
Scalable Similarity Search
with Dynamic Similarity Measures

Martin Köppelmann2, Dustin Lange1, Claudia Lehmann2, Marika Marszalkowski2,
Felix Naumann1, Peter Retzlaff2, Sebastian Stange2, Lea Voget2

Hasso Plattner Institute, Potsdam, Germany
1 firstname.lastname@hpi.uni-potsdam.de

2 firstname.lastname@student.hpi.uni-potsdam.de

ABSTRACT
Similarity search on structured data assumes some similar-
ity measure on the data – often a combination of individual
measures per attribute. Users of a similarity search system
may have different requirements on the similarity measure;
the individual measures can be combined in many different
ways, including a simple weighted sum of the similarities
with varying weights, or, at the other end of the spectrum,
much more complex machine learning techniques. Previous
approaches to similarity search work only with static similar-
ity measures or cannot exploit dynamic similarity measures.

In this paper, we present the DySim algorithm, a novel
approach that answers similarity queries with query-specific
configurations of similarity measures: For any query, users
are allowed to define an arbitrary, including non-metric,
overall similarity measure that is based on similarities of
attribute values. This freedom allows to provide different
search experiences to different user groups. Our approach
creates a similarity index for each individual attribute. We
then dynamically generate a query plan by using positive
ad-hoc sample results and apply a filter-and-refine approach
to quickly retrieve the list of results. We evaluated our ap-
proach on a large real-world data set. Compared to a base-
line algorithm, the DySim algorithm needs about one third
less comparisons to retrieve data at the cost of only a very
minor decline in recall.

1. BEYOND STATIC SIMILARITY
SEARCH

Similarity search aims to find all objects in a database suf-
ficiently similar to a given query object [16]. This problem
includes an overall similarity measure that defines the sim-
ilarity between two objects. Many current similarity search
engines work with a static and metric overall similarity mea-
sure. This implies that the overall measure, once defined, is
the same for all queries and needs to fulfill the metric condi-
tions. Hence, the search space can be reduced by using the
triangular inequality [6, 16].

Such a setting does not allow to retrieve results that are
dynamically tailored to the user’s needs. Different users
querying the same data with similar queries may have dif-
ferent intentions: Imagine a location database and a user

Copyright 2012 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.
DBRank’12, in conjunction with VLDB, August 27, 2012, Istanbul, Turkey.

searching for Coffee House and an address in Berlin with
the aim to find an arbitrary café near to him. Hence, the
search engine should focus more on the location than on
the name to deliver results that meet the user’s needs. An-
other user might query Starbucks Coffee House in combina-
tion with an address in Berlin, but this time choosing the
name to be the most important attribute. Although both
queries look similar to the system, they have different se-
mantics. The same use case could be applied to only one
user entering both queries at different points in time and
each time the overall similarity measure should be adapted
to the user’s current needs. To achieve good results in both
different cases, a weighting of the different attributes might
be included in the query. As another use case, consider
a credit rating agency that answers credit rating requests
from different types of clients. While online shops pay much
attention to a correct address to have a reliable contact ad-
dress in case of payment problems, a bank might insist on
a correct birth date for legal reasons. Thus, different users
have different requirements for the similarity measure.

Previous work deals with query- or user-specific similar-
ity measures for document retrieval. Van Bunningen et al.
propose a document ranking model that incorporates the
context of the user [15]. Chen et al. describe an approach
for adapting ranking functions to user preferences (e.g., user
clickthrough logs) [7]. These examples show that there is a
need for ranking applications that allow query-specific sim-
ilarity measures. In this paper, we address this need for
similarity search in database records.

Our DySim algorithm solves the following problem: Given
an arbitrary similarity measure simoverall for a specific
query q and an overall similarity threshold θoverall, retrieve
all records r with simoverall(r, q) ≥ θoverall.

DySim uses a filter-and-refine approach: In the filtering
step, we use the similarity index proposed by Christen et
al. in [8] and query plans suggested in our earlier work [11]
to pre-filter the result set. In the refine step, we select all
records with simoverall(r, q) ≥ θoverall using the overall sim-
ilarity measure for the respective query. The original idea
of Christen et al. averages the similarities of the individual
attributes to compute the overall similarity; a static over-
all similarity measure is used for each query. We do not
make these restrictions; our overall similarity measure can
be non-metric and personalized to various situations. We
assume only that it is based on fixed similarity measures of
the individual attributes.

To evaluate our approach, we use structured data of loca-
tions from Foursquare, Gowalla, and Facebook1, all kindly
provided by uberblic.com. Our data set consists of almost
1.5 million locations. We selected twelve attributes that all
three sources have in common; but only a small fraction of
records have values for all attributes.

The contributions of this paper are:

• Definition of the novel problem of dynamic similarity
search with query-specific similarity measures

• Dynamic query plans to speed up retrieval without the
need of training data

• Evaluation of the DySim algorithm on a large, real-
world location data set of 1.5 million records

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of related research in the field of
similarity search. Next, in Sec. 3, we give a formal definition
of the problem of similarity search with dynamic similarity
measures. The idea of dynamic query plans is explained in
Sec. 4 and followed by the evaluation of DySim in Sec. 5.
The paper concludes with an outlook in Sec. 6.

2. RELATED WORK
For similarity search there is a variety of approaches for

specific cases of similarity measures and data. If the data
can be transformed into a vector space, the search of similar
objects can be reduced to the search of close vectors. The
Euclidean distance is a popular similarity measure for vec-
tors and various approaches use it [1]. For the well-explored
metric space, the data can have an arbitrary form, while the
similarity measure needs to be a metric [16]. There is also
work on efficient top-k processing in databases for vector
data [3] as well as for the overall similarity measures min
and max [5].

Another approach to non-metric similarity measures are
AL-Trees, which exploit inverted indexes for all attribute
values [9]. As stated by the authors, the AL-Tree is suit-
able only for attributes with very small numbers of distinct
values. In our setting with very many distinct values per
attribute, this approach is infeasible.

Christen et al. suggest a combination of three indexes for
similarity search [8]. Blocking is used to identify similar
attribute values and all values belonging to one block are
stored in a block index. Additionally, the similarity of each
value in a block to each other value in the same block is
computed and stored in a similarity index for faster retrieval.
The concrete overall similarity function that Christen et al.
used is the average of the available attribute similarities.
In contrast, we allow more sophisticated overall similarity
functions, which can be chosen by the user and may change
with every query. In Sec. 5, we compare our approach with
an adjusted version of the approach by Christen et al. that
incorporates an arbitrary overall similarity function.

In our previous work we suggest using query plans as an
approach to speed up the information retrieval process [11].
A query plan defines which thresholds to apply to the in-
dividual attributes in the data filtering step. We proposed
the top neighborhood algorithm to determine a near-optimal
query plan for a data set. While that algorithm is designed
for a static overall similarity measure, the solution presented

1foursquare.com, gowalla.com, and facebook.com

in this paper is designed to determine a query plan for query-
specific overall similarity measures.

Chaudhuri et al. propose a method that generates an ini-
tial query for record matching, a problem very similar to
similarity search with (dynamic) query plans [4]. They show
that their performance is comparable to domain-specific so-
lutions and at the time the best known machine learning
approach. However, their solution relies on training data,
which our approach does not.

Fagin’s algorithm retrieves the top k records by accessing
the list of records sorted by their similarity to the query
object regarding different aspects, e.g., order all pictures
by their similarity to the properties blue and bright [10].
In contrast to Fagin’s approach, we employ a preparation
step where we generate a query plan for retrieving a set of
potentially relevant matches. While our approach may have
incomplete results (Fagin always has complete results), we
can execute queries much faster, because in our query plans
we prefer records where several attributes match well (Fagin
retrieves many irrelevant records where only one attribute
matches well).

3. DYNAMIC SIMILARITY SEARCH
We define the problem of dynamic similarity search as fol-

lows: Given a set of n attributes with domains Ai, the uni-
verse U = (A1× . . .×An) of all possible records, a similarity
query (q, simoverall, θoverall) with a query q ∈ U , an overall
similarity measure simoverall : (U ×U)→ [0, 1], and a simi-
larity threshold θoverall ∈ [0, 1], and given a dataset R ⊆ U ,
find all records r ∈ R for which simoverall(r, q) ≥ θoverall.

In addition to the overall similarity measure simoverall,
we need to define n attribute-specific similarity measures
sim1, . . . , simn with simi : (Ai × Ai) → [0, 1]. These simi-
larity measures form the basis of the overall similarity and
are used to build the similarity index.

Both the overall similarity measure simoverall and the at-
tribute similarity measures sim1, . . . , simn can be arbitrar-
ily chosen. However, we assume that simoverall is based
on the individual attribute similarities and is monotonically
increasing with respect to all simi. That is, if for any
r, r′ ∈ U simi(r, q) ≥ simi(r

′, q) then simoverall(r, q) ≥
simoverall(r

′, q).
While the attribute similarity measures simi are assumed

to be arbitrary but fixed and indexed with a similarity in-
dex, the overall similarity measure simoverall is a param-
eter of the query itself, and can thus be selected indepen-
dently for each query. It could, for example, be defined
as a weighted sum of all attribute similarities, the maxi-
mum of all attribute similarities, or by a machine learning
approach, such as a decision tree. DySim uses the given
overall similarity measure to dynamically generate a query
plan for the query. The query plan is used to filter possible
matches from the data set. We then refine the result set
by applying the overall similarity measure to each of the re-
maining records and selecting only those records r for which
simoverall(r, q) ≥ θoverall.

3.1 Indexing Data
We first create several indexes on the attributes with the

attribute similarity measures. We follow the indexing idea
for record linkage proposed by Christen et al., including their
suggested optimizations [8].

0.4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.7 0.8 0.9

R
e

ca
ll

Threshold θEval

Metaphone Double
Metaphone
 (one code)

Double
Metaphone
 (two codes)

Soundex Soundex,
Double
Metaphone

Soundex,
Metaphone

Figure 1: Recall of blocking algorithms for different
values of θeval

We index the data by creating three indexes for each at-
tribute. The record index is a regular inverted index. It
points from the distinct attribute values to the respective
record IDs. The block index groups similar attribute val-
ues together: For each distinct attribute value of the record
index, a blocking key is generated by using some blocking al-
gorithm. All attribute values with same blocking key belong
to the same block, thus grouping roughly similar values into
one block. The third index, the similarity index, is based on
the block index. It stores the similarity between each pair
of values of the same block. Therefore, the similarity index
has the same key set as the record index.

For a given query value for an attribute, we use the simi-
larity index to determine all similar values according to the
given attribute similarity predicate. With the record in-
dex, we then determine all occurrences of the similar values,
which is the result set of the query for this attribute. If
the query value has not yet been indexed, we use the block
index to first calculate the similar values.

3.2 Index Creation with Blocking
The block and similarity indexes are created using block-

ing: Only attribute values with the same blocking key are
compared [12]. Because the selected blocking algorithm
has impact on the overall search performance, we compare
different blocking algorithms based on phonetic encodings
(Soundex [2], Metaphone [13], Double Metaphone [14], and
combinations of those) and different similarity thresholds
for the attribute name in our dataset in Fig. 1. The figure
shows that the best results are achieved with a combina-
tion of Soundex and Metaphone with θeval ≥ 0.9. Thus,
we choose this blocking method for all later evaluations and
considerations.

4. FILTERING WITH DYNAMIC QUERY
PLANS

A query plan defines constraints in disjunctive normal
form (DNF) that specify a similarity threshold for each at-
tribute within the plan [11]. A record that meets one of
these constraints is considered as probably similar to the
query record. Consider this example of a query plan:

(attr1 ≥ 0.7 ∧ attr2 ≥ 0.9) ∨ (attr1 ≥ 0.9)

There are two possibilities to fulfill this query plan: Either
the values for attr1 and attr2 of the candidate record com-
pared to the query record achieve a similarity of 0.7 and 0.9

or higher, or the comparison of the candidate record and
query record concerning attr1 results in a similarity of at
least 0.9.

The purpose of a query plan is to efficiently filter the
record set to find as many records as possible that are sim-
ilar to the query record. Using a query plan, the number of
overall similarity calculations can be reduced, as shown in
Section 5. Overall similarity calculations can be quite ex-
pensive, depending on the provided function. Thus, query
plans can significantly reduce costs. However, the shape of
the query plan that is used for similarity search depends on
the overall similarity measure. As we want to support dy-
namic similarity measures at query time, we cannot use a
predefined query plan. Instead, the query plan has to be
generated at query time, too. We now present DySim, an
algorithm to dynamically generate query plans.

The idea behind DySim’s way of generating query plans is
inspired by Fagin’s algorithm [10] and based on the assump-
tion that the overall similarity function is monotonically in-
creasing. Because of this assumption, it is very likely that
records with a high overall similarity also have high similari-
ties regarding some of the attributes. Thus, if we sample the
records with the highest similarities for each attribute, there
is a high probability that the top hits are among the sample.
That is why DySim starts with sampling records that have a
high similarity regarding one of the attributes. We compute
the overall similarity of these records and again choose some
of them, namely those that are potentially good matches for
our query. We then generate a query plan that retrieves
at least these sample records, and hopefully all other suffi-
ciently similar records.

The generation of query plans in the DySim algorithm
comprises three steps: Sampling, query plan preparation,
and query plan minimization. Below, these steps are de-
scribed in detail, each followed by an example.

4.1 Sampling
During the sampling step, N records are retrieved that are

similar to the query based on their attribute similarity. For
each attribute value of the query record, the N records with
the highest individual attribute similarity are collected in a
set. To do so, we follow the approach of Christen et al. de-
scribed in Section 3.1, but stop retrieval when N records
have been retrieved.

As an example, consider a query for all locations with the
name Starbucks in the city Berlino. The DySim algorithm
first retrieves the IDs of the N records with names similar
to Starbucks. Likewise, the N IDs of records with a city
similar to Berlino are retrieved. For this example, possible
results are shown in Table 1 assuming N = 3. In some cases,
there are many entries with the same similarity. In our
example, there are more than three entries in our database
with the value Berlin for the attribute city. It is important
to remember that in this step we do not aim to retrieve
all records with a high similarity, but a data sample that
includes some records with a possibly high similarity. Thus
we can break similarity ties through random choice.

After retrieving those sample records, we apply the over-
all similarity measure and sort the records by descending
similarity. In our example, we retrieve the records 1, 3, 4,
5, and 7. Table 2 presents the records including their name
and city sorted by their overall similarity.

Query Attr. Record Record Attr. Attr.
Value ID Value Similarity

Starbucks 7 Starbucks 1.0
4 Starbucks Cafe 0.93
1 Starbucks Olivaer 0.91

Berlino 3 Berlin 0.9
5 Berlin 0.9
7 Berlin 0.9

Table 1: top 3 records per query attribute value

Record Name City Overall
ID Similarity

7 Starbucks Berlin 0.95
5 Starband Berlin 0.84
1 Starbucks Olivaer Berent 0.82
4 Starbucks Cafe Munich 0.79
3 Good Coffee Berlin 0.73

Table 2: Retrieved records sorted by their overall
similarity

There are two important parameters of our sampling al-
gorithm. Since we want the query plan to cover at least all
records r for the query q with simoverall(r, q) ≥ θoverall, all
sampled records that fulfill that condition should be used for
creating the query plan. At this point, it might be good not
to use a similarity bound as strict as θoverall Thus, we intro-
duce φ, a factor adjusting the threshold. Hence, φ · θoverall
denotes the lower similarity bound for the top records. Fur-
thermore, we want to ascertain that the query plan is always
influenced by multiple sample records. for this reason, we
introduce σ. σ denotes the fraction of the so-far sampled
records that are definitely used for constructing the query
plan. In our example, σ = 1 would mean, that all five
records were included in the query plan construction, and
σ = 0.4 would result in a query plan that is based at least on
records 7 and 5 (or more, if more records have a similarity
simoverall(r, q) ≥ φ · θoverall) .

Thus, the final sample comprises the top records of the
original sample (as defined by the fraction σ) plus all sample
records with an overall similarity greater than or equal to
φ · θoverall. Regarding our example, there are five top
records. Assuming that σ = 0.2, φ = 0.9, and θoverall =
0.89, record 7 is used to create the query plan, because it is
within the top 20 % of the sample. Additionally, all records
with a similarity equal to or higher than 0.9 · 0.89 = 0.801
are considered. Thus, the sample consists of the records 7,
5, and 1.

4.2 Query Plan Preparation
The query plan preparation step creates a query plan that

covers at least all the records in the previously determined
sample. To do so, the query plan constraints are built de-
pending on the sampled records one by one. For each at-
tribute of a certain record, we build a so-called threshold
record. It consists of the attribute name (not value) and a
similarity threshold, defined by the corresponding attribute
similarity and calculated for the attribute value at hand. As
a result, we obtain a threshold record for all attributes that
are set in the sample record and the query record. All re-
sulting threshold records for a sample record are combined

into a conjunction.
If a record has set all attributes of this conjunction and

the similarities are at least as high as the respective thresh-
olds, the record is covered by this part of the query plan.
As the corresponding record’s attribute similarities fulfill the
constraints of the conjunction, it also is covered by it. The
resulting query plan in DNF is created as a disjunction of
all the conjunctions built on the sample records. The con-
junctions for our example are:

Conjunction for record 7
name ≥ 1.0 ∧ city ≥ 0.9

Conjunction for record 5
name ≥ 0.82 ∧ city ≥ 0.9

Conjunction for record 1
name ≥ 0.91 ∧ city ≥ 0.73

The resulting (still partially redundant) query plan is:

Query plan in DNF
(name ≥ 1.0 ∧ city ≥ 0.9)
∨ (name ≥ 0.82 ∧ city ≥ 0.9)
∨ (name ≥ 0.91 ∧ city ≥ 0.73)

This query plan covers all records of the sample. As an ex-
ample, let us take a look at record 1. The names Starbucks
Olivaer and Starbucks have a similarity of 0.91, while the
cities Berent and Berlino have a similarity of 0.73. As the
last conjunction is based on these values, this record is cov-
ered by the query plan. However, this query plan is not yet
optimal and is improved in the next step.

4.3 Optimization
There are several points that can be optimized in the pre-

pared query plan. First of all, threshold records can become
too strict. For example, a threshold record with a thresh-
old of 1.0 allows only attributes with the exact same value.
This might be a problem, as we could lose result objects that
have very similar but not exactly the same attribute values.
To prevent this kind of strictness, we define the threshold
θplan. If a similarity threshold within a threshold record is
higher than θplan, it is lowered to θplan. With θplan = 0.9
our example query plan is changed to:

Query plan with θplan
(name ≥ 0.9 ∧ city ≥ 0.9)
∨ (name ≥ 0.82 ∧ city ≥ 0.9)
∨ (name ≥ 0.9 ∧ city ≥ 0.73)

If, on the other hand, the fraction of records that surpass
the lower similarity bound for a query is less than σ, the
sample may include records with some low attribute similar-
ities. A low attribute similarity probably does not increase
the overall similarity, thus attributes with low similarities
are probably not indicators for good matches. Additionally,
the similarity index stores only attribute values with simi-
larities higher than or equal to θindex, so that it is sufficient
to consider attributes with similarities that are at least as
high as θindex. Otherwise, it would be necessary to calcu-
late all attribute value similarities within the corresponding
block. In our example the last threshold record of the last
conjunction has a threshold of 0.73. Assuming that θindex is
0.8, this threshold can be dismissed:

Query plan with θindex
(name ≥ 0.9 ∧ city ≥ 0.9)
∨ (name ≥ 0.82 ∧ city ≥ 0.9)
∨ (name ≥ 0.9)

As mentioned above, some of the conjunctions are redun-
dant in the sense that their result set is a subset of the result
set of another conjunction. This is the case for two conjunc-
tions A and B if B contains lower thresholds than A for
the same attributes, or if B contains fewer attributes (with
all other attribute thresholds being the same). We then say
that A is dominated by B and we can dismiss conjunction
A. In the example, the first conjunction is dominated by
the second conjunction. Therefore, we can eliminate the
first conjunction and the resulting final query plan is:

Minimized query plan
(name ≥ 0.82 ∧ city ≥ 0.9) ∨ (name ≥ 0.9)

4.4 Filtering
The resulting minimized query plan can now be used for

filtering. The threshold records of each conjunction are ap-
plied to the similarity index: the similar attribute values
for every attribute of the conjunction are fetched if their
similarity is above the respective threshold. The corre-
sponding record IDs are fetched if all threshold record con-
straints are met. We optimized the process of fetching sim-
ilar attributes by determining the minimum thresholds for
all attributes within the entire plan and retrieving the cor-
responding attributes. For the previously explained exam-
ple considering the name attribute, there are the threshold
records name ≥ 0.82 and name ≥ 0.9. As the first one
has a smaller threshold, all name attributes with a similar-
ity ≥ 0.82 are retrieved from the similarity index. Now the
overall similarity function is applied to all retrieved records
and the final results are sorted by their similarity.

5. EVALUATION
Similarity search should achieve good results for both pre-

cision and recall while using as little resources as possible.
Since the similarity function simoverall and the threshold
θoverall are part of the query, we know exactly which objects
are relevant, thus precision is 1.0 by definition. The basis of
our algorithm is the index proposed by Christen et al. We
cannot achieve a recall higher than the recall we would ob-
tain by comparing the query object with all indexed objects.
Besides recall, our second metric is the number of compar-
isons, which counts the number of performed calculations of
the function simoverall. The number of comparisons highly
correlates with the runtime and is a good indicator for per-
formance.

We evaluated DySim against an extended version of the
search algorithm by Christen with the possibility to incorpo-
rate an arbitrary overall similarity measure simoverall. To
achieve this, we replaced the accumulation of attribute sim-
ilarities by retrieving all records that contain a similar at-
tribute value and applying the overall similarity measure on
all records in this set. The amount of retrieved records is not
affected, but the quality of the result list (the overall simi-
larity measure is used as a ranking function in this context).
In the following, this approach is referred to as baseline. We
compared the two algorithms to the näıve similarity search
without index structure. This search iterates over all objects

in the database. All results from the non-index-based algo-
rithm that have a simoverall greater than or equal to θoverall
are used as our “ground truth” for recall computations.

We show that DySim needs only about 66% of the com-
parisons required by the baseline approach of Christen et
al., while keeping recall nearly the same.

5.1 Prerequisites
To evaluate DySim we used a random sample of 100 spots

from our data set and selected a random subset of attribute
values from each of those spots as query values. Thus, it
is guaranteed that all attribute values from the queries are
stored in our index. We could also consider generated query
objects containing attribute values that are not stored in the
index but regarding our two evaluation metrics the number
of comparisons would not change, and the recall would be
dependent on the used attribute similarity measures. Since
we abstract from the used attribute similarity measures, we
decided not to use such query objects. Of course, the query
times would increase, as instead of fast index lookups the
attribute similarities would have to be calculated.

5.2 Parameters
The similarity measure simoverall used for the evaluation

is the average of the individual attribute similarities. The
parameters introduced in Sec. 4 were assigned static values
for the evaluation.

We set the overall similarity threshold θoverall = 0.89.
This value is empirically determined, nevertheless, it is a
free parameter of the query. The threshold for the simi-
larity index θindex is set to 0.8 as this was an acceptable
trade-off between time consumption for similarity calcula-
tions and memory needs. The maximal similarity threshold
θplan within a threshold record of a query plan is set to 0.9
and could be subject of further analysis as it should lead to
a higher recall if lowered. On the other hand, the number
of comparisons might also increase. Finally, we set the per-
centage of records that should definitely be used in the query
plan σ to 20%. The parameters φ and N are evaluated in
detail in the following section.

5.3 Results
If the similarity threshold φ for the sample records is low-

ered, both recall and the number of comparisons increase as
shown in Figure 2. This is the case because a low value of
φ leads to more and potentially less similar samples being
used to generate the query plan. If the used samples are less
similar to the query object, the generated query plan is less
strict. Thus, the similarity search performs more compar-
isons, but in turn finds more results. Here, we use 50 sample
records to generate the query plans.

Figure 3 presents the recall and the number of compar-
isons for different values of N . The figure shows that an
increasing N leads to an increase in recall as well as in the
number of comparisons. A higher value of N means that
more initial sample records are fetched, which leads to more
comparisons being performed before the actual query plan
is generated. Also, the number of samples that are used
to generate the query plan increases, which may result in a
query plan that is less strict and thus adds to the number
of additional comparisons. On the other hand, a larger N
increases the chances of sampling some good matches for the
query object, which may also lead to an increased recall. We

Algorithm Recall Number of comparisons
No index 1 1.5 m
Baseline 1 20.9 k

DySim 0.979 13.8 k

Table 3: Performance comparison of DySim and the
baseline algorithm

0

2

4

6

8

10

12

0.75

0.8

0.85

0.9

0.95

1

0.5 0.6 0.7 0.8 0.9 1 C
o

m
p

ar
is

o
n

s
in

 t
h

o
u

sa
n

d
s

R
ec

al
l

φ
Comparisons Recall

Figure 2: Recall and number of comparisons for dif-
ferent values of φ

0

2

4

6

8

10

12

14

16

18

0.96

0.97

0.98

0.99

50 200 500 1000

C
o

m
p

ar
is

o
n

s
in

 t
h

o
u

sa
n

d
s

R
ec

al
l

N
Comparisons Recall

Figure 3: Recall and number of comparisons for dif-
ferent values of N

also observed that for query records with many set attribute
values a low value of N is sufficient to achieve a high recall.

Finally, we compare the baseline algorithm against the
DySim algorithm with φ = 0.5 and N = 500. Table 3 shows
the results in terms of recall and number of comparisons.
With the sample used for evaluating the parameters, the
baseline algorithm achieves a recall of 1.0 while perform-
ing about 20.9 thousand comparisons for all queries in the
sample. In contrast, the DySim algorithm delivers a recall
of 0.979, but makes only 13.8 thousand comparisons. This
shows that compared to the baseline DySim has a minor
decline in recall but has to execute only two-thirds of the
comparisons.

6. CONCLUSION
In this paper, we provided a method for similarity search

with arbitrary similarity measures. The only constraint for
such a measure is that it has to be monotonically increasing
and based on the individual attribute similarities, e.g., as
is the case for weighted similarities. The presented DySim
algorithm is based on the indexing methods of Christen et
al. and a modified version of the according similarity search

algorithm that allows arbitrary overall similarity measures.
We added a mechanism for filtering to allow a faster search
with fewer computations of the overall similarity measure.
The demonstrated filtering mechanisms, the dynamic query
plans, make use of an adaptive selection of sample records
during filtering, resulting in adjusted query plans for arbi-
trary overall similarity measures. We showed that we can
achieve a significant reduction of overall similarity compu-
tations at the cost of only a very minor decline in recall.

7. REFERENCES
[1] C. Böhm, S. Berchtold, and D. A. Keim. Searching in

high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys, 33:322–373, 2001.

[2] C. P. Bourne and D. F. Ford. A study of methods for
systematically abbreviating english words and names.
Journal of the ACM, 8:538–552, 1961.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k
selection queries over relational databases: Mapping
strategies and performance evaluation. ACM Trans.
on Database Systems, 27(2):153–187, 2002.

[4] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching
queries. In Proc. of the Intl. Conf. on Very Large
Databases (VLDB), pages 327–338, 2007.

[5] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing
top-k selection queries over multimedia repositories.
IEEE Trans. on Knowl. and Data Eng.,
16(8):992–1009, Aug. 2004.

[6] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
Marroqúın. Searching in metric spaces. ACM
Computing Surveys, 33:273–321, 2001.

[7] K. Chen, Y. Zhang, Z. Zheng, H. Zha, and G. Sun.
Adapting ranking functions to user preference. In
Proc. of the Intl. Workshop on Ranking in Databases
(DBRank), pages 580–587, 2008.

[8] P. Christen, R. Gayler, and D. Hawking.
Similarity-aware indexing for real-time entity
resolution. In Proc. of the Intl. Conf. on Information
and Knowledge Management (CIKM), pages
1565–1568, 2009.

[9] P. M. Deshpande, D. P, and K. Kummamuru. Efficient
online top-k retrieval with arbitrary similarity
measures. In Proc. of the Intl. Conf. on Extending
Database Technology (EDBT), pages 356–367, 2008.

[10] R. Fagin. Fuzzy queries in multimedia database
systems. In Proc. of the Symposium on Principles of
Database Systems (PODS), pages 1–10, 1998.

[11] D. Lange and F. Naumann. Efficient similarity search:
arbitrary similarity measures, arbitrary composition.
In Proc. of the Intl. Conf. on Information and
Knowledge Management (CIKM), pages 1679–1688,
2011.

[12] H. B. Newcombe. Record linkage: the design of
efficient systems for linking records into individual and
family histories. American Journal of Human
Genetics, 19(3):335–359, 1967.

[13] L. Philips. Hanging on the Metaphone. Computer
Language, 7(12):39–44, 1990.

[14] L. Philips. The double metaphone search algorithm.
C/C++ Users J., 18:38–43, 2000.

[15] A. H. van Bunningen, M. M. Fokkinga, P. M. G.
Apers, and L. Feng. Ranking query results using
context-aware preferences. In Proc. of the Intl.
Workshop on Ranking in Databases (DBRank), pages
269–276, 2007.

[16] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach.
Advances in Database Systems. Springer, 2006.

