S. Jayram,

R. Ramakrishnan, and S. Vaithyanathan. Olap over
uncertain and imprecise data. In Proc. of VLDB,
pages 970-981, Trondheim, Norway, 2005.

T. Calvo, G. Mayor, and R. Mesiar, editors.
Aggregation Operators - New Trends and Applications.
Physica-Verlag, Heidelberg, 2002.

U. Dayal. Processing queries over generalization
hierarchies in a multidatabase system. In Proc. of
VLDB, pages 342-353, Florence, Italy, 1983.

J. V. den Bercken, B. Blohsfeld, J.-P. Dittrich,

J. Kramer, T. Schéfer, M. Schneider, and B. Seeger.
XXL - a library approach to supporting efficient
implementations of advanced database queries. In
Proc. of VLDB, pages 39-48, Rome, Italy, 2001.

A. Fuxman, E. Fazli, and R. J. Miller. Conquer:
Efficient management of inconsistent databases. In
Proc. of SIGMOD, pages 155-166, Baltimore, MD,
2005.

C. A. Galindo-Legaria. Outerjoins as disjunctions. In
Proc. of SIGMOD, pages 348-358, Minneapolis, MN,
1994.

S. Greco, L. Pontieri, and E. Zumpano. Integrating
and managing conflicting data. In Revised Papers from
the 4th International Andrei Ershov Memorial
Conference on Perspectives of System Informatics,
pages 349-362, 2001.

A. Motro, P. Anokhin, and A. C. Acar. Utility-based
resolution of data inconsistencies. In Proc. of IQIS
Workshop, pages 35-43, Paris, France, 2004.

Oracle Database Advanced Replication, 10G Release
2, Chapter 5, Conflict Resolution Concepts and
Architecture.

Y. Papakonstantinou, S. Abiteboul, and

H. Garcia-Molina. Object fusion in mediator systems.
In Proc. of VLDB, pages 413-424, Bombay, India,
1996.

E. Schallehn, K.-U. Sattler, and G. Saake. Efficient
similarity-based operations for data integration. Data
and Knowledge Engineering, 48(3):361-387, 2004.

V. S. Subrahmanian, S. Adali, A. Brink, R. Emery,
J. Lu, A. Rajput, T. Rogers, R. Ross, and C. Ward.
Hermes: A heterogeneous reasoning and mediator
system. Technical report, University of Maryland,

(18]

(19]

1995.

H. Wang and C. Zaniolo. Using SQL to build new
aggregates and extenders for object- relational
systems. In Proc. of VLDB, pages 166—175, Cairo,
Egypt, 2000.

L. L. Yan and M. T. Ozsu. Conflict tolerant queries in
AURORA. In Proc. of CooplS, page 279, Edinburgh,
UK, 1999.

