
Towards Granular Data Placement Strategies
for Cloud Platforms

Johannes Lorey
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

Email: johannes.lorey@hpi.uni-potsdam.de

Felix Naumann
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

Email: felix.naumann@hpi.uni-potsdam.de

Abstract—Traditional data placement strategies in the context
of Information Lifecycle Management (ILM) are applicable only
to on-site storage systems. In contrast to this approach, Cloud
storage provides a novel possibility to reduce or entirely eliminate
capital expenditures for hardware. As a unique solution to buffer
short-term resource demand peaks, Cloud infrastructures can be
combined with on-site systems to support efficient placement of
data.
The algorithms underlying this optimization must consider not
only the workload as a whole, but rather variable-sized sub-
workloads to determine an optimal placement. As a means to
identify these subworkloads, we introduce a multi-dimensional
granularization approach. Based on different granules of meta-
data information, we propose a flexible hybrid data placement
system incorporating both on-site and Cloud resources.

I. INTRODUCTION

Due to the ever-increasing amount of digital information
and the continuous effort to reduce capital expenditures for
hardware, being able to dynamically determine the current
value of a single datum is a key factor in choosing its optimal
storage location. This decision process is generally referred to
as Information Lifecycle Management. ILM strategies usually
consider on-site hardware resources only, such as hard disk
drives or magnetic tapes [1] [2]. These resources can be clas-
sified hierarchically into different categories based upon their
technical and economical characteristics. Generally speaking,
higher-level storage is more costly (in terms of money per
storage unit) and more easily accessible, while lower-level
storage is cheap and mostly used as a back-up solution. Thus,
purchasing and operating a hard disk drive will result in higher
cost than employing a magnetic tape with identical size. On the
other hand, a record that is accessed frequently should reside
on a faster hard disk drive instead of a slower tape in order to
ensure time-critical operations can be executed quickly. During
its lifetime, a single datum is typically moved from higher-
level to lower-level storage depending on several factors, such
as its access frequency or its current importance [3].

This is the preprint version as submitted for publication. Copyright and all
rights therein are retained by the authors. All persons copying this information
are expected to adhere to the terms and constraints invoked by each author’s
copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder. Copyright of the final published version
of this work (available under the same title) may be retained by a publishing
company or another third party. When referencing this work, please cite the
final version.

One major drawback of this traditional set-up is its lack
to flexibly handle varying demand in storage resources. This
shortcoming is typically bypassed with higher capital expen-
ditures, i.e., throwing more hardware at the problem. Clearly,
this approach cannot be regarded as a sophisticated solution.
Instead, there is a demand for an alternative storage platform
to flexibly buffer demand peaks without high up-front cost.

Here, Cloud Computing and Cloud storage offer a novel
approach for ILM. As two of the main characteristics of the
Cloud are its rapid elasticity and the associated metering of
resource consumption, there are little to no capital expendi-
tures associated with using Cloud services [4]. On the other
hand, long-term storage necessities may economically justify
purchasing on-site hardware instead of renting resources in the
Cloud.

As Cloud Computing has been a major technological trend
for only a short time, the decision between using on-site or
Cloud resources has usually been a binary one for compa-
nies up to now. Established organizations usually have the
resources required for their daily operations at hand and thus
do not sense the need to outsource infrastructure. On the
contrary, security and reliability concerns might even prevent
them from doing so [5]. For start-up businesses on the other
hand, commercial Cloud Computing offerings usually satisfy
most resource demands and provide the entire hardware and
software stack for them to offer services over the Internet.

However, there has been only little research on integrating
both on-site and Cloud resources. Most of the ongoing projects
aim at emulating certain aspects of commercial providers [6]
or face the challenge of establishing a hybrid system by storing
identical copies of data on-site and in the Cloud [7]. Generally,
data is either regarded in its atomic form or in its entirety.
Other work focuses on the technical aspects of combining
local and remote storage facilities [8], but not on the actual
placement decisions. Only recently have there been advances
to include Cloud resources for ILM systems, but these have
been rather limited to certain scenarios [9].

Cloud storage services are based on the same concepts as
distributed databases. Thus, the elementary challenges faced
for highly-distributed systems are also present in a Cloud en-
vironment, such as concurrency control, reliability, or consis-
tency [10]. It has been recognized by the research community

that the old paradigms established for local databases, such
as ACID, are not always suitable for or even necessary in a
distributed or Cloud environment. Instead, new requirements
have been proposed, such as predictability and flexibility [11].
Again, this somewhat impedes the combination of Cloud and
on-site resources.

We propose a hybrid approach, both in terms of storage
capabilities and data organization. In the next section, we
introduce a classification based on certain criteria inherent to
data stores and different applications. Afterwards, we present
a formal granular view on data and workloads. These granules
can in turn be used to associate different granules to different
storage systems, which is covered in the next to last section.
In the conclusion, we summarize this work and present an
outlook on future research.

II. CLASSIFICATION OF DATA MANAGEMENT SYSTEMS

As mentioned above, the worldwide distribution of data has
sparked a rethinking of requirements for data stores. Hence,
traditional taxonomies of databases that regarded relational
database management (RDBMS) systems only are not suffi-
cient anymore. Based upon recent advances in this field, we
use an empirical approach to propose a new classification that
incorporates the requirements of modern distributed applica-
tions. This helps us to relate the different features of data
stores to the characteristics of individual workloads.

When trying to categorize data management systems, there
are multiple characteristics that may be taken into account.
These include technical features, security and safety aspects,
and economical considerations. Within the scope of this work,
the latter three shall be omitted and for the sake of illustra-
tion only a limited amount of technical dimensions will be
addressed, namely:
• Scalability,
• Transaction Policy and
• Storage Model
With respect to these three dimensions, we propose Figure 1

as a classification device for data management systems.
In Figure 1, a traditional RDBMS would most likely be

placed around point (R,A,L), whereas the individual axis
values for most Cloud data stores move further outward and
the according systems could be placed closer to the point
(K,B,C). Figure 1 shall be referred to as the data placement
cuboid.

In terms of nomenclature, there are a few things to notice:
• The dimension of Scalability refers to both the degree

of distribution of a platform and the flexibility to quickly
provide new resources on demand. While a Parallel set-
up usually requires similar machines in terms of hardware
and software configuration, this is usually not required
for a truly Distributed or Cloud system. However, the
latter two might be hard to differentiate as most private
distributed infrastructures could easily be transformed
into a private Cloud. This is indicated by the dotted line.
Nevertheless, we assume that the first three storage sys-
tems are on-site while Cloud storage is always provided

Row/

Column
Hybrid

Key/

Value
Local

Parallel

Distributed

Cloud

ACID

BASE

Storage

Model

Transaction

policy

Scalability

Fig. 1. Classification of data management systems.

as a remote service. Hence, in contrast to the other three
facilities, Cloud storage is rented while Local, Parallel,
or Distributed storage typically is purchased [12].

• For the Storage Model, Row/Column describes the way
data is retained in conventional RDBMS. A Key/Value
store associates a datum with a unique ID, but does not
support schema definitions. Thus, all data is stored as a
String, as is the case with, e.g., Amazon’s SimpleDB [13].
On the other hand, a Hybrid model refers to any system
that combines non-traditional approaches with some of
the features found in RDBMS. An example of a hybrid
system is Google’s Bigtable, which allows managing a
flexible number of rows based on a dynamic schema and
is described as a “sparse, distributed multi-dimensional
sorted map” [14].

• The Transaction Policy describes how potentially con-
flicting operations are handled by the system. ACID com-
prises a well-known set of transaction properties and has
been implemented in virtually every RDBMS. BASE, on
the other hand, was introduced only recently [15] and is
an acronym for “Basically Available, Soft state, Eventual
consistency”. It should be noted that most distributed
data stores rely on BASE for transaction management.
This circumstance is essentially derived from the CAP
theorem [16]. However, there may be relaxations of
certain, but not all ACID properties, as indicated by the
dotted line [17].

Currently, data placement is rather infrastructure-centric,
i.e., available systems are evaluated regarding the three dimen-
sions described above and the one most fitting is selected as
a data store. We argue that this approach lacks both flexibility
and agility and propose a data-centric view, where certain
metainformation about data is considered to formalize data
placement strategies. The strategy will then determine the

most appropriate storage location not for the entire data as
a whole, but rather for subsets of individual pieces of data
at different points in time. This hybrid approach encompasses
integration of multiple data storage systems, both on-site and
in the Cloud. The next two sections illustrate how granules for
data placement strategies are composed and how the hybrid
framework is conceived, respectively.

III. GRANULAR DATA MANAGEMENT

The traditional approach of establishing data placement
strategies in the context of ILM tends to handle all involved
entities isolated from one another [1]. For example, pieces
of data are only considered in their most atomic form (e.g.,
as an individual record or binary file). Also, the lifecycle of
a datum is usually partitioned into fixed-size time frames.
Moreover, data access often is monitored globally only, i.e.,
with no regard to individual user or user group access profiles.
This stems from the fact that data storage systems were
conventionally ordered hierarchically according to their access
speed and respective cost per storage unit.

The introduction of Cloud Computing justifies a new look
on granularization of the three dimensions data, time, and
users, as Cloud services offer new characteristics in terms of
storage cost and accessibility as described above.

First, we give a formal definition of a simple data place-
ment problem considering the amount of data only, the users
accessing it and the nature of these accesses. We consider two
kinds of access operations, non-conflicting (such as reads) and
potentially conflicting (such as updates).

Definition 1 (Data access operations). Let D denote a set of
atomic pieces of data with respect to some application (e.g.,
one value in an n-tuple or a binary file in a file system). Let
U denote a set of individual users accessing this data. For
i, j ∈ N, 0 ≤ i ≤ |D| and 0 ≤ j ≤ |U |, we define a non-
conflicting access operation of a datum di ∈ D by a user
uj ∈ U as a relationship

di 99K uj (e.g., a datum is read by a user)

We define a potentially conflicting access operation of a datum
di ∈ D by a user uj ∈ U as a relationship

di L99 uj (e.g., a datum is written by a user)

Notice that this definition does not exclude that a datum
is accessed by more than one user or that a user accesses
more than one datum. However, if for the same datum both
operations are invoked by a user, we assume a potentially
conflicting access.

Based on Definition 1, one could establish a simple data
placement decision considering single users, pieces of data,
and potential conflicts. Consider the following example: for
three pieces of data d1, d2, d3 and two users u1, u2 the
following access information has been monitored

d1 99K u1 ; d2 99K u1 ; d3 L99 u1 ; d3 L99 u2.

The placement strategy could advise to store d1, d2 on the
local hard disk of user u1 as they are accessed by her alone.
For d3, on the other hand, a shared storage is needed as this
datum is accessed by both users. Moreover, as the access
operations are potentially conflicting, the shared data store
needs to provide some mechanisms to ensure consistency.

We now formalize a more granular view on data inspired
by the ideas introduced in [18].

Definition 2 (Data granules). Let D be defined as above.
Instead of focusing on singular pieces of data, we now
consider granules of data, such as a subset of values in
an n-tuple or a number of files with distinct properties. For
i, j ∈ N, 0 ≤ i ≤ |D| =: θ, 0 ≤ j ≤ (|D|)i = (θ)i a granule
of data di,j is defined as

i = 1
d1,1 = {d1} ; d1,2 = {d2} ; . . . ;
d1,(θ)i = d1,θ = {dθ}

i = 2
d2,1 = {d1, d2} ; d2,2 = {d1, d3} ; . . . ;
d2,(θ)2 = {dθ−1, dθ}

i = 3
d3,1 = {d1, d2, d3} ; d3,2 = {d1, d2, d4} ; . . . ;
d3,(θ)3 = {dθ−2, dθ−1, dθ}

...
...

i = θ dθ,1 = dθ,(θ)θ = {d1, . . . , dθ}

Similarly, a granule of users can be defined as uk,l, k, l ∈
N, 0 ≤ k ≤ |U | , 0 ≤ l ≤ (|U |)k. With respect to di,j , we refer
to i as the Level of Granularity (LoG) and constitute that di,j
has a higher Level of Granularity than di−1,j , whereas di,j
has the same Level of Granularity as ui,l. As the sole granule
of LoG θ+1 basically contains the same non-trivial elements
as the one of LoG θ, these two granules have the same LoG.

While a fine-grained user granule, such as u1,1, refers to
a single user, a granule with higher LoG, e.g., u2,1 might
denote a team or department. The access operations 99K and
L99 can intuitively be defined on granules with the same LoG:
di,j 99K ui,l and di,j L99 ui,l. To improve readability and
simplify illustration, in the scope of this work we apply 99K
and L99 to granules of same LoG only, such as d3,1 and u3,2,
but not d3,1 and u2,1. However, the same principles apply to
granules of different LoG. Moreover, as a granule combination
may contain both non-conflicting and potentially conflicting
access operations, we assume that the potentially conflicting
ones overrules the non-conflicting ones: if the access of a data
granule di,j by a user granule ui,k contains both operations
99K and L99, we always indicate di,j L99 ui,k.

The axis labelings of Figure 2 visualize the granularization
of individual data and user entities. It should be noted that for
the sake of illustration not all possible granulates are depicted.
The colored squares in Figure 2 indicate different types of
operations where a green square represents a non-conflicting
access and a red square identifies a potentially conflicting
access on a datum.

Using different levels of granularity enables a novel view
on data placement strategies. Referring back to the example

d1,1 d1,2 d1,3 d1,4

u1,1

u2,1

d2,1 d2,2

d1,5 d1,6 d1,7 d1,8

d2,3 d2,4

d4,1 d4,2

u1,2

u1,3

u1,4

u2,2

u1,5

u2,3

u1,6

u1,7

u1,8

u2,4

u4,2

u4,1

Potentially

conflicting

access

Non-conflicting

access

Fig. 2. Granular data access indicating variations in user group size and data
amount.

illustrated in Figure 2, a low LoG of 1 might indicate that
granules d1,7 and d1,8 should be stored on the local storage
of user u1,4, as she is the only one accessing them. However,
when considering an LoG of 2, it might be deduced that d2,3
is closely related to u2,1. Hence, if u2,1 refers to some sort of
user group, e.g., a department in a company, d2,3 should be
stored on the department’s file server. Notice that the granules
here are treated as black boxes, i.e., there is no way to identify
single building blocks of a granule such as individual users in
u2,1. Therefore, it cannot be deduced that the granule d2,3
can or should be stored on an individual user’s hard drive.
Increasing the Level of Granularity to 3 allows for yet another
data placement strategy that was not observable earlier, i.e., the
correlation between d4,1 and u4,2.

While in general granules will be treated as black boxes,
in certain scenarios it might be useful to identify the atomic
elements composing a granule. Hence, we define the function
φ that takes in a granule of any LoG and extracts the set of
elementary entities that the input granule is composed of, e.g.,
φ(d2,1) = {d1,1, d1,2}.

Definition 3 (Decomposition of granules). Let D be defined
as above. For an arbitrary granule di,j we define the decom-
position function φ as

φ(di,j) 7→ {dk} |∀kdk ∈ di,j

As the goal of this work is to establish a framework suitable
for Information Lifecycle Management, the dimension of time
T is an important variable. In accordance with Definition 2 we
apply the same approach to T and derive an analogous gran-
ularization ti,j . This expands the two-dimensional illustration
of Figure 2 to the three-dimensional view depicted in Figure 3.
For the sake of readability, we omit the labelings of the
two-dimensional components introduced earlier. The observant
reader will notice that for t1,8 the correlation between users
and data is identical to that of Figure 2. However, by adding
a third dimension, entirely new indications can be recognized,

such as one between t2,4, d2,1, and u2,4 (notice, that it is
concealed in the figure).

t1,1
t1,2

t1,3
t1,4

t1,5
t1,6

t1,7
t1,8

t2,1

t2,2

t2,3

t2,4

t4,2

t4,1

Fig. 3. Granular data access indicating variations in user group size, time,
and data amount.

We incorporate Definition 1 into Definition 2 to reference
this additional dimension and establish according operations.

Definition 4 (Time granules and granular access). Let
D,U, di,j , ui,k be defined as above. Let T denote a set of
atomic time frames t, where the length of each individual
t is fixed (e.g., a second). Similarly to Definition 2, for
0 ≤ l ≤ (|T |)i a granule of time ti,l is defined as

i = 1 t1,1 = {t1} ; t1,2 = {t2} ; . . .
i = 2 t2,1 = {t1, t2} ; t2,2 = {t1, t3} ; . . .

...
...

Based on the operations introduced in Definition 1, a user
granule access on a granule of data within a certain time
granule can be formalized as

di,j
ti,l
99K ui,k

for non-conflicting access and

di,j
ti,l
L99 ui,k

for potentially conflicting access. Again, L99 overrules 99K if
both operations are present within a granule combination.

Using the concepts of Definition 4, we are now able to
express user data access pattern over time on different levels
of granularity. This helps to establish general policies for data
placement in the context of ILM.

IV. GRANULAR ILM IN A HYBRID STORAGE
ENVIRONMENT

In Section II, we introduced one approach to classify differ-
ent storage systems according to a number of their technical
features. Section III established a formal notation for data
access granularity. We now integrate these two aspects in order
to manage the placement of entire data workloads. We first
formulate the concept of a workload.

Definition 5 (Workloads and granular workloads). A workload
W = (D,U, T,A) is characterized by the data D to store,
the set of users U accessing this data, the overall available
time frame T for the workload, and the set of access oper-
ations A. Here, the elements of A represent the operations
introduced in Definition 1 and extended in Definition 4.
We define sets of all possible granules Di in D, U i in U ,
and T i in T based on a fixed Level of Granularity i as

Di ⊆
{
di,1, . . . , di,(|D|)i

}
U i ⊆

{
ui,1, . . . , ui,(|U |)i

}
T i ⊆

{
ti,1, . . . , ti,(|T |)i

}
so that the following conditions are satisfied:{

d1, . . . , d|D|
}
⊆

⋃
di,j∈Di

φ(di,j)

{
u1, . . . , u|U |

}
⊆

⋃
ui,k∈Ui

φ(ui,k)

{
t1, . . . , u|T |

}
⊆

⋃
ti,l∈T i

φ(ti,l)

We refer to the entire set of operations based on the granu-
larization Di, U i, and T i:

∀di,j∈Di,ui,k∈Ui,ti,l∈T i
{
di,j

ti,l
99K ui,k

}
∪

∀di,j∈Di,ui,k∈Ui,ti,l∈T i
{
di,j

ti,l
L99 ui,k

}
as Ai.

Using this granular approach, W can be expressed in terms
of LoG i as

W i = (Di, U i, T i,Ai)

We illustrate the granularization of a workload using an
example. Consider the granules of data d3,1, d3,2 and the
granules of users u3,1 and u3,2 as depicted in Figure 4. Note
that for simplicity purposes, additional granules of LoG are
not portrayed, neither is the third dimension time. Let us
assume, that the displayed relationship between data and users
is maintained over t3,1, but there are no access operations
outside of t3,1. A granular workload W 3 is then for example
characterized by

W 3 =
({
d3,1, d3,2

}
,
{
u3,1, u3,2

}
,
{
t3,1, t3,2

}
,{

d3,1
t3,1
99K u3,1 , d3,2

t3,1
L99 u3,1

})

Note, that in order to satisfy the conditions established in
Definition 5, all atomic user, data, and time objects need to
be included in the granular workload, even if they are not
associated with any other atomic elements. In the example,
u1,4 ∈ U never accesses any datum, but needs to be contained
in U3. Thus, u3,2 is part of the granular workload.

d1,1 d1,2 d1,3 d1,4

u1,1

u1,2

u1,3

u1,4

d3,1

d3,2

u3,1

u3,2

Fig. 4. An example of a two-dimensional granular workload with LoG 3.

We use the data placement cuboid introduced in Section II
as a means to relate different dimensions of storage systems
to the individual features Di, U i, T i,Ai depending on the
LoG i. We assume that one or more granularizations of
LoG i are determined based on observing noticeable patterns
in Ai. Note, that we point out the most eminent correlations
only, even though others might be possible. Potential formal
policies depend on more factors than covered in this work,
such as actual cost of hardware and Cloud service or the type
of application in regard. However, individual considerations
below are applicable in all scenarios.

A. Scalability

The choice between Cloud storage and on-site storage, i.e.,
local, parallel, or distributed storage, depends on Di, U i, and
T i. High-level granules may require too much disk space to
handle them efficiently on Local or Parallel storage or retaining
them there might be too expensive. Hence, these granules need
to be outsourced to distributed or Cloud storage infrastructures
that satisfy the desired scale demands. This also holds for
higher-level U i, as the wider a system is distributed, the better
it usually can handle a large number of users. On the other
hand, T i also influences whether Cloud or on-site storage is
used. Typically, on-site storage hardware is purchased while
Cloud storage is rented for a limited time. Therefore, for

higher-level T i the cost of rent becomes higher than the cost
of purchase, thus on-site storage might be preferable [19].

In terms of combining both on-site and Cloud resources,
considering Ai supports placement policies as well. If certain
granules of data are accessed very infrequently, i.e., in a few
ti,l, the granules need to be stored on on-site hardware for
these specific ti,l only. In general, it is appropriate to outsource
the data granules during all other time granules. Also, the
composition of the individual granules ui,k in U i, i.e., φ(ui,k)
might suggest storing data on highly distributed storage such
as a Cloud infrastructure. For example, this applies when the
atomic elements of ui,k reside in different physical locations
and do not have access to a common storage facility.

B. Storage Model
The Storage Model again depends on Di, but also on Ai.

We assume that key/value stores are able to retrieve single
pieces of data faster, but are not optimized to handle aggregates
of data. On the other hand, relational row/column stores are
designed that way, i.e., they offer built-in functions such as
grouping. Thus, for higher-level Di, row/column stores might
be more appropriate. Considering Ai, a lower-level granularity
indicates a lack of access patterns on data and therefore a high
number of atomic operations. For these, key/value stores are
more appropriate [20].

C. Transaction Policy
In terms of Transaction Policy, we need to consider

foremost the potentially conflicting access operations in Ai
as well as the granularity of U i. A high relative incidence
of potentially conflicting access operations in relation to
the overall number of accesses and high-level granules of
users may yield potential inconsistencies within the data.
For example, for U1 and A1 this incidence is either 0
or 1, for U2 and A2 it may take values of 0, .25, .5,
.75, or 1 and so forth. To cope with varying degrees
of inconsistencies, a threshold on this incidence can be
introduced. If the incidence rate is above the threshold, a data
store providing ACID guarantees is mandated, while otherwise
BASE policies might be sufficient. Generally speaking, a
high Level of Granularity in U i is more prone to access
conflicts and therefore potential inconsistencies. However,
depending on the nature of the application associated
with the workload, this circumstance might be tolerable [17].

In future work, we plan to formalize the fuzzy strategies
outlined above and establish an optimization problem for
a given workload. Based on the technical and economical
features of all systems in question, we can determine both a
granularization most suitable for the entire workload and the
optimal storage location for each of the resulting granular
subworkloads.

V. CONCLUSION

We have presented an approach to categorize different
storage systems based on various feature dimensions. Sub-
sequently, we established a formal definition of a granular

workload based on data, user, and time granules. Finally, we
related the degree of granularity to the individual features of
the classification system.

The approach introduced in this work may serve as the
foundation for a sophisticated data placement framework in the
context of Information Lifecycle Management. In addition to
the concepts presented here, the specific costs associated with
a particular infrastructure need to be considered for real-world
systems. Moreover, we are working on implementing a highly
flexible data store incorporating multiple Cloud providers as
well as commercial and open-source database software to
allow seamless and transparent data migration. Here, we will
integrate the policies mentioned above.

REFERENCES

[1] C. Brooks, G. Chiapparini, W. Feyants, P. Galgali, and V. F.
Jose, ILM Library: Techniques With Tivoli Storage And IBM
Totalstorage Products. IBM Redbooks, 2006. [Online]. Available:
http://www.redbooks.ibm.com/redbooks/pdfs/sg247030.pdf

[2] Oracle. (2007, June) Information Lifecycle Management for Busi-
ness Data. http://www.oracle.com/technology/deploy/ilm/pdf/ILM for
Business 11g.pdf.

[3] P. P. Tallon, “Understanding the Dynamics of Information Management
Costs,” Communications of the ACM, vol. 53, no. 5, pp. 121–125, 2010.

[4] Peter Mell and Tim Grance, The NIST Definition of Cloud Computing,
Information Technology Laboratory Std., July 2009.

[5] J. Staten, S. Yates, F. E. Gillett, W. Saleh, and R. A. Dines, “Is
Cloud Computing Ready For The Enterprise?” Forrester Research, 400
Technology Square Cambridge, MA 02139 USA, Tech. Rep., March
2008.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source Cloud-
Computing System,” in Proceedings of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 124–131.

[7] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian Fos-
ter, “Virtual Infrastructure Management in Private and Hybrid Clouds,”
IEEE Internet Computing, vol. 13, pp. 14–22, 2009.

[8] Heeseung Jo, Youngjin, Kwon, Hwanju Kim, Euiseong Seo, Joonwon-
Lee, and Seungryoul Maeng, “SSD-HDD-Hybrid Virtual Disk Consoli-
dated Environments,” in Proceedings of the 4th workshop in Virtualiza-
tion in High-Performance Cloud Computing (VHPC), August 2009.

[9] M. Meisinger, C. Farcas, E. Farcas, C. Alexander, M. Arrott, J. D. L.
Beaujardire, P. Hubbard, R. Mendelssohn, and R. Signell, “Serving
Ocean Model Data on the Cloud,” in Proceedings of OCEANS 2009
MTS/IEEE, 2009.

[10] M. T. Özsu and P. Valduriez, Principles of distributed database systems
(2nd ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999.

[11] D. Florescu and D. Kossmann, “Rethinking cost and performance of
database systems,” SIGMOD Rec., vol. 38, no. 1, pp. 43–48, 2009.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,” Tech. Rep., February
2009.

[13] J. Murty, Programming Amazon Web Services. O’Reilly, 2008.
[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a
distributed storage system for structured data,” in Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2006.

[15] D. Pritchett, “BASE: An Acid Alternative,” Queue, vol. 6, no. 3, pp.
48–55, 2008.

[16] Eric A. Brewer, “Towards robust distributed systems,” in Proceedings of
the 19th annual ACM symposium on Principles of distributed computing,
2000.

[17] W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, pp. 40–44, 2009.

[18] T. Y. Lin, Y. Y. Yao, and L. A. Zadeh, Data mining, rough sets and
granular computing. Heidelberg, Germany, Germany: Physica-Verlag
GmbH, 2002.

[19] Roy Campbell, Indranil Gupta, Michael Heath, Steven Y. Ko,
Michael Kozuch, Marcel Kunze, Thomas Kwan, Kevin Lai, Hing Yan
Lee, Martha Lyons, Dejan Milojicic, and Yeng Chai Soh, “Open
CirrusTMCloud Computing Testbed: Federated Data Centers for Open
Source Systems and Services Research,” Intel, Tech. Rep., 2009.

[20] Pat Helland, “Life beyond Distributed Transactions: an Apostate’s Opin-
ion,” in 3rd Conference on Innovative Data Systems Research, 2007, pp.
132–141.

