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Abstract—Duplicate detection is the process of finding multiple
records in a dataset that represent the same real-world entity.
Due to the enormous costs of an exhaustive comparison, typical
algorithms select only promising record pairs for comparison.
Two competing approaches are blocking and windowing. Blocking
methods partition records into disjoint subsets, while windowing
methods, in particular the Sorted Neighborhood Method, slide a
window over the sorted records and compare records only within
the window. We present a new algorithm called Sorted Blocks in
several variants, which generalizes both approaches. To evaluate
Sorted Blocks, we have conducted extensive experiments with
different datasets. These show that our new algorithm needs
fewer comparisons to find the same number of duplicates.

I. DUPLICATE DETECTION

Duplicate detection, also known as entity matching or record

linkage, is the problem of identifying pairs of records that

represent the same real-world entity [8], [13]. An exhaustive

duplicate detection process involves computing the similarities

of all record pairs, which can be very expensive for large

datasets. Therefore, the challenge is to effectively and effi-

ciently search for duplicates.

The performance bottleneck for duplicate detection is typi-

cally the expensive attribute comparison with similarity mea-

sures between record pairs [4]. To avoid these prohibitively

expensive comparisons of all pairs of records, a common

technique is to carefully partition the records into smaller

subsets and search for duplicates only within these parti-

tions. Two competing approaches are often cited: Blocking

methods partition records into disjoint subsets, for instance

using zip_code as partitioning key. Sorted-neighborhood-

based methods sort the data according to some key, such as

last_name, and then slide a window of fixed size across the

sorted data and compare pairs only within the window.

We compare both approaches in Sec. II and present a new

generalized algorithm in Sec. III. Please note that our intention

is to generalize Blocking and Windowing; there exist further

approaches that cluster records for duplicate detection. Finally,

we evaluate the new method experimentally in Sec. IV using

real-world and artificial datasets and conclude in Sec. V.

Note that this paper is an extended version of our workshop

short-paper [6] (no formal proceedings). The extensions in-

clude new and improved variants of the original algorithm and

several additional experiments on a broader scope of datasets.

II. BLOCKING AND WINDOWING

In the following sections, we briefly introduce the blocking

and windowing methods and then compare them.

A. Blocking

(Standard) Blocking algorithms use some blocking key to

partition a set of records into disjoint partitions (blocks) [4],

[8]. The comparison of record pairs is then limited to records

within the same partition. Thus, the overall number of com-

parisons is greatly reduced [1], [2], [3].

An important decision for the blocking method is the choice

of a good partitioning predicate, which determines the number

and the size of the partitions. It should be chosen in a manner

that potential duplicates are grouped in the same partition. E.g,

for CRM applications a typical partitioning is by zip_code
or by their first few digits. If two duplicate records have the

same zip code, they appear in the same partition and thus

can be recognized as duplicates. Other partitionings might

be by last_name or some fixed-sized prefix of them, by

employer, etc. The frequency distribution of the blocking

keys influences the overall execution time, which is dominated

by the largest blocks [4]. If the attributes used to create the key

have erroneous values, the records of a duplicate pair might be

assigned to different blocks and therefore cannot be classified

as duplicate.

To detect duplicates that differ in the partitioning attribute,

a multi-pass method is employed. Blocking methods perform

multiple runs, each time with a different partitioning predicate,

followed by a transitive closure over all discovered duplicate

pairs. A new approach dealing with different blocking keys –

iterative blocking – is presented in [15].

Christen compares six blocking methods [4]. Next to stan-

dard blocking with disjoint blocks, he also considers blocking

techniques with overlapping blocks, such as q-gram based

blocking, canopy clustering, or suffix array based blocking.

Other blocking approaches, although called ‘adaptive sorted

neighborhood methods’, are presented by Yan et al. [16].

They first sort the records and then create non-overlapping

blocks. The hypothesis is that the distance between a record

and its successors in the sort sequence is monotonically

increasing in a small neighborhood, although the sorting is

done lexicographically and not by distance. They present

two algorithms and compare them with the basic SNM.



Incrementally Adaptive-SNM (IA-SNM) is an algorithm that

incrementally increases the window size as long as the distance

of the first and the last element in the current window is

smaller than a specified threshold. The increase of the win-

dow size depends on the current window size. Accumulative
Adaptive-SNM (AA-SNM) on the hand creates windows with a

single overlapping record. By considering transitivity, multiple

adjacent windows can then be grouped to one block, if the last

record of a window is a potential duplicate of the last record

in the next adjacent window. Both algorithms have after the

enlargement of the windows a retrenchment phase, in which

the window is decreased until all records within the block are

potential duplicates. We have re-implemented and evaluated

both algorithms.

B. Windowing

Windowing methods are slightly more elaborate than block-

ing methods. In [9] and [10] the authors describe the Sorted

Neighborhood Method (SNM), which is divided into three

phases. First, a sorting key is assigned to each record. As for

the blocking methods, the key does not have to be unique and

can be generated by concatenating values (or substrings of val-

ues) from different attributes. In the second phase, all records

are sorted according to that key. As in the blocking method,

the assumption is that duplicates have similar keys and are

thus close to each other after sorting. The first two phases are

comparable to the selection of a partitioning predicate in the

blocking method. The final phase of SNM slides a window

of fixed size across the sorted list of records. All pairs of

records that appear in the same window are compared. The size

of the window (typically between 10 and 30) represents the

trade-off between efficiency and effectiveness; larger windows

yield longer runtimes but detect more duplicates. To reduce

the number of comparisons and the overall execution time,

the records can be clustered first which means that as for

blocking, the records are assigned to disjoint clusters. The

Sorted Neighborhood Method is then applied to each cluster

in parallel.

A drawback of the Sorted Neighborhood Method is the fixed

window size, especially for datasets with very different cluster

sizes. If the window size is selected too small, some duplicates

might be missed. On the other hand, if the window size is

selected large enough to find all duplicates even for the largest

cluster, then there are a lot of unnecessary comparisons in the

area of the smaller clusters.

To avoid mis-sorts due to errors in the attributes that are

used to generate the key, again, multi-pass variants of SNM

produce multiple keys and perform the sorting and windowing

multiple times. As with the blocking method, the transitive

closure is finally calculated. Research has produced many

variants of SNM, including one that avoids the choice of

keys [12], and a variant for nested XML data [14].

C. Comparison of blocking and windowing approaches

Blocking and windowing have much in common: Both aim

at reducing the number of comparisons by making intelligent

guesses about which pairs of records have a chance of being

duplicates. Both rely on some intrinsic orderings of the data

and the assumption that records that are close to each other

with respect to that order have a higher chance of being

duplicates than other pairs of records [13].

Figure 1 shows the space of duplicate candidates for a

database of 16 records. Each field ci,j in the matrix represents

a comparison of the two corresponding candidates ri and

rj . Assuming that the similarity measure is symmetric, i.e.

sim(c, c′) = sim(c′, c), the number of pairwise comparisons

is
n×(n−1)

2 . The diagonal fields ci,i need not be compared,

nor do the fields in the lower, non-shaded part ci,j with i > j.

Thus,
16(16−1)

2 = 120 comparisons remain, opposed to 256

comparisons for the complete matrix.

In Fig. 1(a), we assume that records 1-16 are sorted by the

partitioning key, both horizontally and vertically. The candi-

date pairs after partitioning are shaded. Clearly, the number

of candidates is reduced, namely to only 25 comparisons in

this made-up case. Similarly, Fig. 1(b) shows the candidate

pairs for a Sorted Neighborhood algorithm with a window

size w = 4, resulting in 42 comparisons.
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Fig. 1. Duplicate candidates for different algorithms

Although the two blocking and windowing algorithms in

this example perform nearly the same number of comparisons,

the sets of actual comparisons differ. For instance, records r5
and r9 are compared only by the blocking method, because

they lie in the same first block. On the other hand, records

r11 and r13 are compared only by the windowing method,

because they are in the same window, but not in the same

block. In [6], we show that both approaches can be adapted

so that they encompass the same comparisons as the other

approach. For windowing approaches this can be achieved by

increasing the size of the window, while blocking approaches

have to allow overlapping blocks to adapt windowing.

III. SORTED BLOCKS

Sorted Blocks is a generalization of blocking and window-

ing algorithms for duplicate detection. In this section, we first

describe the basic algorithm as in [6] and then introduce two

new variants.



A. Sorted Blocks
Sorted Blocks first sorts the records based on a sorting key.

Like for the Sorted Neighborhood Method and the adaptive

sorted neighborhood methods by Yan et al. [16], the assump-

tion is that records close after sorting have a higher probability

of being duplicates. But instead of sliding a fixed size window

over all records, we create disjoint partitions and compare all

records within these partitions.
It is desirable that the sorting keys are unique to obtain

an unambiguous sorting order. To this end, more attributes

can be included for sorting (e. g. zip_code and name)

than for actually partitioning the data (e. g. only zip_code).

Nevertheless, uniqueness is not strictly necessary; in case of

a tie, we use the input order of the records.
To ensure that also such duplicates can be found that are

close in the sorting order, but for any reason were assigned to

different partitions, an additional partition overlap is used. This

overlap is defined by a manually selected overlap parameter o.

It describes the number of records in one partition to be

compared with records of the adjacent partition. Within the

overlap a fixed size window with size o+ 1 is slid across the

sorted data and all records within the window are compared.

In this way, the additional complexity of the overlap is

linear. Note that this windowing technique is used only in

the overlapping part; within a partition all record pairs are

compared.
In [6], we used fixed size partitions in the experiments,

slicing the entire sorted list into partitions independent of

the attribute values of the records. A better approach is

using a partition predicate to determine the partitions. The

partition predicate should make use of the sorting key, e.g.,

using its first few characters. This adaptive partition size is

advantageous in comparison to the fixed window size of the

Sorted Neighborhood Method. A fixed partition size could

result in missed duplicates, if the size is selected too small.

On the other hand, if the size is selected large enough for the

duplicate pair with the largest distance in the sorting order,

many unnecessary comparisons are conducted in windows

where the duplicates are closer to each other.
Figure 2 is an illustration of Sorted Blocks. The 14 records

r1 − r14 are sorted based on a sorting key and then divided

into four partitions P1 − P4 based on a partition predicate.

Within each partition we perform a complete comparison of

all record pairs as illustrated for P1.
The overlap was selected as o = 2. So between P1

and P2 we have overlap OP1,P2
with 2 × o = 4 records

(r3−r6). Within this overlap are two windows W(P1,P2).1 and

W(P1,P2).2, each comprising o + 1 = 3 records. The records

within the windows are also compared pairwise. Of course,

the algorithm compares each pair only once.
A special case arises, if a partition is smaller than the

overlap. In this case, the windows can comprise more than

two partitions, as illustrated for partition P3. The only impact

on the Sorted Blocks method is that in this case there are two

identical windows (e.g., W(P2,P3).2 and W(P3,P4).1), which are

folded in the implementation.
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Fig. 2. Illustration Sorted Blocks

Algorithm 1 Sorted Blocks (records, key, overlap o)

1: sort records on key
2: /* initialization */
3: listComparisonRecords ← [] // List of records that are

compared with the currently processed record
4: windowNr ← o+1 // Number of the window in the overlapping

area
5: i← 1
6: /* iterate over all records and search for duplicates */
7: while i ≤ records.length do
8: if records[i] is 1st element of new partition and i > 1 then
9: while listComparisonRecords.length > o do

10: listComparisonRecords.remove[1]
11: end while
12: windowNr ← 1
13: else if windowNr ≤ o then
14: listComparisonRecords.remove[1]
15: windowNr ← windowNr + 1
16: end if
17: /* compare current record with all records in

listComparisonRecords */
18: for j = 1 to listComparisonRecords.length do
19: compare records[i] with listComparisonRecords[j]
20: end for

24: listComparisonRecords.append(records[i])
25: i← i+ 1
26: end while
27: calculate transitive closure

Algorithm 1 shows the pseudo code for the basic Sorted

Blocks approach. First, the records are sorted on the sorting

key. Then we iterate over the sorted records and check for each

record whether it is the first record of a new partition. This

check is based on the sorting key, which as a whole or parts

of it are used as partition predicate (e.g., records are sorted on

zip_code and each new partition begins if the first digit of

the current record is different to the first digit of the previous

one). If the record is not the first record of a new partition,

it is compared with all other records that are already in that

partition and if applicable with records in the overlap of the

previous partition. But if the record is the first element of a

new partition, then all records of the previous partition that

are not in the overlap are removed and the current record is



compared with the remaining records. After iterating over all

records, the transitive closure is calculated.

The Sorted Blocks algorithm can be configured to create

the same record pairs for comparison as either Blocking or

the Sorted Neighborhood Method. If the overlap parameter is

selected to be 0, we have the standard blocking algorithm.

For the Sorted Neighborhood Method, the decision in line 8

whether the current record is the first of a new partition, has

to be always true and additionally, the overlap parameter o
needs to be equal to the window size w.

B. Sorted Blocks variants

The number of comparisons in the basic Sorted Blocks

approach depends on the sizes of the partitions. As mentioned

for blocking in Sec II-A, the overall execution time for Sorted

Blocks is dominated by the largest blocks. To prevent too large

partitions, we suggest two variants of Sorted Blocks, which

have a maximum partition size. An example is a customer

database in which we partition the records by area code

to compare customers within the same city. The number of

comparisons might be feasible for smaller cities, but would

exceed the resources for cities like Berlin, Paris, or London

with millions of citizens. An upper bound for the partition size

can reduce the number of comparisons, but requires that the

sorting key uses additional attributes so that there is a higher

chance that possible duplicates are close together within the

sorting order (e.g., area code as partition predicate, but area

code and name as sorting key).
1) Sorted Blocks creating partition when max. partition

size is reached: This first variant creates a new partition if

the maximum partition size is reached. This means, that the

new partition is created independently of the partitioning key.

Although records have the same partition predicate, they are

grouped in different partitions. But due to the overlap between

the partitions, it is ensured that all records are compared

with its predecessors and successors in the sorting order. To

implement this variant, the Sorted Blocks algorithm just needs

an additional condition in the If-statement, which is shown

in Algorithm 2 (Algorithms 2 and 3 extend Algorithm 1 by

replacing the corresponding code lines).

Algorithm 2 Sorted Blocks new partition(records, key,

maxPartitionSize)

8: if (records[i] is 1st element of new partition and i > 1) or
(listComparisonRecords.length = maxPartitionSize)
then

9: ... // code like in Algorithm 1

16: end if

2) Sorted Blocks using window when max. partition size
is reached: This second variant uses the maximum partition

size as window size to slide a window over the records within

a partition. If the maximum number of records is reached,

for each new record in the partition, the first element in

the current window is removed. This iterative process runs

until the end of the partition is reached. Thus, this variant is

very similar to the Sorted Neighborhood Method. The only

additional lines of code compared to the basic Sorted Blocks

algorithm (Algorithm 1) are shown in Algorithm 3.

Algorithm 3 Sorted Blocks (records, key,

maxPartitionSize)

21: if listComparisonRecords.length = maxPartitionSize
then

22: listComparisonRecords.remove[1]
23: end if

IV. EXPERIMENTAL EVALUATION

In this section we compare the Sorted Blocks algorithm

and its variants with both Blocking and the Sorted Neigh-

borhood Method and additionally with IA-SNM and AA-

SNM from [16]. The experiments were conducted with our

duplicate detection toolkit DuDe [7]. Next to the basic Sorted

Blocks method from Section III-A and the two variants from

Section III-B, we use also a variant with fixed partition sizes

as presented in [6].

A. Experiment configuration and key figures

We used three datasets to evaluate the algorithms: The

first dataset is a randomly selected sample from freeDB1.

It contains information about CDs including artist, title, and

songs. The sorting key is created by concatenating the first

three letters of each the artist, the CD title, and the name of

the first track.

The restaurant dataset is from the RIDDLE repository2.

It comprises names and addresses of restaurants from two

restaurant guides. As sorting key, we use the concatenation

of the first three letters of the restaurant name and the first

two letters of the city. Both the CD and the restaurant dataset

are available on our web page3.

The third dataset is artificially polluted real-world data and

contains about 1 Mio. records with persons. It was created by

an industry partner who uses this dataset to evaluate duplicate

detection methods and is thus a good benchmark. The sorting

key is again the concatenation of several attribute values. For

this dataset we use three letters of the zip code, two letters of

street and last name, and one letter of street number, city, and

first name. Table I gives an overview of the used datasets.

Dataset Nr. records Nr. dup. pairs
CD (real-world ) 9,763 299
Restaurant (real-world) 864 112
Person data (artificial) 1,039,776 89,784

TABLE I
OVERVIEW OF DATASETS

For experimentation, we use the first few characters of

the sorting key as partition predicate. If these characters are

1http://www.freedb.org/
2http://www.cs.utexas.edu/users/ml/riddle/data.html
3http://tinyurl.com/dude-toolkit
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Fig. 3. Experiment results – restaurant dataset

different to those of the previous record, then we create a new

partition. On the one hand, we vary the number of characters

for the partition predicate, on the other hand we also use

different values for the overlap parameter o and the maximum

partition size.

To evaluate the performance of duplicate detection, a variety

of indicators exists [5], [11]. As we are comparing algorithms

for candidate pair selection, we measure the required number

of comparisons to select a particular number of duplicates.

The configurations can vary concerning the parameters, which

are the partition predicate, the overlap parameter, and for the

variants the maximum partition size. We interpolate the results

to show the minimum number of required comparisons to find

at least a specific number of duplicates.

To eliminate effects of a poor quality similarity function,

we simply use the gold-standard available for each dataset to

decide whether a record pair is a duplicate or a non-duplicate.

This means, that all record pairs are classified correctly and

the results depend only on the selection of record pairs to be

compared.

B. Experiment results

The results of the experiments with the restaurant dataset

are shown in Fig. 3, which plots the number of comparisons in

a logarithmic scale against the number of detected duplicates.

The most relevant results are within the range from 103 up

to 108 detected duplicates. Sorted Blocks (Basic) performs to

some extent better than Blocking, but worse than the Sorted

Neighborhood Method. The Sorted Block variants show the

best performance, especially the variant that creates a new

partition when the maximum partition size is reached. Overall,

IA-SNM and AA-SNM require more comparisons than the

other algorithms.

Figure 4 shows the results for the CD dataset. To make

the differences between the algorithms more visible, we have

divided the chart into parts with different values for the

comparison range.

As for the restaurant dataset, IA-SNM, AA-SNM, and

Blocking require the most comparisons. Sorted Blocks (Basic)

performs slightly better than the Sorted Neighborhood Method,

but not as good as the Sorted Blocks variants, which are again

superior. This is surprising for the variant with fixed partition

sizes, as the partitions are created arbitrarily. Especially for a

high number of detected duplicates, the strategy to create a

new partition instead of sliding a window to the end of the

partition seems to be a promising approach.

The person data experiment results are shown in Fig. 5,

which also divides the chart into parts with different x-axis

and y-axis ranges to better analyze the differences between

the algorithms. AA-SNM and IA-SNM again show the worst

performance. Note that Blocking shows the good performance

in Fig. 5(a) only due to the logarithmic scale of the y-axis

and because there are only few connected data points. As

we can see in Fig. 5(b), Blocking is not superior to the

other algorithms. The Sorted Blocks variant that creates a new

partition when the maximum partition size is reached requires

again the fewest comparisons. Blocking and Sorted Blocks

(Basic) detect more duplicates than the Sorted Neighborhood

Method and the Sorted Blocks variants due to large partition

sizes. Thus, we can see a high increase of the required

number of comparisons from about 74,000 to 83,000 detected

duplicates.

To summarize the results of the experiments, we could see

that the Sorted Blocks variant that creates a new partition

when the maximum partition size is reached outperforms

the other algorithms. On the one hand, this variant uses

the data values to create partitions of variable partition size

with records that have a higher chance of being duplicates.

This explains the performance gain compared to the Sorted

Neighborhood Method with a fixed partition size. Additionally,

the maximum partition size prevents too large partitions which

result in a high number of comparisons (e.g., for Blocking).

The difficulty for all Sorted Blocks variants is that they have

more parameters than the Sorted Neighborhood Method or

Blocking, which makes configuration slightly more complex.
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Fig. 4. Experiment results – CD dataset

V. CONCLUSION

Efficient duplicate detection is an important task especially

in large datasets. In this paper, we have compared two im-

portant approaches, blocking and windowing, for reducing

the number of comparisons. Additionally, we have introduced

Sorted Blocks which is a generalization of blocking and

windowing. Experiments with several real-world datasets show

that Sorted Blocks outperforms the two other approaches. A

challenge for Sorted Blocks is finding the right configuration

settings, as it has more parameters than the other two ap-

proaches.
An advantage of Sorted Blocks in comparison to the Sorted

Neighborhood Method is the variable partition size instead of

a fixed size window. This allows more comparisons if several

records have similar values, but requires fewer comparisons

if only a few records are similar. In the future, one of our

research topics will be to evaluate strategies that group records

with a high chance of being duplicates in the same partitions.
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