
Detecting Duplicates in Complex XML Data

Melanie Weis, Felix Naumann
Humboldt-Universiẗat zu Berlin

Unter den Linden 6, 10099 Berlin
{mweis,naumann}@informatik.hu-berlin.de

Abstract

Recent work both in the relational and the XML world
have shown that the efficacy and efficiency of duplicate de-
tection is enhanced by regarding relationships between en-
tities. However, most approaches for XML data rely on 1:n
parent/child relationships, and do not apply to XML data
that represents m:n relationships.

We present a novel comparison strategy, which performs
duplicate detection effectively for all kinds of parent/child
relationships, given dependencies between different XML
elements. Due to cyclic dependencies, it is possible that a
pairwise classification is performed more than once, which
compromises efficiency. We propose an order that reduces
the number of such reclassifications and apply it to two
algorithms. The first algorithm performs reclassifications,
and efficiency is increased by using the order reducing the
number of reclassifications. The second algorithm does not
perform a comparison more than once, and the order is used
to miss few reclassifications and hence few potential dupli-
cates.

1. State of the Art
Duplicate detection is the problem of identifying mul-

tiple representations of a same real-world object. It is a
crucial task in data cleansing and has applications in sce-
narios such as data integration, customer relationship man-
agement, and personal information management. With the
popularity of XML, there is a growing need for duplicate
detection algorithms specifically geared towards the XML
data model. Indeed, most algorithms developed for rela-
tional data, such as those presented in [4, 5, 6,?, 7] apply to
a single relation with sufficient attributes. However, in the
case of XML data, we observe that XML elements repre-
senting objects have few attributes and instead have related
XML elements describing them. We call XML data com-
plex, because we have to consider a schema with complex
XML elements that is more complex than a single relation
for duplicate detection.

Recently, algorithms that exploit relationships between

entities were developed. In [1], the authors consider
parent/child relationships in relations of a data warehouse
hierarchy in a top-down traversal of the hierarchy and
thereby increase efficiency and effectiveness. We proposed
a similar approach for XML data in [9]. However, as shown
in [8], the top-down approach, as well as a bottom-up ap-
proach we envisioned, rely on the fact that parent and child
elements are in a 1:n relationship, meaning that a parent
can have several different children but a child is associ-
ated to a unique parent. This is for example the case for
<movie> elements nesting<title> elements, because a
single title can only belong to a single movie, but a movie
can have alternative titles. However, the assumption is not
valid for movies nesting actors, because an actor can star in
different movies. In [2], the approach views data sets as at-
tributed relational graphs of object representations (nodes),
connected via relationships (edges). The approach then ap-
plies graph partitioning techniques to cluster object repre-
sentations. Our classification technique relies on pairwise
comparisons and classifications. Another publication on
this topic is [3], where duplicate detection is performed for a
personal information management (PIM) application. Dong
et al.[3] propose an algorithm that propagates similarities
from one duplicate classification to another. Our basic idea
of using references resembles the idea proposed in [3], but
we consider different aspects of the problem. We are inter-
ested both in efficiency and effectiveness, whereas for low-
volume PIM data efficiency is not the crucial issue. Further-
more, we set an additional focus on a comparison order.

Here, we introduce a novel comparison strategy that ap-
plies on all kinds of parent/child relationships, not only 1:n.
We show that the comparison order influences our strategy
and present a suited order in Sec. 3. In Sec. 4, we apply the
comparison strategy and the order to two algorithms. The
first algorithm uses the order to reduce the number of possi-
ble reclassifications whereas the second one uses the order
to reduce the number of missed comparisons and hence po-
tentially missed duplicates. Experiments support our belief
that the defined order achieves these goals better than other
orders.



2. Classification Strategies

Before demonstrating our comparison strategy by exam-
ple, we need to clarify terms. An XML element can play
the role of being the XML element representing an object to
which we detect duplicates, i.e., aduplicate candidate, or it
can be an element describing a candidate, which we call an
object description (OD). Consequently, duplicate detection
of one candidate is not independent of the duplicate detec-
tion of another candidate, because candidates are compared
based on similarities in their ODs. The comparison strat-
egy we present is based on candidate and OD definitions
provided by an expert. We say that a candidatec depends
on another candidatec′ if c′ is part of the OD ofc. As we
will see, due to cyclic dependencies between candidates it
is useful to classify pairs of objects more than once.

To demonstrate our comparison strategy, we consider the
XML elements of Fig. 1. The candidates and OD defini-
tions, which are necessary input to the algorithm, are pro-
vided in Tab. 1. For instance, the candidate<movie> is
described by its<title> and<actor> children. The
<title> candidate depends on its text node and on the
<movie> element it is child of. We observe a cyclic de-
pendency between<movie> and<title> candidates.

Figure 1. Sample XML elements

Candidate OD
movie title, actor
title movie, textnode
actor textnode

Table 1. Sample OD definition

For ease of presentation, we identify XML element
as follows. The three<movie> elements are dupli-
cates, which we denotem1, m1′, and m1′′. Their
<title> elements are not duplicates, so we denoted
them as t1, t2, and t3, respectively. Brad Pitt and
its obvious duplicates are denoteda1, a1′, and a1′′.
Similarly, Eric Bana isa2 when nested underm1 and
a2′ when nested underm1′. Brian Cox and its dupli-
cate are denoteda3 and a3′. For pairwise classifica-
tion, we arbitrarily decide to consider pairs in the or-
der {(m1,m1′), (m1,m1′′), (m1′,m1′′), (t1, t2), (t1, t3),
(t2, t3), ((a1, a2), ...}. When comparingm1 andm1′, they
appear to have no related object in common because ac-
tors and titles have not yet been compared. We conclude
for now that they are not duplicates. The same is true for
all other comparisons between movies and between titles.

Continuing along the list we start to compare actors and
find duplicates(a1, a1′), (a1, a1′′), (a1′, a1′′), (a2, a2′),
and (a3, a3′). Knowing that movies depend on their ac-
tors, we compare movies again, with the additional knowl-
edge of duplicates among actors.We find that they are du-
plicates because they now share several actors. Titles be-
ing related to movies, we compare titles again, but do not
find further duplicates. The point is that by reclassifying
movies after duplicates in related objects have been de-
tected, we were able to find duplicates where we could not
before. Consequently, reclassifying pairs can increase ef-
fectiveness. However, classifications being an expensive
operation, we should avoid to perform a classification too
often. In the above example, it is easy to see that if we had
started by comparing actors, we would have saved reclassi-
fying movies and titles a second time. Next, we introduce
an order that reduces this number of reclassifications.

3. Comparison Order

For every candidate pair(v, v′), we compute a rank
r(v, v′) whose ascending order is used as comparison order.
Rankr(v, v′) estimates for every pair of candidatesv and
v′ thenumber of reclassificationsnecessary if the similarity
was calculated at the current processing state. A low rank
implies few reclassifications, so the pair with low rank is
classified early. The estimation ofr takes into account both
an estimate of how often a pair(v, v′) is reclassified, and
an estimate of how many classifications of other pairs are
triggered by pair(v, v′) if v andv′ are classified as dupli-
cates. The value ofr(v, v′) depends on duplicates detected
among elements composingv andv′’s ODs. Consequently,
r(v, v′) needs to be recomputed whenever a duplicate is de-
tected among their ODs. These computations can be saved
usingr−static(v, v′), a version ofr that does not take into
account duplicates in ODs.

4. Application and Evaluation

The comparison order as defined by rankr finds appli-
cation in two algorithms. The first algorithm, which we call
the reconsidering algorithm (ReconA), is the algorithm il-
lustrated by the example in Sec. 2. It reclassifies pairs of
candidates when there is a chance that their similarity has
increased due to a duplicate classification of an element in
their ODs. The order helps to reduce the number of reclas-
sifications performed by ReconA.

The second algorithm is calledadamant algorithm
(AdamA)and will never perform a classification more than
once. In this case, it is crucial to perform a classification
when its chance of finding a duplicate (if there is one) is
high. This case is achieved when the number of reclassifi-
cations associated with this pair is low. This situation cor-
responds to a low value ofr for that candidate pair. Con-
sequently, the ascending order ofr is used by AdamA to



reduce the number of missed reclassifications and hence the
number of missed duplicates.

Preliminary experiments show that the order defined byr

achieves its goal for both algorithms, compared to other or-
ders. We show results forr andr-static, as well as two other
orders namedr-light andfifo. r-light is a simplified version
of r that does not consider duplicates in the two candidates’
ODs and is only based on the number of comparisons the
candidate pair may trigger.fifo considers candidates in the
order they appear in the XML data.

The experiments are based on a data set obtained by inte-
grating data from two movie data sources1. Duplicates are
due to two representations of a same movie, one from each
source. The data set consists of 2140 candidates and 8796
dependencies. We have mutual dependencies between ac-
tors and movies, as well as between movies and titles. Note
that these dependencies can be exploited in both directions
because key and keyref were used.

order

%
of

re
co

m
pa

ris
on

s

r r-staticr-light fifo

25

20

15

10

5

0

(a) Results for ReconA

order

%
of

du
pl

ic
at

e
pa

irs

r r-staticr-light fifo

100

98

96

94

92

90

(b) Results for AdamA

Figure 2. Impact of order

For ReconA, we measure the percentage of reclassifica-
tions performed using different orders. The result shown in
Fig. 2(a) clearly shows thatr results in the least reclassifica-
tions. Its static versionr-static, which does not reestimater
during the comparison phase performs worse, showing that
reestimation is appropriate. We observed that the computa-
tional overhead ofr is negligible using a careful implemen-
tation, and is dominated by the savings of reclassifications
obtained by reestimates.r-light shows that minor sim-
plifications tor drastically deteriorate the result. Indeed,
the number of reclassifications is even higher than the naı̈ve
fifo order. Using AdamA, no classification of a pair of el-
ements is performed more than once. We measure the good-
ness ofr by counting the number of duplicates found. We
have already evaluated the similarity measure used in these
experiments in [9], where it obtained high recall and preci-
sion. Here, we are only interested in the influence of the or-
der. Fig. 2(b) shows the result normalized by the maximum
number of duplicates found among the different orders. We
see that the amount of duplicates found is highest when us-
ing r and lowest when usingr-light. As r misses the
fewest duplicates that can be found by our similarity mea-

1http://www.imdb.com and http://film-dienst.kim-info.de/

sure, the effectiveness obtained using AdamA with orderr
is best. It is interesting to note the correlation of the amount
of reclassifications in ReconA and the number of duplicates
found in ReconA. Clearly, the less reclassifications we miss
in AdamA, the more duplicates we find.

5. Conclusion
We have briefly discussed a new comparison strategy

that performs well for all types of relationships, not only 1:n
as previous approaches mostly did. It is based on the defi-
nition of dependencies in the form of candidates and object
descriptions provided by an expert. Due to cyclic dependen-
cies, it is possible that a pairwise classification is performed
more than once, which compromises efficiency. To reduce
this effect, we proposes an order that reduces the number of
reclassifications. We applied it to two algorithms, namely
ReconA and AdamA. Whereas ReconA uses the order to
increase efficiency by reducing reclassifications, AdamA,
which performs a classification at most once, uses the order
to maintain good effectiveness by missing few reclassifica-
tions and hence few potential duplicates. Preliminary ex-
periments showed that the order achieves these goals better
than some other orders. In the future, we will consider how
relationships can be exploited when less than O(n2) com-
parisons are feasible due to efficiency concerns.

References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
fuzzy duplicates in data warehouses. InConference on VLDB,
Hong Kong, China, 2002.

[2] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting re-
lationships for object consolidation. InSIGMOD-2005 Work-
shop on Information Quality in Information Systems, Balti-
more, MD, 2005.

[3] X. Dong, A. Halevy, and J. Madhavan. Reference reconcilia-
tion in complex information spaces. InSIGMOD Conference,
Baltimore, MD, 2005.

[4] A. Hernández and S. J. Stolfo. The merge/purge problem for
large databases. InSIGMOD Conference, pages 127–138, San
Jose, CA, May 1995.

[5] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large
data sets. InInternational Conference on Database Systems
for Advanced Applications, Kyoto, Japan, 2003.

[6] E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. En-
tity identification in database integration. InICDE Confer-
ence, pages 294–301, April 1993.

[7] A. E. Monge and C. P. Elkan. An efficient domain-
independent algorithm for detecting approximately duplicate
database records. InSIGMOD-1997 Workshop on Research
Issues on Data Mining and Knowledge Discovery, pages 23–
29, Tuscon, AZ, May 1997.

[8] M. Weis. Fuzzy duplicate detection on XML. InVLDB PhD
Workshop, Trondheim, Norway, 2005.

[9] M. Weis and F. Naumann. Duplicate detection in XML. In
SIGMOD-2004 Workshop on Information Quality in Informa-
tion Systems, pages 10–19, Paris, France, 2004.


