
Extracting Structured Information
from Wikipedia Articles to Populate Infoboxes ∗

Dustin Lange Christoph Böhm Felix Naumann
Hasso Plattner Institute, Potsdam, Germany

firstname.lastname@hpi.uni-potsdam.de

ABSTRACT
Roughly every third Wikipedia article contains an infobox
– a table that displays important facts about the subject
in attribute-value form. The schema of an infobox, i.e., the
attributes that can be expressed for a concept, is defined
by an infobox template. Often, authors do not specify all
template attributes, resulting in incomplete infoboxes.

With iPopulator, we introduce a system that automati-
cally populates infoboxes of Wikipedia articles by extracting
attribute values from the article’s text. In contrast to prior
work, iPopulator detects and exploits the structure of attri-
bute values to independently extract value parts. We have
tested iPopulator on the entire set of infobox templates and
provide a detailed analysis of its effectiveness. For instance,
we achieve an average extraction precision of 91% for 1,727
distinct infobox template attributes.

Keywords
Information Extraction, Linked Data, Wikipedia

1. WIKIPEDIA INFOBOXES
Wikipedia is a free, collaborative encyclopedia with a huge

impact. Since its foundation in 2001, Wikipedia has be-
come one of the most popular web sites in the world. As
of May 2010, the English version of Wikipedia contained al-
most 3.3 million articles. Wikipedia articles are expected
to offer an overview of its subject at the beginning of the
article. Thus, the article text usually starts with a defi-
nition, a summary, or a short description of the subject.
Often, a box next to the summary offers structured infor-
mation about the article’s subject in table form. These so-

∗ c©ACM, 2010. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Proc.
of the Intl. Conf. of Information and Knowledge Management,
2010 http://dx.doi.org/10.1145/1871437.1871698

An extended version of this paper is available [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

Added by iPopulator

Figure 1: Example for infobox and for infobox attri-
bute values extracted by iPopulator

called infoboxes contain facts about the described subject,
displayed as attribute-value pairs. Figure 1 shows an ex-
ample. The text summary and the infobox allow readers
to rapidly gather the most important information about the
article’s subject.

Infobox creation is based on templates. In Wikipedia, a
template works similar to a function: it receives parame-
ters that can be viewed as values of attributes, and it has
a well-defined return value, namely the Wikipedia source
text. The template’s attributes describe information about
instances of a specific concept, and the template’s return
value contains the source text necessary to display the box
and its content in table form.

Often, an infobox does not contain as much information
as possible, i.e., the infobox template call does not specify
values for all of the template’s attributes. For example, the
original infobox shown in Fig. 1 contains only few values for
the infobox_book template, namely author, country, and
language. Among others, no values for the attributes genre
and publication date have been specified.

To complete missing infobox attribute values, we propose
to examine the article text. Often, article texts contain some
of the values specified in the infobox. Figure 1 shows an
example: For several infobox attributes, the specified values
are contained in the article text, such as the title and author
of the book, its genre, and its publication year.

Problem Statement. Given a Wikipedia article containing
an incomplete infobox template call, the Infobox Population
Problem is to extract as many correct attribute values from
the article text as possible. We say an infobox template call
is incomplete if some attributes are unspecified. The prob-
lem is restricted to the extraction from Wikipedia article

texts; no external sources are used. Note that there is no
limitation to a specific set of infobox templates or to a spe-
cific domain. A system should be able to adapt to any given
infobox template, i.e., the system should be able to extract
attribute values for all attributes in all infobox templates.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of related work. Section 3 presents
our extraction system including structural analysis, training
data creation, CRF training, and the final extraction step.
An evaluation is given in Sec. 4. Finally, Sec. 5 concludes
this paper. An extended version of this paper is [2].

2. RELATED WORK
We focus on similar approaches here; other related work

is discussed in [2].
Wu and Weld [6] propose Kylin as a system for automat-

ically generating infoboxes from Wikipedia articles. Our
system is in parts similar to Kylin, but offers important
improvements. Kylin merely labels exact occurrences of at-
tribute values for training. By applying fuzzy matching to
infobox attribute values and their text occurrences, iPopu-
lator can find more occurrences (+23%). Dividing the at-
tribute value into significant substrings allows even more
occurrences to be found (+31%). To select the input of the
attribute value extractor, our system reads only the first
paragraphs of an article as a basic heuristic, while Kylin
uses sentence classifiers. Both Kylin and iPopulator employ
CRFs for the extraction process: Kylin uses CRFs to ex-
tract entire attribute values, while iPopulator uses them to
extract attribute value parts according to prior discovered
value structures. In contrast to Kylin, iPopulator is able to
reconstruct the structure of attribute values by aligning the
extracted attribute value parts and inserting structural ele-
ments. Wu and Weld chose four specific infobox templates
for their experiments, in which Kylin achieved precision of
0.74 to 0.97 and recall of 0.61 to 0.96. In our work, we eval-
uated extraction for all Wikipedia templates and achieve
average precision of 0.91 and average recall of 0.66.

In a later work, Wu et al. [5] present an improved version
of Kylin that considers shrinkage, ontologies, and web search
results. These improvements result in an increase in recall
of up to 50.8% while maintaining precision. In Sec. 4.2, we
compare the results of Kylin and its successor with those of
our work in more detail.

3. EXTRACTING ATTRIBUTE VALUES
iPopulator’s extraction process is shown in Fig. 2. For

each infobox template, the following steps are applied using
articles that contain an infobox of this type as training data:

(1) Structure Analysis: For each attribute of the in-
fobox template, we analyze its values given in the training
articles’ infoboxes to determine a structure that represents
the attribute’s syntactical characteristics.

(2) Training Data Creation: For this step, we use
articles that specify a value for an attribute as training data.
Occurrences of attribute values within the training article
texts are labeled.

(3) Value Extractor Creation: The labeled training
data are used to generate extractors for as many attributes
as possible. We employ Conditional Random Fields (CRFs)
to generate attribute value extractors. These extractors are

Artikelinfo

CRF Models

Wikipedia Article

Infobox

(4) Attribute Value Extraction

Extracted Infobox

Article Text

(2) Training Data Creation

(1) Structure Analysis

Training Data

(3) Value Extractor Creation

Attribute Value Structures

Figure 2: iPopulator extraction process

automatically evaluated, so that ineffective extractors can
be discarded.

(4) Attribute Value Extraction: The extractors can
then be applied to all articles to find missing attribute values
for existing infoboxes.

In the following, we provide details on the different steps.

3.1 Structure Analysis
Many attributes have a characteristic structure. For ex-

ample, a value for the infobox_company attribute number_

of_employees might be 12,500 (2003), which means that
12,500 people were employed in 2003. Many other values of
this particular attribute have a similar structure of the form
(Number ‘(’ Number ‘)’). Further, many attributes are multi-
valued, such as Bill Gates, Paul Allen for the founder

attribute. iPopulator discovers attribute value structures
and exploits them both for training data and attribute value
construction.

In the following, we present an algorithm that analyzes
available values of an attribute and discovers a structure
that represents most of these values and is still easy to pro-
cess, i.e., simple, but powerful enough to split values and to
combine value parts.

Structure discovery algorithm. We have developed a new
algorithm that addresses shortcomings of regular expression
learning algorithms. The main steps are shown in Fig. 3
and explained in more detail in the following. Tables I
to IV in Fig. 4 illustrate the algorithm by means of the
attribute number_of_employees from infobox_company. At
first, the algorithm determines patterns for all values of an
attribute by parsing them (Step (a)). These patterns are
then counted and sorted by their frequency (Step (b)). Then
the important patterns are merged into the result expression
(Step (c)), starting with the most frequent ones.

3.2 Training Data Creation
Training data are a prerequisite for any machine learning

technique. In our case, we need to spot and label attribute
value occurrences in Wikipedia article texts. Such a search
is not an easy task, because attribute values usually do not

DiscoverAttributeValueStructure(attribute values V)

(a) Parsing

For each value v in V:

Create pattern p = Parse(v)

Add pattern to pattern list L

(b) Counting & Sorting

Group same patterns in L and sort by frequency (descending order)

(c) Merging

Initialize result expression r with most frequent pattern

For each remaining pattern p in L:

If IsImportantPattern(p):

Merge(r, p) next frequent pattern p into current result r

Return rReturn r

Figure 3: Structure discovery algorithm

Table I Table II Table III

Attribute Values Attribute Value Patterns Attribute Value Patterns Freq.

36,518 (2007) Number "(" Number ")" Number 2872

5.538 Number Number "(" Number ")" 2116

92,000 (2008) Number "(" Number ")" Number Text 507

34,000 (2008) Number "(" Number ")" Text Number 393
24,000 (2004) Number "(" Number ")" Number Format

circa 37,000 Text Number "(" Number ")" Format

Number "(" Text Number ")" 278

… …

4000 (2008) Number "(" Number ")"

1,440 (as of 2004) Number "(" Text ")"

82.773 Number Table IV

1,545 paid staff Number Text Result Expression

… … (Text)? Number ("(" Number ")")?

355

35,258 '(2008)' Number Format "("

Number ")" Format

(c) Merging

(a
)

P
ar

si
n

g

(b
)

C
o

u
n

ti
n

g
&

 S
o

rt
in

g

Figure 4: Example for applying the structure dis-
covery algorithm (Fig. 3) to values of the attribute
number_of_employees from infobox_company

occur verbatim in texts. We tackle this problem with the
following ideas (see [2] for details):

• Article Paragraph Filtering: Many Wikipedia articles
are rather long and contain much information that is
irrelevant for the Infobox Population Problem. We
conducted an occurrence analysis and concluded that
the first paragraphs of an article are sufficient for ex-
traction of many infobox attributes. To restrict the
corpus size on the one hand, but also examine only
useful text passages, we choose only the first few para-
graphs.

• Fuzzy Matching: We apply a simple heuristic to dis-
cover fuzzy matches of attribute values. We distin-
guish between numbers and all other strings.

• Labeling Value Parts: All attribute values are divided
into several parts according to the corresponding attri-
bute value structure. Each part of the value structure
is labeled separately. To retain the identity of the value
part that is being labeled, a number is assigned to each
structure part and used as the actual label.

3.3 Value Extractor Creation
With labeled training data at hand, we can now create

and apply attribute-specific extractors. Extracting attri-
bute values from Wikipedia articles is an information ex-
traction problem [4]. We chose Conditional Random Fields
(CRFs) [1] as extraction method, because they have proven
a strong performance in labeling tasks [4].

CRFs learn to label tokens based on features. The features
should represent key characteristics of a token in the domain
under consideration. Token labels have been determined
in the previous step and also represent the position of the
labeled token in the attribute value structure. By using
position numbers as labels, we can exploit the dependencies
of value parts in article texts; e.g., if part 1 is often followed
by part 3, then the CRF can recognize this dependency.

For each infobox template attribute, we determine the la-
bels and feature values of the tokens in the training articles.
These data represent the input of the CRF learner that de-
termines attribute-specific weights for the features. Applied
to an unseen article, the CRF predicts labels based on cal-
culated feature weights. We chose CRFsuite [3] as CRF
implementation.

Attribute value extractors are selected according to their
extraction performance. We automatically evaluate the per-
formance of all generated extractors. Details are presented
in Sec. 4.1. Since precision is more important than recall
for automatic content generation in Wikipedia, we select all
attributes for which we achieve a precision of at least 0.75.
For all other attributes, the extractors are discarded.

3.4 Attribute Value Extraction
The generated attribute value extractors can now be ap-

plied to unseen articles. For this task, iPopulator deter-
mines the infobox template specified in the article. Then,
all attribute value extractors that have been learned for this
template are applied to the article. The result of this step
is a labeled article text where the labels represent identi-
fied attribute value parts according to the attribute value
structure as described in Sec. 3.1.

When constructing an attribute value from labeled tokens,
the learned attribute value structure is used in various ways:

• Align value parts: Assigned token labels represent the
value part positions in the value structure. Hence, ex-
tracted value parts in the result value are aligned ac-
cording to value part positions. For repetitions, the
order of appearance in the article text is retained.

• Insert structural elements: Structural elements, such
as brackets and commas, are not extracted from article
texts, but pre-defined for the entire attribute.

• Avoid meaningless values: Optional tokens (marked
with ?) often have no meaning without related manda-
tory tokens; hence, attribute values must consist of at
least one mandatory token. For this reason, if only op-
tional tokens could be extracted from the article text,
no attribute value is constructed.

4. EVALUATION
After clarifying evaluation measures, we present the re-

sults of our evaluation. We evaluate performance over the
entire set of infoboxes. Finally, we contrast our results with
those of Kylin [6] and its successor [5]. We also provide a
detailed analysis of selected infobox templates [2].

Note that values extracted by iPopulator are often not en-
tirely true or false. By dividing a value into parts, we can
specify more fine-grained evaluation measures. The correct-
ness regarding value parts is determined by the proportion
of correct value parts. We calculated precision P , recall R,
and F-measure F of the extracted value parts.

4.1 Evaluation of all Infobox Templates
In this experiment, we apply iPopulator to all infobox

templates. On average, an infobox template is used by 311
articles (minimum: 1 article, maximum: 55.300 articles).
For performance reasons we select for each template 50%
of all articles containing a call to this template for evalua-
tion. From each article, the first five paragraphs have been
considered. Each attribute is evaluated using 3-fold cross
validation. On a 64-bit Linux 2.6.18 system with 8-core
CPU and 16 GB RAM, this test took about 18 hours. The
goal of this experiment is to specify precisely for which in-
fobox templates and attributes therein we want to actually
apply extraction. Only promising attributes will be chosen.
We calculated precision of extraction results for all created
extractors.

0
0,2
0,4
0,6
0,8
1

1

2
5
1

5
0
1

7
5
1

1
0
0
1

1
2
5
1

1
5
0
1

1
7
5
1

2
0
0
1

2
2
5
1

2
5
0
1

2
7
5
1

3
0
0
1

3
2
5
1

3
5
0
1

3
7
5
1

4
0
0
1

4
2
5
1

P
re

ci
si

o
n

Number of attributes

Figure 5: Precision of attribute value extractors for
all attributes with P > 0 of all infobox templates,
sorted by precision

Figure 5 shows iPopulator’s attribute extraction precision.
For example, we achieve P ≥ 0.8 for 1521 attributes and
P ≥ 0.9 for 1127 attributes.

For the following, we select only those 1,727 attributes
with P ≥ 0.75. The resulting average extraction results
for all infobox templates are shown in Fig. 6. The overall
average measures for all selected attributes are F = 0.73,
P = 0.91, and R = 0.66.

4.2 Comparison with Related Work
The results of iPopulator and related systems presented

in Sec. 2 are difficult to compare due to different evalua-
tion settings. Relevant differences between the evaluation
methodologies of iPopulator and Kylin [6] as well as its suc-
cessor [5], dubbed K2 in the following, are discussed in [2].

Despite these differences in evaluation, we offer a compar-
ison of extraction results for the domains for which results
of Kylin/K2 are known (Table 1). For K2, the authors did
not state overall precision and recall numbers; thus, we eye-
balled presumably optimal precision and recall values for
each domain from their P/R-graphs.

The results show that iPopulator competes with Kylin
and K2; in some domains, iPopulator even outperforms
Kylin’s and K2’s results. Especially precision is iPopula-
tor’s strength, one reason being its ability to restrict extrac-
tion to promising attributes. Kylin and K2 cannot perform
such restriction automatically, because their ground truth is
manually extracted whereas we determine it automatically.
Since iPopulator uses a similarity measure and divides at-
tribute values into parts for labeling article texts, one could
expect higher recall as well as lower precision values. How-
ever, since we use the same techniques for training as for
evaluating the system, we argue that the calculated preci-
sion and recall values are not affected by these differences.

1

1.2

0
0.2
0.4
0.6
0.8

1

1
2

6
5

1
7

6
1

0
1

1
2

6
1

5
1

1
7

6
2

0
1

2
2

6
2

5
1

2
7

6
3

0
1

3
2

6
3

5
1

3
7

6
4

0
1

4
2

6
4

5
1

4
7

6
5

0
1

5
2

6
5

5
1

5
7

6
6

0
1

P
re

ci
si

o
n

 /
 R

e
ca

ll
/

F-
M

e
as

u
re

Number of infobox templates

F P R

Figure 6: Performance measures for all infobox tem-
plates with F > 0 (for attributes with P ≥ 0.75),
sorted by F

Infobox templ. Extraction performance

Kylin iPopulator

P R # P R #
Actor 0.88 0.86 50 0.93 0.81 4470
Airline 0.87 0.64 50 0.77 0.69 546
County 0.97 0.96 50 0.94 0.77 329
University 0.74 0.61 50 1.00 0.55 2368

K2 iPopulator

P R # P R #
Baseball Stadium 0.53 0.45 40 0.84 0.30 55
Irish Newspaper 0.75 0.46 20 1.00 0.42 9
Performer 0.65 0.40 44 0.95 0.25 19
Writer 0.60 0.35 40 1.00 0.23 507

Table 1: Comparison of Kylin’s, K2’s, and iPopu-
lator’s extraction results and numbers of evaluated
articles

5. CONCLUSION AND FUTURE WORK
By automatically extracting infobox attribute values,

iPopulator supports readers, authors, as well as external
applications that access Wikipedia content. Exploiting the
structure of attribute values improves the training quality as
well as the data quality of the extracted values. Resulting
values are structured similarly to the majority of attribute
values in the training data. Homogeneously structured at-
tribute values help maintain high data quality and support
external applications that rely on a specific structure of in-
fobox attribute values.

6. REFERENCES
[1] J. D. Lafferty, A. McCallum, and F. C. N. Pereira.

Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Proc. of the
18th Intl. Conf. on Machine Learning, pages 282–289, 2001.

[2] D. Lange, C. Böhm, and F. Naumann. Extracting
Structured Information from Wikipedia Articles to Populate
Infoboxes. Technical Report 38, Hasso Plattner Institute,
Potsdam, 2010. ISBN 978-3-86956-081-6.

[3] N. Okazaki. CRFsuite: a fast implementation of Conditional
Random Fields (CRFs), 2007.
http://www.chokkan.org/software/crfsuite/.

[4] S. Sarawagi. Information Extraction. Foundations and
Trends in Databases, 1(3), 2008.

[5] F. Wu, R. Hoffmann, and D. S. Weld. Information
Extraction from Wikipedia: Moving Down the Long tail. In
Proc. of the 14th Intl. Conf. on Knowledge Discovery and
Data Mining, pages 731–739, 2008.

[6] F. Wu and D. S. Weld. Autonomously Semantifying
Wikipedia. In Proc. of the 16th Conf. on Information and
Knowledge Management, pages 41–50, 2007.

