Adaptive Windows for
Duplicate Detection

Uwe Draisbach, Felix Naumann, Sascha Szott,
Oliver Wonneberg

Technische Berichte Nr. 49

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\3,0'0]61‘812;.}.
. ‘ Hasso
i Plattner
"T Kamy Institut
° &(f IT Systems Engineering | Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts far
Softwaresystemtechnik an der Universitat Potsdam | 49

Uwe Draisbach | Felix Naumann | Sascha Szott | Oliver Wonneberg

Adaptive Windows for Duplicate Detection

Universitatsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet Uber http://dnb.de/ abrufbar.

Universitatsverlag Potsdam 2012
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts fur Softwaresystemtechnik
an der Universitat Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschutzt.

Online veroffentlicht auf dem Publikationsserver der Universitat Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/5300/

URN urn:nbn:de:kobv:517-opus-53007
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53007

Zugleich gedruckt erschienen im Universitatsverlag Potsdam:
ISBN 978-3-86956-143-1

mailto:verlag@uni-potsdam.de�

Adaptive Windows for Duplicate Detection

Uwe Draisbach!, Felix Naumann'®, Sascha Szott?, and Oliver Wonneberg?

! Hasso Plattner Institute, Potsdam, Germany
uwe.draisbach@hpi.uni-potsdam.de
felix.naumann@hpi.uni-potsdam.de

2 Zuse Institute, Berlin, Germany
szott@zib.de,
3 R. Lindner GmbH & Co. KG, Berlin, Germany
owonneberg@lindner-esskultur.de

Abstract. Duplicate detection is the task of identifying all groups of
records within a data set that represent the same real-world entity, re-
spectively. This task is difficult, because (i) representations might differ
slightly, so some similarity measure must be defined to compare pairs of
records and (ii) data sets might have a high volume making a pair-wise
comparison of all records infeasible. To tackle the second problem, many
algorithms have been suggested that partition the data set and com-
pare all record pairs only within each partition. One well-known such
approach is the Sorted Neighborhood Method (SNM), which sorts the
data according to some key and then advances a window over the data
comparing only records that appear within the same window.

We propose several variations of SNM that have in common a vary-
ing window size and advancement. The general intuition of such adap-
tive windows is that there might be regions of high similarity suggest-
ing a larger window size and regions of lower similarity suggesting a
smaller window size. We propose and thoroughly evaluate several adap-
tion strategies, some of which are provably better than the original SNM
in terms of efficiency (same results with fewer comparisons).

1 Motivation

Duplicate detection, also known as entity matching or record linkage was first
defined by Newcombe et al. [1] and has been a research topic for several decades.
The challenge is to effectively and efficiently identify pairs of records that rep-
resent the same real world object. The basic problem of duplicate detection
has been studied under various further names, such as object matching, record
linkage, merge/purge, or record reconciliation.

With many businesses, research projects, and government organizations col-
lecting enormous amounts of data, it becomes critical to identify the represented
set of distinct real-world entities. Entities of interest include individuals, com-
panies, geographic regions, or households [2]. The impact of duplicates within a
data set is manifold: customers are contacted multiple times, revenue per cus-
tomer cannot be identified correctly, inventory levels are incorrect, credit ratings
are miscalculated, etc. [3].

The challenges in the duplicate detection process are the huge amounts of
data and that finding duplicates is resource intensive [4]. In a naive approach,
the number of pairwise comparisons is quadratic in the number of records. Thus,
it is necessary to make intelligent guesses which records have a high probability
of representing the same real-world entity. These guesses are often expressed as
partitionings of the data in the hope that duplicate records appear only within
individual partitions. Thus, the search space can be reduced with the drawback
that some duplicates might be missed.

Two important approaches for reducing the search space are blocking and
windowing*, which are evaluated and compared in [6]. The most prominent
representative for windowing is the Sorted Neighborhood Method (SNM) by
Herndndez and Stolfo [7,8]. SNM has three phases, illustrated in Fig. 1:

1. Key assignment: In this phase a sorting key is assigned to each record. Keys
are usually generated by concatenating certain parts of attribute values (e.g.,
first 3 letters of last name | first 2 digits of zip code) in the hope
that duplicates are assigned similar sorting keys and are thus close after the
sorting phase. Sorting keys are not necessarily unique.

2. Sorting: All records are sorted by the sorting key.

3. Windowing: A fixed-size window slides over the sorted data. All pairs of
records within a window are compared and duplicates are marked.

[)
[]
o
________ —_——
Current | | p====——eee—e=-
window —= W == e Next
ofrecords | | fF==-=-====-=--- W =—window
--------- of records
S ——
———————— —t— e’
[]
[)
[]

Fig. 1. Illustration of the Sorted Neighborhood method [7].

A disadvantage of this approach is that the window size is fixed and difficult
to configure: If it is selected too small, some duplicates might be missed. On
the other hand, a too large window results in many unnecessary comparisons.
If effectiveness is most relevant, the ideal window size is equal to the size of the
largest duplicate cluster in a data set. If a perfect sorting key exists, which sorts

* called “non-overlapping blocking” in [5].

all records of the duplicate clusters next to each other in the sort sequence, then
all duplicates could be found. But even with the ideal window size, many unnec-
essary comparisons are executed, because not all clusters have that maximum
size.

An example for this is the Cora Citation Matching data set®, which comprises
1,879 references of research papers and is often used to evaluate duplicate detec-
tion methods [9-11]. In [12] we have described the definition of a gold standard
for the Cora data set and other data sets. In Cora there are 118 clusters with at
least 2 records. The histogram in Fig. 2 shows on the x-axis the clusters sorted by
their size and on the y-axis the corresponding cluster size. As we can see, there
are a few clusters with more than 100 records, but most groups have less than
50 records. Clusters with different sizes are quite common for deduplication [13]
and also agree with our experience with industry partners [14].

250 T T T T T

200 b

150 H b

Cluster size

100 b

2 20 40 60 80 100 120
Cluster

Fig. 2. Number of records per cluster in the Cora data set.

In this paper, we discuss a variety of strategies that adapt the window size
to increase the efficiency of the duplicate detection process without reducing the
effectiveness.

In the following Sec. 2 we discuss related work. In Sec. 3, we give an overview
of our strategies and describe and elaborate the most promising strategy in more
detail in Sec. 4. An experimental evaluation is presented in Sec. 5. Finally, we
conclude and discuss our future work in Sec. 6.

5 http://www.cs.umass.edu/~mccallum/data.html

2 Related Work

Several variations of the Sorted Neighborhood Method (SNM) have been pro-
posed. As the result is highly depending on the used sorting key, multi-pass
variants with multiple keys and a finally calculated transitive closure can help
to improve the accuracy [3]. Monge and Elkan [13] adopt the SNM and propose
the union-find data structure that defines a representative for each detected du-
plicate group. Records are first compared to the representatives and only if the
similarity is high enough, they are compared with the other members of that
cluster.

Yan et al. [15] discuss adaptivity of record linkage algorithms using the ex-
ample of SNM. They use the window to build non-overlapping blocks that can
contain different numbers of records. The pairwise record comparison then takes
place within these blocks. The hypothesis is that the distance between a record
and its successors in the sort sequence is monotonically increasing in a small
neighborhood, although the sorting is done lexicographically and not by dis-
tance. They present two algorithms and compare them with the basic SNM.
Incrementally Adaptive-SNM (IA-SNM) is an algorithm that incrementally in-
creases the window size as long as the distance of the first and the last element
in the current window is smaller than a specified threshold. The increase of the
window size depends on the current window size. Accumulative Adaptive-SNM
(AA-SNM) on the other hand creates windows with one overlapping record. By
considering transitivity, multiple adjacent windows can then be grouped into one
block, if the last record of a window is a potential duplicate of the last record in
the next adjacent window. After the enlargement of the windows both algorithms
have a retrenchment phase, in which the window is decreased until all records
within the block are potential duplicates. We have implemented both TA-SNM
and AA-SNM, and compare them to our work in our experimental evaluation.
However, our experiments do not confirm that IA-SNM and AA-SNM perform
better than SNM.

“Blocking” is an umbrella term for approaches that reduce the search space
for duplicate detection. The idea is to partition the set of records into blocks
and then compare all records only within these blocks, assuming that records in
different blocks are unlikely to represent the same entity [16]. Thus, the overall
number of comparisons depends on the number and the sizes of the blocks.
Kopcke and Rahm divide these approaches into disjoint and overlapping blocking
methods [5]. The disjoint blocking methods use a blocking predicate (e.g., the zip
code for person records) to create mutually exclusive blocks, whereas overlapping
blocking methods create overlapping blocks of records. Examples for overlapping
blocking methods are SNM, canopy clustering, suffix array-based blocking, and
Q-gram based indexing, surveyed in [17]. A generalization of standard blocking
and the Sorted Neighborhood method is presented in [6].

Whang et al. [18] propose an iterative blocking model in which they use
multiple blocking criteria at the same time to build overlapping blocks. The
detected duplicates are then distributed to other blocks which can help to find
additional duplicates and reduces the processing time for the other blocks. They

propose two algorithms: Lego and Duplo. While Lego assumes that blocks are
not stored on the disk and is therefore not applicable for data sets with millions
of records, Duplo uses a disk-based iterative approach that can handle huge data
sets. The concept of using the knowledge about already detected duplicates to
save comparisons is also an essential part of our algorithm DCS-++4-. However, in
contrast to iterative blocking, our algorithm does not include a merging step.
The paper of Benjelloun et al. [19] defines the ICAR properties (idempo-
tence, commutativity, associativity, and representativity) for match and merge
functions in the duplicate detection process. Idempotence means that a record
matches itself, whereas commutativity describes whether the order of the records
has an impact on the matching result. We assume that the matching functions
used with our algorithm fulfill these two properties. We do not have to consider
associativity and representativity, because these are properties of the merge func-
tion and our algorithm does not merge records. However, Benjelloun et al. do not
assume that the match function is transitive (i.e., r1 & ro and ro & r3 does not
imply 71 & r3), whereas transitivity is a key aspect of our algorithm DCS++.
They propose three algorithms: G-Swoosh is expensive, but can be used if the
ICAR properties do not hold. R-Swoosh exploits the ICAR properties to reduce
the number of comparisons. Finally, F-Swoosh also exploits the four proper-
ties and additionally avoids repeated feature comparisons. This last feature is
irrelevant for our experimental setting; we include R-Swoosh in our evaluation.
For algorithms that rely on the sorting order of the records, the choice of
a good sorting key is essential. It should be distinct enough, that the result
of the duplicate detection process is not affected, e.g., for SNM the number of
records with the same sorting key should not be greater than the window size.
Furthermore, attributes that are less likely to contain erroneous values should
be used, especially for the first few characters of the sorting key, as they are
more important for the sorting order than the last few [3]. For our experimental
evaluation, we used the same sorting key for all evaluated approaches.

3 Adaptive Sorted Neighborhood

In this section, we give a brief overview of different strategies that suggest them-
selves for dynamically adapting the window size. We characterize the strategies
by defining the movement of the right and left boundaries of the window. Win-
dow size increases by advancing the right boundary and it decreases by advancing
the left boundary. We identify three broad strategies:

— Key similarity strategy: Window size is varied based on the similarity of
the sorting keys: The window size is increased if sorting keys are similar and
thus more similar records can be expected.

— Record similarity strategy: Window size is varied based on the similarity
of the records: As a refinement of the key similarity strategy, one regards
instead the actual similarity of the records within the window.

— Duplicate count strategy: Window size is varied based on the number
of identified duplicates: If many duplicates are found within a window, it is
expected that even more can be found within an increased window.

For each strategy, there are several possible variations. Figure 3 gives an
overview of the different strategies and their variations, which are explained
in subsequent sections. Due to increases and decreases of the window size, the
set of compared records differs from the original Sorted Neighborhood method.
Adapting the window size does not inevitably result in additional comparisons,
it can also reduce the number. However, adapting the window size should result
in an overall higher effectiveness for a given efficiency or in a higher efficiency
for a given effectiveness.

Key similarity strategy

Basic strategy |

Skip expansion |

[I

Blocking expansion |

Record similarity strategy

Basic strategy

Average expansion

Blocking expansion

INNNI

Neighborhood expansion

Duplicate count strategy

Basic strategy

— Multiple record increase
—

Distance based increase

| Window size dependent increase

Fig. 3. Overview of adaptation strategies

We have evaluated all three strategies. The best performing is the Duplicate
count strategy, which is the focus of this paper. In fact, we prove that this strat-
egy outperforms the original Sorted Neighborhood method. It is described in
more detail in Sec. 4 and evaluated in Sec. 5. As we believe it to be interesting
for the scientific community, we have added details and results of the two infe-
rior strategies in Appendices Appendix A and Appendix B. The distance based
increase variant and the window size dependent increase variant of the Duplicate
Count strategy are described and evaluated in Appendix Appendix C, because
both do not show an efficiency increase.

10

4 Duplicate count strategy

The Duplicate count strategy (DCS) uses the number of already classified du-
plicates as an indicator for the window size: The more duplicates of a record
are found within a window, the larger is the window. On the other hand, if no
duplicate of a record within its neighborhood is found, then we assume that
there are no duplicates or the duplicates are very far away in the sorting order.
Each record t; is once the first record of a window. In the beginning, we have
a starting window size w, which is, as for SNM, domain-dependent. In the first
step, record t; is compared with w — 1 successors. So the current window can be
described as W (i,i + w — 1). If no duplicate can be found within this window,
we do not increase the window. But if there is at least one duplicate, then we
start increasing the window.

4.1 Basic strategy

The basic strategy increases the window size by one record. Let d be the number
of detected duplicates within a window, ¢ the number of comparisons and ¢
a threshold with 0 < ¢ < 1. Then we increase the window size as long as
g > ¢. Thus, the threshold defines the average number of detected duplicates
per comparison. The pseudocode of this variant can be found in Algorithm 1.

4.2 Multiple record increase

The multiple record increase variant, dubbed DCS++, is an improvement of the
basic strategy. It is based on the assumption that we have a perfect similarity
measure (all record pairs are classified correctly as duplicate or non-duplicate;
we show the performance of our algorithm with non-perfect similarity measures
in Sec. 5.3). Instead of increasing the window by just one record, we add for
each detected duplicate the next w — 1 adjacent records of that duplicate to
the window, even if the average is then lower than the threshold ¢. Of course,
records are added only once to that window. We can then calculate the transitive
closure to save some of the comparisons: Let us assume that the pairs (¢;, t;) and
(t;,t;) are duplicates, with i < k < [. Calculating the transitive closure returns
the additional duplicate pair (tx, ;). Hence, we do not need to check the window
W (k,k 4+ w — 1); this window is skipped. Algorithm 2 shows the differences of
this variant compared to Algorithm 1. The differences are the performed check,
whether a record should be skipped, and the handling of a duplicate.

Selection of the threshold If we do not check the window W (k, k +w — 1),
we might miss some duplicates within this window, if W (k, k + w — 1) contains
records in addition to those in the window in which ¢, was classified as duplicate.
In Fig. 4, record t; was classified as duplicate of t;. The window of ¢; ends with
t;. Let us assume that ¢; is also a duplicate of ¢; and ¢. If [< j (case 1 in Fig. 4),
then ¢; is detected as duplicate, even if the window of ¢, is not considered. On
the other hand, if [> j (case 2), we would not classify ¢; as duplicate, due to
the assumption that we do not have to create the window of t;,. We show that
with the right selection of the threshold this case cannot happen.

11

Algorithm 1 DCS (records, sorting key key, initial window size w, threshold ¢)
Require: w>1and 0< ¢ <1

1. sort records by key

2. populate window win with first w records of records

4. /xiterate over all rec. and search for duplicatesx/
5. for j =1 to records.length — 1 do

10. numDuplicates <— 0 /*number of det. duplicates*/

11. numComparisons < 0 /*number of comparisons*/
12 k2
13. /*iterate over win to find dup. of rec. win[l]*/
14. while k£ < win.length do
15. /*check if record pair is a duplicate*/
16. if isDuplicate(win[l], win[k]) then
17. emit duplicate pair (win[1], win[k])
18. numDuplicates <— numDuplicates + 1
19. end if
28. numComparisons <— numComparisons + 1
29. /*potentially increase window size by 1%/
30. if k = win.length and j + k < records.length
and (numDuplicates/numComparisons) > ¢ then
31. win.add(records[j + k + 1])
32. end if
33. k<—k+1

34. end while

36. /*slide window*/

37. win.remove(1)

38. if win.length < w and j + k < records.length then
39. win.add(records[j + k + 1])

40. else /*trim window to size wx/

41. while win.length > w do

42. /*remove last record from win*/
43. win.remove(win.length)

44. end while

45. end if

46. 41

47. end for

48. calculate transitive closure

12

Algorithm 2 DCS++ (records, key, w, ¢)

3. skipRecords <— null /*records to be skipped*/

4. /xiterate over all rec. and search for duplicatesx/
5. for j = 1 to records.length — 1 do

6 if win[1] NOT IN skipRecords then

. see Algorithm 1

13. /xiterate over win to find dup. of rec. win[l]*/
14. while £ < win.length do
15. /*check if record pair is a duplicatex/
16. if isDuplicate(win[1], win[k]) then
17. emit duplicate pair (win[1], win[k])
18. skipRecords.add(win[k])
19. numDuplicates <— numDuplicates + 1
20. /*increase window size from k by w-1 records*/
21. while win.length < k +w — 1
and j + win.length < records.length do

22. win.add(records[j + win.length + 1))
23. end while
24. end if
25 ... see Algorithm 1
33. k<k+1
34. end while
35. endif

.. see Algorithm 1
47. end for

48. calculate transitive closure

Case 1:1<j window of t;
A

window of t,

A
[|

Lol L Tel P LT sl 10 [
Ll TP Qsl PP T [ef T T Jsl
\ J

windo!/vofti
Case 2:1>j

L)

Y
window of t,

Fig. 4. Illustration of the two cases [< j and [> j that have to be considered for the
selection of the threshold.

13

Proposition 1. With a threshold value ¢ < ﬁ no duplicates are missed due
to skipping windows.

Proof. We first show that the increase by multiple records cannot cause one
window to outrange the other one. Then we show that with ¢ < ﬁ the skipped
windows do not contain additional records, i.e., the window of ¢; cannot outrange
the window of ¢;.

(i) When ¢, is detected to be a duplicate of ¢;, the window of ¢; is increased
from t; by w — 1 records and thus contains the same records as the beginning
window of ¢;. Every time a new duplicate is detected, both windows are increased
by w — 1 records from that duplicate.

(ii) Windows are no longer increased, if g < ¢. Let f be the number of
already detected duplicates in window W (i, k), with f > 1 because at least ¢y,
is a duplicate of ¢;, and k — i as the number of comparisons. To ensure j > [we

need:
_ftd
(k—i)+c

Due to the assumption of a perfect similarity measure, d is the same for both
windows. From (1) we can infer:

>p> ¢ (1)

frd=¢-(k—i)to-c (2)
and p-c>d (3)

Inserting (3) in (2) results in:
o< (4)

Now we want to show which value we have to choose for ¢, so that (4) is valid
for all windows W (i, k). The highest possible value for k is k = f-(w—1)+1, which
means that all previously detected duplicates were the last of the respective
window. Thus, we have:

fo_ f _ 1
¢§k—i_f~(w—1)+i—i_w—1 ®)

O

We have shown that if the threshold value is selected ¢ < ﬁ, all windows
W; comprise at least all records of a window W) where t is a duplicate of t;.
So leaving out window W}, does not miss a duplicate and thus does not decrease
the recall.

DCS++ is more efficient than Sorted Neighborhood In this section we
show that DCS++ is at least as efficient as the Sorted Neighborhood Method.
Let b be the difference of comparisons between both methods. We have b > 0 if
DCS-++ has more comparisons, b = 0 if it has the same number of comparisons,
and b < 0 if it has fewer comparisons than SNM. Per detected duplicate, our
method saves between 0 and w — 2 comparisons.

14

To compare DCS++ with SNM, we have to examine the additional compar-
isons due to the window size increase and the saved comparisons due to skipped
windows. Figure 5 shows the initial situation. In window W;, we have d detected
duplicates and it is increased up to t;. The number of comparisons within W (7, j)
is ¢ = j — . In any case, we have the comparisons within the beginning window
of t;. The number of additional comparisons compared to SNM can be defined
asa=j—1— (w—1). With s as the number of saved comparisons, because we
do not create windows for the duplicates, we have s = d - (w — 1). We show that
a—s<0.

W;: window of t;

A
[|

] fof Pk Jol TP TT T s

Y Y
beginning window of t; additional comparisons of t;

beginning V\Y/indow of t,
Ll TP

Y
beginning window of t,,

Fig. 5. Initial situation

Proposition 2. With a threshold value ¢ < —1— DCS++ is at least as efficient

as SNM with an equivalent window size (wSNUILI 1: WPOS++)-
Proof. We have to distinguish two cases: In case (i) the beginning window of ¢;
contains no duplicate and in case (ii) it contains at least one duplicate.

(i) If there is no duplicate of ¢; within the beginning window W (4,7 +w — 1),
then we have no additional comparisons due to a window size increase, but we
also do not save any comparisons due to skipping windows. It therefore holds:

b=a—s=0-0=0 (6)

(ii) In the second case we have d > 1 duplicates within the beginning window.
Then it holds:

b=a—s (7)
=l—i-(w=1]=d(w—1)] (8)
=j—i—=(d+1)-(w-1) (9)

As the window size is increased until % < ¢ and the last record is not a
duplicate, we need with ¢ < —L5 at least ¢ = d- (w — 1) + 1 comparisons to stop
the window increase.

15

In the most unfavorable case (see Fig. 6), we find in the last comparison the
duplicate t; and therefore increase the window by w—1 additional records. Then
for W (i, k) we have ﬁ = ¢ and for W (i, k+w—1) we have ¢ = m
and thus ¢ =d- (w — 1) + (w — 1). We then have for ¢ = j —i:

b=j—i —(d+1) (w—1) (10)
=d-(w=1)+w-1)—(d+1) - (w—1) (11)
=(d+1) - (w-1) —(d+1)-(w-1) (12)
=0 (13)

So in this case we have b = 0, which means the same number of comparisons
as the SNM with a window size of w.

window of t;

A

sl PPl PP bed |-

Y
beginning L Y J
window of t; beginning window of t,

Fig. 6. Unfavorable case. Duplicate ¢, is the last record in the window of ¢;. Thus, due
to the window increase there are w — 1 additional comparisons.

We now show that for all other cases b > 0. In these cases, we have fewer
than w—1 comparisons after % falls under the threshold. The best is, when there
is just a single comparison (see Fig. 7).

window of t;

A
[|

sl [T pd TTTTT -

Y
beginning window of t;
L)

Y
beginning window of t,

Fig. 7. Favorable case. Duplicate t; is the first record next to t;. Thus, due to the
window increase there is just one additional comparison.

It holds for the number of comparisons c:

d-(w-1)+1 < ¢ < d-(w=1)+(w-1) (14)

16

So in the most favorable case c =j —i=d - (w — 1) + 1 we have:

b=j—i—(d+1) - (w-1) (15)
—d W=+ 1—(d+ 1) (w—1) (16)
=1—(w-1) (17)
=2—w (18)

As window size w is at least 2, we have b < 0. So in comparison to SNM we
find the same number of duplicates but can save up to w — 2 comparisons per
duplicate. O

Thus, we have shown that DCS++ with ¢ < ﬁ needs in the worst case the
same number of comparisons and in the best case saves w — 2 comparisons per
duplicate compared to the Sorted Neighborhood Method.

5 Experimental Evaluation

In this section, we evaluate the Duplicate Count strategy. Sec. 5.1 describes
the data sets and experiment settings and Section 5.2 presents the results. The
evaluation of the other, inferior methods can be found in the appendix.

5.1 Data sets and Configuration

The experiments were executed with the DuDe toolkit [12], which is implemented
in Java. To calculate the transitive closure, we use Warshall’s algorithm [20]; ad-
ditional duplicate pairs created by the transitive closure do not count as compar-
ison, because for these pairs no comparison function is executed. Our evaluation
is primarly based on the number of comparisons, because complex similarity
measures are the main cost driver for entity resolution. The transitive closure
is calculated for both, the Duplicate Count strategies (DCS and DCS++) and
the Sorted Neighborhood Method (SNM). As we show later, the costs for the
transitive closure depend on the number of duplicate pairs and hardly differ for
the different algorithms.

To evaluate duplicate detection results, a variety of evaluation metrics ex-
ists [21, 22]. As we want to evaluate algorithms that select candidate pairs, we do
not use a similarity function in Sec. 5.2. Instead, we assume a perfect similarity
function by using a look-up in the gold standard to decide whether a record
pair is a duplicate or not. Thus, all candidate pairs are classified correctly as
duplicate or non-duplicate. For the evaluation, we measure the recall (fraction
of detected duplicate pairs and the overall number of existing duplicate pairs)
in relation to the number of executed comparisons. As in real world scenarios
the assumption of a perfect classifier does not hold, we examine in Sec. 5.3 the
effects of an imperfect classifier. We use precision (fraction of correctly detected
duplicates and all detected duplicates) and recall as quality indicators for the

17

used classifiers and the F-Measure (harmonic mean of precision and recall) as
measure to compare the different algorithms.

We chose three data sets for the evaluation. The Cora Citation Match-
ing data set has already been described in Sec. 1 and we use the attribute
newreference (typically the concatenation of the first author’s last name and the
year of publication) as sorting key. The second data set was generated with the
Febrl data generator [23] and contains personal data. Using the Zipf distri-
bution, 30,000 duplicates were added. Figure 8 shows the distribution of cluster
sizes within the Febrl data set. We use a complex sorting key, created of the first 3
letters of culture, and the first 2 letters of title, social security ID, postcode,
phone number, address, surname, and given name, always without spaces.

1,600 T T T T T T T T T

1,400 E

1,200 | 4

1,000 i

Number of clusters

800 R

600 b

400

Cluster size

Fig. 8. Distribution of the cluster sizes for the Febrl data set

The third data set is artificially polluted real-world data and contains about
1 million records with persons and their addresses. It was created by an industry
partner who uses this data set to evaluate duplicate detection methods and is
thus a good benchmark. Our sorting key is the concatenation of the first three
letters of the zip code, two letters of street and last name, and one letter of
street number, city, and first name. Table 1 gives an overview of the three data
sets.

We compare the Duplicate Count strategies on the one hand with SNM and
on the other hand with IA-SNM and AA-SNM. As window sizes we use values

18

Data set|Provenance|# of records|# of dupl. pairs
Cora real-world 1,879 64,578
Febrl synthetic 300,009 101,153
Persons |synthetic 1,039,776 89,784

Table 1. Overview evaluation data sets

from 2-1000 for the Cora and the Febrl data set and values between 2-200 for
the Persons data set. The threshold ¢ for the Duplicate Count strategies is ﬁ
as suggested in the previous section. IA-SNM and AA-SNM use the normalized
Edit-Distance for creating the windows with thresholds from 0.1-1.0 for the Cora
data set and 0.1-0.75 for the other two data sets. All algorithms use the same

classifiers to decide, whether a record pair is a duplicate or not.

5.2 Experiment Results: Perfect Classifier

For the Cora data set, Fig. 9(a) shows the minimal number of required compar-
isons to gain the recall value on the x-axis. A comparison means the execution
of a (probably complex) similarity function. Please note the logarithmic scale in
opposite to Fig. 9(b), where we bring into focus the most relevant recall range
from 96% — 100%. Both figures show the monotonic increase of SNM and the Du-
plicate Count strategies. The results of IA-SNM and AA-SNM are interpolated,
which means that they show the minimum number of required comparisons to
gain at least the specific recall. The most comparisons are needed for the TA-
SNM and AA-SNM algorithms. We see that due to the window size increase,
DCS performs worse than SNM. By contrast, DCS++ outperforms SNM, be-
cause it omits the creation of windows for already classified duplicates.

Both SNM and DCS++ make use of calculating the transitive closure to
find additional duplicates. Thus, some duplicates are selected as candidate pairs
by the pair selection algorithm (e.g. SNM and DCS++) and then classified as
duplicates, while other duplicates are detected when calculating the transitive
closure later on. Figure 10 shows this origin of the duplicates. The x-axis shows
the achieved recall value by summing detected duplicates of executed compar-
isons and those calculated by the transitive closure. With increasing window size
SNM detects more and more duplicates by executing the similarity function, and
thus has a decreasing number of duplicates detected by calculating the transitive
closure. DCS++ on the other hand has hardly an increase of compared dupli-
cates but makes better use of the transitive closure. As we show later, although
there are differences in the origin of the detected duplicates, there are only slight
differences in the costs for calculating the transitive closure.

19

10,000,000 T DCS

= T T T T T
AA SNM —=—
IA SNM
SNM -~
DCS++ —o—
1,000,000 F
gl
2 iy
5 :
S 1 By
§ 100,000 | — o I
IS
[e]
o
10,000
1’000 1 1 1 1 1 1 1
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Recall
(a) Required comparisons (log scale).
1,800,000 5CS —a— - ' I
AA SNM —=—
IA SNM
1,600,000 | SNM —--%---
DCS++ —e—
1,400,000 k)
1,200,000 -
2]
c
2 1,000,000 - %
@ !
g :
£ 800,000 |- i'
o !
600,000 | AT i
o e,
400,000 [e " 1
g I
A VR *
200,000 | ”'Er_;’a,l—’(x.—.:'_].é‘.‘::_::‘.; _______________________ * i
. _atalielt 2=
r I
'*"'_—‘ - f

0.96 0.97 0.98 0.99 1
Recall

(b) Required comparisons in the most relevant recall range.

Fig. 9. Results of a perfect classifier for the Cora data set. The figure shows the minimal
number of required comparisons to gain the recall value on the x-axis.

20

70,000 T T T T

60,000 * R

50,000 R

SNM — Algorithm ---#---

2 40,000 f SNM - Trans. Closure B
© ; DCS++ - Algorithm —e—
RS e DCS++ — Trans. Closure
o H
8 30,000 F x 1
i
*
20,000 X B
x
¥
________________ %
10,000 B
0 1 1 1 1
0.95 0.96 0.97 0.98 0.99 1

Recall

Fig. 10. Comparison of the origin of the detected duplicates for the Cora data set. The
figure shows for the recall values on the x-axis the number of duplicates detected by the
pair selection algorithm (SNM / DCS++) and the number of duplicates additionally
calculated by the transitive closure.

The results for the Febrl data set (cf. Fig. 11(a)) are similar to the results of
the Cora data set. Again, the IA-SNM and the AA-SNM algorithm require the
most comparisons. But for this data set SNM requires more comparisons than
DCS, whereas DCS++- still needs the fewest comparisons.

In Fig. 11(b) we can see again that SNM has to find most duplicates within
the created windows to gain high recall values. DCS++ on the other hand finds
most duplicates due to calculating the transitive closure. It is therefore impor-
tant, to use an efficient algorithm that calculates the transitive closure.

In contrast to the Cora data set, the Persons data set has only clusters
of two records. The Duplicate Count strategy is therefore not able to find addi-
tional duplicates by calculating the transitive closure. Fig. 12 shows that DCS+-+
nevertheless slightly outperforms SNM as explained in Sec. 4.2. The difference
between DCS and SNM is very small, but the basic variant needs a few more
comparisons.

21

10,000

1,000

100

Comparisons in millions

1 1
0.86 0.88 1
Recall

(a) Minimal number of required comparisons (log scale) to gain the recall value on the
X-axis.

100,000 T T T T T T —1 T
90,000 e s .
Ix,
80,000 & i
'ﬁ,l
70,000 - _
/*II

o 80,000 - SNM — Algorithm ---s---]
% SNM - Trans. Closure
o 50,000 | s DCS++ — Algorithm —e—_
s X DCS++ — Trans. Closure
a

40,000 |- 1

30,000 -

20,000 B
10,000 1
0 1 1 1 5 L L 1
0.86 0.88 0.9 0.92 0.94 0.96 0.98
Recall

(b) Comparison of the origin of the detected duplicates, i.e. whether the duplicate pairs
are created by the pair selection algorithm or calculated by the transitive closure later
on.

Fig. 11. Results of a perfect classifier for the Febrl data set.

22

110 e . .

100 b

Comparisons in millions

0.8 0.805 0.81 0.815 0.82 0.825
Recall

Fig. 12. Results of a perfect classifier for the Person data set. The figure shows the
minimal number of required comparisons to gain the recall value on the x-axis.

We also evaluated the performance of the R-Swoosh algorithm [19]. R-Swoosh
has no parameters, it merges records until there is just a single record for each
real-world entity. The results of R-Swoosh are 345,273 comparisons for the Cora
data set, more than 57 billion comparisons for the Febrl data set, and more than
532 billion comparisons for the Person data set. So for the Cora data set with
large clusters and therefore many merge operations, R-Swoosh shows a better
performance than SNM or DCS, but it is worse than DCS++. For the Febrl and
the Person data sets, R-Swoosh requires significantly more comparisons, but on
the other hand returns a “perfect” result (recall is 1).

5.3 Experiment Results: Imperfect Classifier

So far we have assumed a perfect classifier, which is nearly impossible to develop
in practice. In this section we analyze the effects of an imperfect classifier on the
results of the DCS++ algorithm.

Figure 13 shows a sequence of sorted records. We first assume that all three
labeled records t;, t;, and t; are duplicates. Table 2 shows all possible combi-
nations of how the classifier could classify these pairs, if the pairs were created
as candidates by an algorithm. We further assume that ¢; is within the initial
window of ¢; and t;, is within the initial window of ¢;. Additionally, we assume
for this example that if (¢;,¢;) is classified as duplicate, then the window of ¢; is

23

increased until it includes at least t;. Otherwise, we have to distinguish the two
cases whether ¢, is included in the window of ¢; or not.

t t,

Fig. 13. Sorted records for evaluation of an imperfect classifier

For each combination, Table 2 describes the effect of the classification on
the overall result. Each classified non-duplicate is a false negative. Please note
that the stated classification refers to the result of the classifier. If the pair is
not created, the classifier result is irrelevant; calculating the transitive closure
can yet change the final classification of a record pair. Misclassification is not
just a problem of the Duplicate Count Strategy, but also occurs with any other
method.

If (t;,t;) is a duplicate, DCS++ does not create a window for ¢; and therefore
the classification of (t;,t;) does not depend on the classifier, but only on the
calculation of the transitive closure.

In cases 5-8 of Tab. 2 (t;,t;) is classified as non-duplicate, and so there is
no guarantee that the window of ¢; is large enough to comprise t;. But if ¢; is
included and (t;,ty) is classified correctly (case 5), then the transitive closure
also includes (t;,t;) as a duplicate.

Compared to the Sorted Neighborhood Method (SNM), case 3 is especially
interesting, because pair (t;,t) is not created and therefore (¢;,tx) is not de-
tected to be a duplicate due to calculation of the transitive closure. SNM does
not skip windows and would therefore classify (t;,t;) and due to the transi-
tive closure also (t;,t;) correctly as duplicate. So for case 3, we have two false
negatives for DCS++4-, but no false negatives for SNM.

Table 3 also refers to the records t;, t;, and ¢; in Fig. 13, but we now assume
that they are all non-duplicates. The results are similar to those in Table 2,
but this time classified duplicates are false positives. In cases 13-16, (t;,t;) is
incorrectly classified as duplicate and thus, no window for ¢; is created. The clas-
sification of (¢;,t;) depends only on the transitive closure. This results in fewer
false positives, compared to the SNM, in case 14 because SNM would compare
(tj,tr) and thus misclassify it as duplicate. Additionally, due to the calculation
of the transitive closure, also (t;,t;) would be misclassified as duplicate, resulting
in three false positives for SNM opposed to one false positive for DCS++.

Based on these results we can say that a misclassification can but does not
necessarily have a negative impact on the overall result. We now experimentally
evaluate the effect of misclassification. The experiment uses different classifiers
for the CORA data set. Classifiers can be very restrictive, which leads to a
high precision, but a low recall value. Such a classifier that does not detect all
real duplicates favors SNM, as described before in case 3. On the other hand,
classifiers with a lower precision and hence a higher recall value favor DCS++,

24

's91e01[dNP-UoU SB PAISSB[OSII
are sired Ju (N) sealye3ou os[e] Jo Ioquunu o1} WY)IOSe ++§O)(oY) 10J smoys o[qe) oy, ‘sejeoridnp ore sired 001} [V g 9[qeL

oreordnp-uou se payIsse[osiu a1k sited proodl [[V| ¢ aN £ AN | u/4& | aN £ IS

oreordnp se A[1001100 paytsse[o st (47 47) A[up| g a £ aN | u/4& | aN £ .

-oyeoridnp se poyisse(d st (£7¢4) Ao wory) ‘¥7 sestduiod ¥ 10] mopuim oy} J1| €/¢ || AN A a | u/£ | an A 9
-oyeotidnp-uou se poylsse[ostua are (47 f7) pue (£9°47) yjoq ‘estmioyi0) DI, oY)

"oTed £q ageordnp se paygrssed ST (£7 %) uery) ‘7 sestadwiod *7 10] mopuim o1y JI| ¢/0 a £ a |u/f|aN| £ G

-oyeotidnp se A[)001100 paytsse[d st (£7°%) A[up| g aN u aN A a A ¥
*99e0T[dNP-UOU S POYISSROSIUL OS[R 9I0JoIoY) pur pareduwod j0u

St (%7¢49) ‘snyyT, ¢ 10] pajeard T mopuim ou ‘eyeorydnp e st (F2¢4) sy| g a u aN £ a £ ¢

"0 24} £q peyIsse[d Inq pajeaId jou st (47 ‘f7) ared ({A]1001100 peyissed sired [[y| 0 aN u a A a A C

‘0.1 24} £q payIsse[d 1nq pajeaId jou st (47 f7) ared {A]1001100 peyissed sired [[y| a u a £ a £ 1

EURE) LU Oy
uoneued| N Aﬁ:mmw Hwﬁmmmﬁo / vwgﬁwpom%mv °N

25

Pair created / classifier result .

No (tirt;) (ta,) (s, 1) FP |Explanation

9 y ND | y/n | ND y ND 0 |All pairs classified correctly as non-duplicate.

10 y | ND |y/n|ND| y D 1 |Only (t;,tx) is misclassified as duplicate.

11 v ND %\S D v ND H\o If the window for ¢; comprises tx, then only A?; Sﬂv is misclassified as duplicate.

12 y | ND |y/n| D y D 3/1 |If the window for ¢; comprises ty, then (t;,¢;) is misclassified by calculating
the TC. Otherwise, only (¢;,tx) is misclassified as non-duplicate.

13 y D y | ND| n | ND 1 |Only (t;,t;) is misclassified

14 y D y | ND | n D 1 |As (t;,t;) is classified as duplicate, no window is created for ¢;. Thus, (¢, tx)
is not compared and therefore also correctly classified as non-duplicate.

15 y D y D n | ND 3 |All pairs are misclassified; pair (¢;, tx) is not created but classified by the TC.

16 vy D y D n D 3 |All pairs are misclassified; pair (¢;,tx) is not created but classified by the TC.

Table 3. All three pairs are non-duplicates. The table shows for the DCS++ algorithm the number of false positives (FP) if pairs are
misclassified as duplicates.

26

because misclassified non-duplicates are worse for SNM (see case 14). Thus, the
results depend on the precision/recall tradeoff of the classifier and we therefore
use the F-Measure (harmonic mean of precision and recall) in our experiments
as quality indicator.

Table 4 gives an overview of the used classifiers. The values are the results
of an exhaustive comparison without calculating the transitive closure. We have
selected one classifier with both a high precision and a high recall value (C1).
The other two classifiers have either a high recall (C2) or high precision (C3)
value.

Classifier |Precision| Recall |F-Measure
C1 98.12 % (97.17 %| 97.64 %
C2 83.27 % [99.16 %| 90.52 %
C3 99.78 % (84.13 %| 91.23 %

Table 4. Overview classifier for the Cora data set. Key figures are based on an ex-
haustive comparison without calculating the transitive closure.

Figure 14 shows the interpolated results of our experiments — one chart for
each of the classifiers. We see for all three classifiers that DCS requires the
most and DCS++ the least number of comparisons, while SNM is in between.
Figure 14(a) shows the results for classifier C1 with both a high recall and a
high precision value. The best F-Measure value is nearly the same for all three
algorithms and the same is true for classifier C2 with a high recall, but low
precision value, as shown in Fig. 14(b). However, we can see that the F-Measure
value for C2 is not as high as for classifiers C1 or C3. Classifier C3 with a high
precision but low recall value shows a slightly lower F-Measure value for DCS++
than for DCS or SNM. This classifier shows the effect of case 3 from Table 2.
Due to skipping of windows, some duplicates are missed. However, the number
of required comparisons is significantly lower than for the other two algorithms.
Here, the DCS++ algorithm shows its full potential for classifiers that especially
emphasize the recall value.

So far we have considered only the number of comparisons to evaluate the
different algorithms. As described before, DCS++ and SNM differ in the num-
ber of detected duplicates by using a classifier and by calculating the transitive
closure. We have measured the execution time for the three classifiers, divided
into classification and transitive closure (see Fig. 15). As expected, the required
time for the transitive closure is significantly lower than for the classification,
which uses complex similarity measures. The time for the classification is pro-
portional to the number of comparisons. All three classifiers require about 0.2 ms
per comparison.

The time to calculate the transitive closure is nearly the same for all three
algorithms and all three classifiers. SNM requires less time than DCS or DCS++,
but the difference is less than 1 second. Please note that the proportion of time

27

1,000,000 \ T ‘
DCS Basic - C1 ——
SNM - C1 —=—
DCS++-C1 —=—
@ 100,000 ¢ E
2
@
Q.
I
o
© 10,000 |]
1 ,000 Il Il Il Il Il
0.7 0.75 0.8 0.85 0.9 0.95 1
F-Measure
(a) Required comparisons (log scale) classifier C1
1,000,000 \ T ‘
DCS Basic - C2 —*—
SNM - C2 —=—
DCS++-C2 —=—
@ 100,000 ¢ E
2
@
Q.
I
o
© 10,000 |]
/—‘ “—OOJ
1 ,000 Il Il Il Il Il
0.7 0.75 0.8 0.85 0.9 0.95 1
F-Measure
(b) Required comparisons (log scale) classifier C2
1,000,000 \ T ‘
DCS Basic - C3 ——
SNM - C3 —=—
DCS++-C3 —=—
@ 100,000 E
2
3
Qo
IS
o
© 10,000]

1,000 ‘ ‘ ‘
07 075 08 08 09 095 1

F-Measure

(¢) Required comparisons (log scale) classifier C3

Fig. 14. Interpolated results of the three imperfect classifiers C1-C3 for the Cora data
set.

28

for classification and for calculating the transitive closure depends on the one
hand on the data set size (more records lead to more comparisons of the classifier)
and on the other hand on the number of detected duplicates (more duplicates
require more time for calculating the transitive closure).

250 T T T . " T T T T T T
Time Classification Exxxa
Time Transitive Closure
200 B
150 B
w
k=
(0]
£
'_
100 B
50 - B
0 ¢ | P— o]
DCS DCS++ SNM DCS DCS++ SNM DCS DCS++ SNM
Classifier C1 Classifier C2 Classifier C3

Fig. 15. Required Time for the best F-Measure result of each classifier.

6 Conclusion

With increasing data set sizes, efficient duplicate detection algorithms become
more and more important. The Sorted Neighborhood method is a standard algo-
rithm, but due to the fixed window size, it cannot efficiently respond to different
cluster sizes within a data set. In this paper, we have examined the Duplicate
Count Strategy which adapts the window size based on the number of detected
duplicates. In Sec. 4.2 we have proven that with a proper (domain- and data-
independent!) threshold, DCS++ is more efficient than SNM without loss of
effectiveness. Our experiments with real-world and synthetic data sets have val-
idated this proof.

The DCS++ algorithm uses transitive dependencies to save complex com-
parisons and to find duplicates in larger clusters. Thus, it is important to use
an efficient algorithm to calculate the transitive closure. In contrast to previous
works, we consider the costs of the transitive closure separately.

29

Overall, we believe that DCS++ is a good alternative to SNM. The ex-
periments have shown the potential gains in efficiency, allowing to search for
duplicates in very large data sets within reasonable time.

Acknowledgement

This research was partly supported by the German Research Society (DFG grant
no. NA 432).

References

1. H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James, “Automatic
linkage of vital records.” Science, vol. 130, pp. 954-959, 1959.

2. L. Gu and R. Baxter, “Adaptive filtering for efficient record linkage,” in Proceedings
of the SIAM International Conference on Data Mining, 2004, pp. 477-481.

3. F. Naumann and M. Herschel, An Introduction to Duplicate Detection (Synthesis
Lectures on Data Management), 2010.

4. H. H. Shahri and A. A. Barforush, “A flexible fuzzy expert system for fuzzy dupli-
cate elimination in data cleaning,” in Proceedings of the International Conference
on Database and Ezpert Systems Applications (DEXA), 2004, pp. 161-170.

5. H. Kopcke and E. Rahm, “Frameworks for entity matching: A comparison,” Data
& Knowledge Engineering (DKE), vol. 69, no. 2, pp. 197-210, 2010.

6. U. Draisbach and F. Naumann, “A comparison and generalization of blocking and
windowing algorithms for duplicate detection,” in Proceedings of the International
Workshop on Quality in Databases (QDB), 2009.

7. M. A. Herndndez and S. J. Stolfo, “The merge/purge problem for large data-
bases,” in Proceedings of the ACM International Conference on Management of
Data (SIGMOD), 1995, pp. 127-138.

8. M. A. Herndndez and S. J. Stolfo, “Real-world data is dirty: Data cleansing and
the merge/purge problem,” Data Mining and Knowledge Discovery, vol. 2(1), pp.
9-37, 1998.

9. M. Bilenko and R. J. Mooney, “Adaptive duplicate detection using learnable string
similarity measures,” in Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), 2003, pp. 39-48.

10. X. Dong, A. Halevy, and J. Madhavan, “Reference reconciliation in complex infor-
mation spaces,” in Proceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD), 2005, pp. 85-96.

11. P. Singla and P. Domingos, “Object identification with attribute-mediated depen-
dences,” in Furopean Conference on Principles of Data Mining and Knowledge
Discovery (PKDD), 2005, pp. 297-308.

12. U. Draisbach and F. Naumann, “DuDe: The duplicate detection toolkit,” in Pro-
ceedings of the International Workshop on Quality in Databases (QDB), 2010.

13. A. E. Monge and C. Elkan, “An efficient domain-independent algorithm for detect-
ing approximately duplicate database records,” in Workshop on Research Issues
on Data Mining and Knowledge Discovery (DMKD), 1997.

14. M. Weis, F. Naumann, U. Jehle, J. Lufter, and H. Schuster, “Industry-scale dupli-
cate detection,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1253-1264,
2008.

30

15

16.

17.

18.

19.

20.

21.

22.

23.

S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles, “Adaptive sorted neighborhood meth-
ods for efficient record linkage,” in Proceedings of the ACM/IEEE-CS joint con-
ference on Digital libraries (JCDL), 2007, pp. 185-194.

R. Baxter, P. Christen, and T. Churches, “A comparison of fast blocking meth-
ods for record linkage,” in Proceedings of the ACM SIGKDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, 2003, pp. 25-27.

P. Christen, “A survey of indexing techniques for scalable record linkage and dedu-
plication,” IEEE Transactions on Knowledge and Data Engineering (TKDE), vol.
PrePrints, 2011.

S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina,
“Entity resolution with iterative blocking,” in Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD), 2009, pp. 219-232.

O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom, “Swoosh: a generic approach to entity resolution,” VLDB Journal.

S. Warshall, “A theorem on boolean matrices,” Journal of the ACM, vol. 9, pp.
11-12, January 1962.

P. Christen and K. Goiser, “Quality and complexity measures for data linkage and
deduplication.” in Quality Measures in Data Mining, ser. Studies in Computational
Intelligence, 2007, vol. 43, pp. 127-151.

D. Menestrina, S. Whang, and H. Garcia-Molina, “Evaluating entity resolution
results,” Proceedings of the VLDB Endowment, vol. 3, no. 1, pp. 208-219, 2010.
P. Christen, “Probabilistic data generation for deduplication and data linkage,” in
IDEAL, Springer LNCS 3578, 2005, pp. 109-116.

31

Appendix A Key similarity strategy

Key similarity strategies define the window size at runtime based on the simi-
larity of the sorting keys. The goal is to increase the window, if records with
a similar sorting key are close to each other within the sorting sequence. The
strategy is based on the assumptions that a comparison of sorting keys is cheaper
than a comparison of records, and that records with similar sorting keys have a
higher chance of being duplicates. If two records have dissimilar sorting keys, an
expensive comparison can be avoided. On the other hand, if the sorting keys are
similar, there is an additional comparison of the keys next to the actual record
comparison.

Let ¢; and t; be two records with sorting keys K(t;) and K(t;), then
SiMgsort (ti, ;) is the similarity of the sorting keys of ¢; and t; with 0 <
Simsort(ti7tj) S 1.

A.1 Basic approach

Using the basic approach, the window is increased by 1 record as long as the
sorting key similarity of the first and the last record in the window is greater
than a specified threshold ¢. We define:

$iMgort (ti,tj) > ¢ = t; and t; are potential duplicates

SiMgort (ti, 1) < ¢ = t; and t; are potential non-duplicates

Thus, a window with record ¢; as first element is increased up to record t;
with
8iMgort(ti, 1) > ¢ and simgope (ti,tj11) < @

After a comparison of all candidate pairs within the window, the window is
moved by 1 record so that the next window has record ¢;11 as first element, ¢;
as last element and is then increased until the former condition holds.

A disadvantage of the basic approach is that for large windows a lot of key
comparisons are necessary. This is for example the case if last_.name is used as
sorting key for a data set with personal data. A second disadvantage occurs, if
a record t; is within the sorting order between the duplicates ¢; and ¢;. With
SiMsort(ti, tr) < ¢ the increase of the window size is stopped and thus, ¢; and ¢;
are not in the same window and cannot be classified as duplicate.

A.2 Skip expansion

The skip expansion meets these disadvantages. The window is expanded by mul-
tiple records at once, saving multiple comparisons of the sorting key. It is there-
fore similar to the adaptive Sorted Neighborhood method proposed in Yan et
al. [15]. The number of new elements for a window can be a constant value or can
be a multiple of the last expansion. If the window is increased by x elements in
an increase step, then x — 1 sorting key comparisons are saved compared to the

32

basic approach. When the sorting key similarity of the first and the last record
in the window is smaller than the threshold ¢, a retrenchment phase begins. The
elements of the last expansion step are iteratively bisected until the condition of
the basic approach holds.

A.3 Blocking expansion

Assume that we have a window W (t;,¢;) and the sorting keys of records ¢; and
tj+1 are very dissimilar (e.g., “Smith” and “Taylor”). When we create the next
window and compare the sorting keys of ¢;;; with the one of t;,1, it is very
likely that the similarity is also less than ¢. Then we create the next window
with t; 9 as first element and so on, always stopping to increase the window when
comparing with the sorting key of ;41 due to the great dissimilarity. This means
that we have a lot of unnecessary comparisons. The blocking expansion uses two

thresholds d’Blocking and ¢PotentialDuplicate with ¢Blocking < ¢Potentz’alDuplicate
and we assume:

Simsort (tza tj) Z d)PotentialDuplicate
A Simsort(ti;tj+1) < ¢Blocking
= Vk e [Z + 1,]} : Simsort (tkv tj+1) < ¢PotentialDuplicate

Based on this assumption, if the condition applies for window W (i, j), we
can save for the following windows the sorting key comparison of record t; (k €
[i +1,7]) with record t;;,. However, there is the risk that the assumption does
not apply and thus potential duplicates are not compared.

A.4 Evaluation key similarity strategies

The key similarity strategies use comparisons of sorting keys to adapt the size of
the window and thus the selected candidate pairs. The idea is that a comparison
of sorting keys is less expensive than a comparison of records. However, the
sorting key comparison has no impact on the final duplicate decision. So for all
key similarity strategies there is always the trade-off between processing-time
savings due to cheaper comparisons for selecting candidate pairs and additional
costs, because sorting key comparisons cannot replace record comparisons for
the duplicate decision.

We experimentally evaluated the key similarity strategies and compared them
with the Sorted Neighborhood method. For this purpose, we used the Febrl data
set described in Sec. 5.1. All algorithms ran 3 times with different sorting keys
and the results were merged before finally the transitive closure was calculated.
The sorting keys are:

— surname and given name
— zip code and street
— social security ID

33

For the skip expansion we experimented with different increase sizes and finally
used increases of 2 and 3 records. The threshold ¢ varied for the basic approach
from 0.75-1.0 and for all other extensions from 0.8-1.0. For the blocking exten-
sion we used ¢piocking = 0.5.

T T
Sorted Neighborhood ---#---
Basic approach —-&--
Skip Expansion - 2 —e—
Skip Expansion - 3
Blocking expansion —=— B

1,000,000,000 ¢

T
B.,
1

100,000,000

10,000,000 ¢

Comparisons

1,000,000 |

100,000 : : ! !
0.99 0.992 0.994 0.996 0.998 1

Recall

Fig. 16. Required comparisons for key similarity strategies

As we can see in Fig. 16, the Sorted Neighborhood Method performs fewer
comparisons and thus performs better than the key similarity strategies. Addi-
tionally, the sorting key strategies require sorting key comparisons, which are
not considered in the figure.

34

Appendix B Record similarity strategy

The idea of record similarity strategies is to avoid comparisons of potential non-
duplicates. As opposed to the key similarity strategies, the window size is not
adapted before the record comparisons, but rather by analyzing the previous
comparisons. Therefore, in this section similarity means the similarity of two
records and not the similarity of their sorting keys.

B.1 Basic approach

The basic approach is analogous to the basic approach of the key similarity
strategy. A record ¢; in a window is compared with its successor record t;. If the
similarity is higher than a threshold ¢, then the window is increased by 1 record
and t; is also compared with ¢;;1. On the other hand, if the similarity is less
than ¢, then the window is not increased anymore and the next window is then
W (tit1,t;), which is also iteratively increased. We define:

simypu(ti, t;) > ¢ = t; and t; are potential duplicates
simpun(ti, 1) < ¢ = t; and t; are potential non-duplicates

Sorting the records is based on the sorting key, while the calculation of the
similarity might be independent of the attributes used in the sorting key. So using
the basic record similarity approach, two adjacent records might be classified as
non-duplicates, although the following record is a duplicate. The effectiveness of
this approach therefore depends on the correlation of the sorting key and the
similarity measure.

B.2 Average expansion

The basic approach is very restrictive concerning the termination of the window
increase. The window increase is stopped as soon as there is one record with a
similarity to the first record lower than the threshold. It makes no difference, if
it is the adjacent neighbor or if several records are between the first and the last
record of the window. To attenuate the termination condition, the window should
still be increased after the first dissimilar record is in the window. The more
similar records are side by side, the further the sorted list should be searched for
further duplicates. So if the sorting is based on the last name, the window size
is higher if the first record in the window has a very common last name than
if it has an unusual one. The average expansion approach therefore terminates
the window increase if the average similarity of all previous comparisons in the
window is less than a threshold ¢. The average for window W (i, j) is calculated
with the arithmetic mean:

j—1

Avg(W (i, §)) = “h=i 5 u(tis te)

j—1

Thus, the window increase is terminated if Avg(W(i,j)) < ¢. To prevent
termination after the first comparison, a minimum window size can additionally
be defined.

35

B.3 Blocking expansion

The blocking expansion for record similarity strategies is analogous to the block-
ing expansion for key similarity strategies. We assume:

simpa(ti, 1)) < dBlocking
= Vk e [Z +1,7— 1] : Simsort(tMtj) < ¢PotentialDuplicate

By this assumption, records ¢ with ¢ < k < j have not to be compared with
t; and consequently these expensive comparisons can be saved.

B.4 Neighborhood expansion

The basic approach and the average expansion only use the similarity of the first
record with its successors to decide whether the window should be increased or
not. The neighborhood strategy adapts the window size based on the similarity of
immediate neighbors. We define the distance between two immediate neighbors
as 1 — simyyu(ti, tiy1) and the window is increased as long as the sum of the
distances is lower than threshold ¢. So each window meets the conditions:

J=1 .
Z (1 - Slmfuu(tk,tk+l)) <¢

k=1
j .
A Zk:i(l — stmpun(te, the1)) > @

The advantage of the neighborhood strategy in comparison to the average
expansion is the limitation of the window size due to the threshold. The window
only grows as long as similar records are side by side.

B.5 Evaluation record similarity strategies

Compared to the key similarity strategies, record similarity strategies do not
have additional comparisons for adapting the window size. As the window in-
crease depends on the similarity of the records, all windows comprise particularly
similar records. We have experimentally evaluated three of the described varia-
tions of full record similarity strategies using the same data set and settings as
for the key similarity strategies. Figure 17 shows the results and we can again
see that overall the Sorted Neighborhood Method performs at least as good as
the record similarity strategies.

36

Comparisons

100,000,000 T T T
Sorted Neighborhood ---#--- Ja!
Basic approach ---&--- a
Average Expansion - 3 —e—
Average Expansion - 10 ;
Neighborhood expansion —=— " ¥
10,000,000 [
1,000,000 [
100,000 L L L
0.992 0.994 0.996 0.998

Recall

Fig. 17. Required comparisons for record similarity strategies

37

Appendix C Duplicate Count Strategy Variants

In this section we describe two variants of the duplicate count strategy, which
additionally considers the position of the detected duplicates. Both variants are
based on DCS++.

C.1 Distance-based increase

When a duplicate is detected, the window is increased by the maximum distance
of two adjacent duplicates in the window. If there is a duplicate pair within a
large distance, we want to check whether there are other duplicates that also have
such a distance. Algorithm 3 shows the differences of this variant compared to
Algorithm 1. The differences are the check, whether a record should be skipped
and how a duplicate is handled.

Algorithm 3 Distance-based increase (records, key, w, ¢)

3. skipRecords <— null /*records to be skipped*/

4. /xiterate over all rec. and search for duplicatesx/
5. for j = 1 to records.length — 1 do

6 if win[1] NOT IN skipRecords then

7. mazDist < 0 /*max. distance of adjacent dupl.x*/
8 posLastDup <— 1 /*position of last det. dupl.*/
9 winlncrease <— 0 /*window size increasex*/

.. see Algorithm 1

15. /*check if record pair is a duplicate*/
16. if isDuplicate(win[1], win[k]) then
17. emit duplicate pair (win[1], win[k])
18. skipRecords.add(win[k])
19. numDuplicates < numDuplicates + 1
20. mazDist < MAX(mazDist, k — posLastDup)
21. posLastDup < k
22. winlncrease < MAX(mazDist,w — 1)
23. /*increase window size from k by winIncrease records*/
24. while win.length < k + winlncrease do
25. win.add(records[j + win.length + 1])
26. end while
27. end if

.. see Algorithm 1
35. end if

.. see Algorithm 1

47. end for

48. calculate transitive closure

38

C.2 Window size dependent increase

When a duplicate is detected under this strategy, the window is increased by a
specified percentage of its current size. As the increase depends on the current
window size, this is especially relevant for large windows. The idea is that after
detecting duplicates with a large distance there are potentially other duplicates
within an even larger distance. Algorithm 4 shows the differences of this variant
compared to Algorithm 1. Again, the differences lie in the check, whether a
record should be skipped and how a duplicate is handled.

Algorithm 4 Window size dependent increase (records, key, w, ¢, percentage)

3. skipRecords <— null /*records to be skipped*/
4. /xiterate over all rec. and search for duplicatesx/
5. for j =1 to records.length — 1 do

6. if win[l] NOT IN skipRecords then

7. winlncrease <— 0 /*window size increasex/

.. see Algorithm 1

15. /*check if record pair is a duplicate*/
16. if isDuplicate(win[1], win[k]) then

17. emit duplicate pair (win[1], win[k])

18. skipRecords.add(win[k])

19. numDuplicates <— numDuplicates + 1

20. winlncrease < MAX(k - percentage, w — 1)
21. /*increase window size from k by winIncrease rec.*/
22. while win.length < k + winlncrease do

23. win.add(records[j + win.length + 1])

24. end while

25. end if

.. see Algorithm 1
35. end if
.. see Algorithm 1

47. end for

48. calculate transitive closure

C.3 Experimental Evaluation

We use the same data sets and settings as in Sec. 5 to evaluate the variants and
compare them to DCS++. Figures 18 and 19 show the differences of comparisons
for the Cora and the Febrl data set, with values > 0 if the variant requires
more comparisons than DCS++ and values < 0 if it requires fewer comparisons.
The charts show only data points for those recall values that were achieved by
DCS++ and at least one of the variants. The results are not interpolated, which
explains the amplitudes in the curves.

39

400

200
g \
8 or :
g \
£ \
5 i
3 -200 |- : |
g i
5 1
S ‘
3 a
2 ~400 |- : |
-600 |- DCS (DBI) ---%-- ! |
DCS (WSI 10%) —o— J
DCS (WSI 30%) —s—
DCS (WSI 50%) —-&—-
-800 . , . |
0.95 0.96 0.97 0.98 0.99 1
Recall

Fig. 18. DCS++ variants on Cora data set

Overall we noticed only slight differences between DCS++ and the two vari-
ants. The window size dependent increase variant always requires more compar-
isons than DCS++ and is therefore less efficient. In Fig. 19(b), the variant with
10% increase requires exactly the same number of comparisons as DCS++ and
is therefore equal to the x-axis.

The distance-based increase variant also shows few additional comparisons
for both data sets in comparison to DCS++4. Yet, for the Cora data set we
can see only one outlier within 19 data points, and for the Febrl data set three
outliers within 106 data points. These data points are listed in Table 5. Thus,
for few configurations the distance-based increase variant is more efficient than

DCS++. Our analysis did not show any pattern to predict if a configuration is
more efficient than DCS++ or not.

Data set| Recall |Comp. DCS++| Avoided comp.
Cora 97.64 % 15,530 652 (4,20 %)
Febrl 96.24 % 26,152,938| 315,039 (1.20 %)
Febrl 96.31 % 28,089,722| 314,158 (1,12 %)
Febrl 97.73 % 157,701,871(3,191,416 (2,02 %)

Table 5. Outlier distance-based increase

40

500,000

DCS (DBI) ---%---
0] . -
\‘u'z'
-500,000 |
1%}
s
2 -1,000,000
IS
[oR
€
8 -1,500,000
T
c
S
£ -2,000,000 |
T
<<
-2,500,000
-3,000,000
_3!500!000 1 1 1 1 1 1 1 1
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
Recall
(a) Distance based increase variant
1 T T T T T T
00.000 5 es WSt 10%) ——
DCS (WSI 30%) —=—
DCS (WS 50%) g
10,000
o
.é 1,000
IS
Q.
€
3 100
o
c
S
g
2 10 ¢
1 -
O 1 1 1 e L - L -
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

Recall

(b) Window size dependent increase variant

Fig. 19. DCS++ variants on Febrl data set

The two presented variants of DCS++ do not show a better efficiency. The
window size variant requires always more comparisons, and the distance-based
variant only avoids comparisons for a few configurations. As it is difficult to
determine in advance the configurations for which the distance based variant
performs better, DCS++ is the preferred algorithm.

41

Band

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

Aktuelle Technische Berichte

ISBN

978-3-86956-
134-9

978-3-86956-
130-1

978-3-86956-
129-5

978-3-86956-
128-8

978-3-86956-
113-4

978-3-86956-
110-3

978-3-86956-
114-1

978-3-86956-
108-0

978-3-86956-
106-6

978-3-86956-
092-2

978-3-86956-
081-6

978-3-86956-
078-6

978-3-86956-
065-6

978-3-86956-
054-0
978-3-86956-
048-9

978-3-86956-
043-4

Titel

CSOMY/PL: A Virtual Machine Product Line

State Propagation in Abstracted Business
Processes

Proceedings of the 5th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Survey on Healthcare IT systems:
Standards, Regulations and Security

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktiibersicht

SOA-Security 2010 : Symposium fiir
Sicherheit in Service-orientierten
Architekturen ; 28. / 29. Oktober 2010 am
Hasso-Plattner-Institut

Proceedings of the Fall 2010 Future SOC
Lab Day

The effect of tangible media on

individuals in business process modeling:

A controlled experiment

Selected Papers of the International
Workshop on Smalltalk Technologies
(IWST’10)

Dritter Deutscher IPv6 Gipfel 2010

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Business Process Model Abstraction :
Theory and Practice

Efficient and exact computation of
inclusion dependencies for data
integration

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

des Hasso-Plattner-Instituts

Autoren / Redaktion

Michael Haupt, Stefan Marr,
Robert Hirschfeld

Sergey Smirnov, Armin Zamani
Farahani, Mathias Weske

Hrsg. von den Professoren
des HPI

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

Christoph Meinel,
Ivonne Thomas,
Robert Warschofsky et al.

Hrsg. von Christoph Meinel,
Andreas Polze, Alexander Zeier
et al.

Alexander Libbe

Hrsg. von Michael Haupt,
Robert Hirschfeld

Hrsg. von Christoph Meinel und
Harald Sack

Dustin Lange, Christoph Bohm,
Felix Naumann

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

Felix Geller, Robert Hirschfeld,
Gilad Bracha

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske
Jana Bauckmann, Ulf Leser,

Felix Naumann

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

ISBN 978-3-86956-143-1
ISSN 1613-5652

	Title
	Imprint

	Abstract
	1 Motivation
	2 Related Work
	3 Adaptive Sorted Neighborhood
	4 Duplicate count strategy
	4.1 Basic strategy
	4.2 Multiple record increase

	5 Experimental Evaluation
	5.1 Data sets and Configuration
	5.2 Experiment Results: Perfect Classifier
	5.3 Experiment Results: Imperfect Classifier

	6 Conclusion
	References
	Appendix
	A Key similarity strategy
	A.1 Basic approach
	A.2 Skip expansion
	A.3 Blocking expansion
	A.4 Evaluation key similarity strategies

	B Record similarity strategy
	B.1 Basic approach
	B.2 Average expansion
	B.3 Blocking expansion
	B.4 Neighborhood expansion
	B.5 Evaluation record similarity strategies

	C Duplicate Count Strategy Variants
	C.1 Distance-based increase
	C.2 Window size dependent increase
	C.3 Experimental Evaluation

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

