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Abstract: Duplicate detection, i.e., the discovery of records that refer to the same real-world entity, is a task
that usually depends on multiple input parameters by an expert. Most notably, an expert must specify some
similarity measure and some threshold that declares duplicity for record pairs if their similarity surpasses it.
Both are typically developed in a trial-and-error based manner with a given (sample) dataset.

We posit that the similarity measure largely depends on the nature of the data and its contained errors
that cause the duplicates, but that the threshold largely depends on the size of the dataset it was tested on. In
consequence, configurations of duplicate detection runs work well on the test dataset, but perform worse if
the size of the dataset changes. This weakness is due to the transitive nature of duplicity: In larger datasets
transitivity can cause more records to enter a duplicate cluster than intended. We analyze this interesting
effect extensively on four popular test datasets using different duplicate detection algorithms and report on
our observations.
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1 Introduction

Duplicate detection is the process of finding multiple records in a dataset that represent the same real-world
entity [16]. It has been a research topic for several decades and remains relevant due to the ever increasing
size and complexity of datasets, especially in application areas, such as master data management, customer
relationship management, or data warehousing.

Duplicate detection faces two challenges: First, an exhaustive comparison of all record pairs has a
quadratic complexity and is not feasible, even with modern hardware. For example, Facebook has about
900m users, which results in more than 400 ·1015 comparisons. Second, there is no key that can be used to
identify those records that represent the same real-world entity. Due to typos and erroneous or incomplete
data, we need some similarity measure to be used in combination with a threshold to decide whether a record
pair represents the same real-world entity or not.

For the first problem, several algorithms have been proposed that select only a subset of candidate pairs
with a high probability of being duplicates, whereas pairs with a low probability are omitted. In this way, the
computational effort can be reduced significantly, without a highly negative effect on the duplicate detection
result. However, this paper focuses on the second challenge, deciding whether a record pair is a duplicate or
not. In the past decades, many similarity measures have been proposed to determine the similarity of strings
and numbers. These measures can be used to calculate the similarity of individual attribute values and



these attribute similarities can then be aggregated to an overall record similarity. The selection of relevant
attributes and their best similarity measure is a domain specific task that requires a domain expert.

A threshold can then be used to classify whether a record pair is a duplicate or not. If the similarity
is above the threshold, the pair is a duplicate and both records belong to the same cluster. Additional
records are added to the cluster, if the similarity to at least one record in the cluster is above or equal to
the threshold. In this way, we also classify all other records in that cluster as a duplicate of the new record,
However, it might be possible that some of the records in a cluster have a similarity below the threshold and
are classified as duplicate only due to the transitive relationship. Thus, the selection of a good threshold is
very important. On the one hand, the threshold should not be too high so that no true duplicates are missed.
On the other hand, it should not be so low that many non-duplicates are classified as duplicate, either because
the calculated similarity is above the threshold or because the calculated similarity of another pair in that
cluster is above the threshold. Choosing the optimal threshold is one of the main difficulties of configuring
a duplicate detection program for a given dataset.

Interestingly, this problem becomes harder, if the size of the dataset increases over time. The optimal
threshold should not be evaluated only once, but there is a necessity to evaluate it again if new records are
added. This observation is the main contribution of this paper. Figure 1 illustrates the problem. In Fig. 1(a)
we have three records A, B, and C. The edges show the similarity between these records. Records A and
B are a duplicate, so they belong to the same cluster. If we want to select a good threshold for this sample,
we can use any value > 0.8 and ≤ 0.9. Then 〈A,B〉 would be classified correctly as duplicate and the record
pairs 〈A,C〉 and 〈B,C〉 would be correctly classified as non-duplicate.

Consider a new record D that is inserted into the dataset, e.g., a new customer ist added to a customer
database, with D as a duplicate of C. This case is shown in Fig. 1(b). With the previous threshold, 〈C,D〉 is
classified correctly as duplicate, as well as 〈A,D〉 as non-duplicate. An issue might arise with pair 〈B,D〉.
If the chosen threshold is ≤ 0.84, this pair is classified as duplicate, even though it is a non-duplicate. This
problem is even aggravated, because the records belong to a cluster with multiple records: Due to transitivity
record pairs 〈A,D〉, 〈A,C〉, and 〈B,C〉 are also classified as duplicates.
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Figure 1: Illustration of threshold selection problem

Such observations shall serve as a warning that a once configured threshold might not be appropriate
for larger datasets. In our experience, thresholds are often manually configured based on a sample of data.
We show that the setting is in general no longer optimal for larger datasets, even if they have the same
properties. Section 2 describes and analyzes in detail various experiments showing that indeed thresholds
are quite sensitive to dataset size. Section 3 discusses related work. Finally, Section 4 concludes the paper.

2 Threshold Experiments

To evaluate our assumptions from the introduction, we conducted some experiments. This section first
describes the used datasets and the experiment setup, and then shows our results.



2.1 Datasets

For our experiments, we used four datasets. Some of them are real-world datasets often used in other papers,
and some of them were artificially generated. The used datasets are:

Febrl We used the Febrl dataset generator [3] to create two artificial datasets. Both contain 10,000 clusters,
i.e, information about 10,000 entities. The smaller dataset (Febrl sm.) contains an additional 1,000
duplicate records with up to three duplicates per cluster. The larger Febrl dataset (Febrl la.) contains
10,000 additional duplicates with up to nine duplicates per cluster. Furthermore, the duplicates in the
larger dataset can have more modifications than those in the smaller one.

CD The CD dataset1 is a randomly selected extract from freeDB.org. It contains information for 9,760
CDs, including artist, title, and songs. The dataset has been used in several papers [4, 11].

Cora The Cora Citation Matching dataset2 comprises 1,879 references of research papers and is often used
in the duplicate detection community [2, 5]. We have described the definition of a gold standard for
the Cora dataset in [7].

Table 1 shows an overview of the datasets used for the experiments, including the number of records
and clusters and the maximum cluster size.

Dataset # Rec. # Clust. Max. Type
Cl. S.

Febrl (sm.) 11,000 10,000 4 artificial
Febrl (la.) 20,000 10,000 10 artificial
CD 9,760 9,505 6 real-world
Cora 1,879 118 238 real-world

Table 1: Overview of datasets.

2.2 Experiment Setup

For all datasets, we implemented one or more similarity functions for a pair-wise comparison. Each simi-
larity function calculates the similarity of single attributes and then aggregates those attribute similarities to
a record pair similarity. The similarity is a value from 0.0 to 1.0, with 1.0 for identical records and 0.0 for
records with no similarity.

For all datasets, we used two pair-selection algorithms. The first one is the naive approach, which creates
the Cartesian product of all records. Because we use only symmetric similarity functions, we do not have to
consider ordered pairs, which means that if we create a pair 〈A,B〉 we do not create 〈B,A〉.

The second pair-section algorithm is the well-known Sorted-Neighborhood-Method (SNM) [10], which
sorts the records based on one or more sorting keys and then slides a fixed-size window over the sorted
records. Only those records within the same window are compared. As in most real-life scenarios, we use
multiple keys to avoid that due to erroneous values in the attributes used as sorting key, real duplicates are
far away in the sorting order. We use a window size of 20 for all SNM experiments. For both algorithms we
calculate the transitive closure of duplicates after each run: if 〈A,B〉 and 〈B,C〉 are classified as duplicate,
also 〈A,C〉 is a duplicate, regardless of the similarity of 〈A,C〉.

For the Febrl dataset, we have two similarity functions, so we are able to evaluate if the effect of an
increasing best threshold depends on the similarity measure. Both of them calculate the average similarity

1http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html#c14715
2http://people.cs.umass.edu/~mccallum/data.html



of the attributes first name, last name, address, suburb, and state. The first similarity function uses the Jaro-
Winkler similarity [19], whereas the second one uses the Levenshtein distance [14]. For SNM, we use three
different sorting keys: 〈first name, last name〉, 〈last name, first name〉, and 〈postcode, address〉.

The similarity function for the Cora dataset calculates the average Jaccard coefficient [16] of attributes
title and author using bigrams. Additionally, we use rules that set the similarity of a record pair to 0.0.
These rules are (1) the year attribute has different values, (2) one reference is a technical report and the
other is not, (3) the Levenshtein distance of attribute pages is greater than two, and (4) one reference is a
journal, but the other one a book. For SNM, the used Cora sorting keys are 〈ReferenceID, Title, Author〉,
〈Title, Author, Refer.ID〉, and 〈Author, Title, Refer.ID〉.

For the CD dataset, we use a similarity function that calculates the average Levenshtein similarity of the
three attributes artist, title, and track01, but also considers NULL values and string-containment. The simi-
larity function is the same as described in [6]. For SNM, the three used sorting keys are 〈Artist, Title, Track01〉,
〈Title, Artist, Track01〉, and 〈Track01, Artist, Title〉.

Our evaluation is based on the F-Measure, i.e., the harmonic mean of precision (fraction of correctly
detected duplicates and all detected duplicates) and recall (fraction of detected duplicate pairs and the overall
number of existing duplicate pairs). We evaluate all datasets with different threshold values. The threshold
is increased by 0.01 in every iteration up to 1.0. Additionally, we increase the number of records to measure
the effect of an increased number of records on the selection of the threshold. To summarize, we have five
parameters that are evaluated in our experiments:

• Dataset: Febrl (sm.), Febrl (la.), Cora, and CD.

• Pair-selection algorithm: All pairs (Naive) and Sorted-Neighborhood-Method (SNM).

• Similarity measure: JaroWinkler and Levenshtein for Febrl datasets, Jaccard for the Cora and Lev-
enshtein for the CD dataset.

• Number of clusters / records: For both Febrl datasets we start with 10 clusters and increase by 10
clusters until we use the entire dataset. For Cora and CD, we start with 10 records and increase by 10
records in each iteration step.

• Threshold values: Threshold values increased by increments of 0.01 up to 1.0.

We have exhaustively evaluated all parameter combinations and report on a large subset of them. The
described effects were observable for all combinations.

2.3 Experimental Results

In this section we describe the results of our experiments. As mentioned before, we evaluated different
dataset sizes and different threshold values for the classification as a duplicate or non-duplicate. Our results
are shown in Figures 2 to 5. Each figure shows on the left a heatmap for one combination of dataset,
algorithm, and similarity measure. On the x-axis, we have an increasing number of records and the y-
axis shows the different threshold values. The color determines the observed F-Measure values. For every
heatmap, we also created an additional chart with the same axes, showing for the same experiment the
threshold that achieved the best F-Measure. Additionally, this chart shows the precision, recall, and F-
Measure values for this threshold.

Figure 2 shows the result for the small and the large Febrl datasets for the Jaro-Winkler similarity
measure and the two pair-selection algorithms, naive and SNM. For each dataset we show the number of
clusters on the x-axis. As expected, the best threshold value increases with an increasing number of clusters.
For a small number of clusters, we have a window for the best threshold. This makes it easy for a user to find
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(e) F-Measure for Febrl (la.) with naive algorithm
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(g) F-Measure for Febrl (la.) with SNM algorithm
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Figure 2: Results of experiments with the Febrl datasets and JaroWinkler measure. The figures show on the
one side in a heatmap the F-Measure values for different numbers of clusters and different threshold values.
On the other side, the figures show the best F-Measure values with the respective threshold.
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Figure 3: Results of experiments with the Febrl datasets and Levenshtein measure.
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Figure 4: Results of experiments with the Cora dataset.
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Figure 5: Results of experiments with the CD dataset.



a good threshold for this dataset. But with an increasing number of clusters the window becomes smaller
until it is only a single optimal threshold value. For even large datasets, the best threshold value increases
slowly, although there are a few outliers as we can see in Fig. 2(b) and especially in Fig. 2(h). We can also
see that the best F-Measure value decreases with an increasing number of clusters.

Figure 3 also shows results for the two Febrl datasets, but this time with the Levenshtein similarity and
only for the Sorted-Neighborhood-Method as pair selection algorithm. We can see again, that for small
cluster sizes we have a window for the selection of the best threshold. This window of optimal thresholds
shrinks until it is only a single value. With an increasing number of clusters, this threshold value then
increases. We also calculated for this similarity measure the results with the naive pair-selection algorithm.
The results (not shown) are similar to those with SNM, so the results do not depend on the pair selection
algorithm.

Figure 4 shows the results for the Cora dataset. Please note, that here we show the number of records on
the x-axis. We also evaluated both pair selection algorithms, but again the results are very similar and we
show only the results for the Sorted-Neighborhood-Method. Due to the used rules in the similarity measure,
we achieve very high F-Measure values, as both precision and recall are high. Again, we can observe a
window for the best threshold in the beginning that becomes smaller with an increasing number of records.

The results of the CD experiments also confirm our hypothesis, that with an increasing number of records
the selection of good thresholds becomes more difficult. As for the Febrl and the Cora dataset, we first have
a window for the best threshold, which becomes smaller and finally the best threshold value increases with
the number of records. Thus, the best threshold changes with dataset size. A good threshold for a small
(possibly sampled) dataset is not necessarily a good threshold for a larger (possibly complete) dataset. As
data grows overtime, earlier selected thresholds are no longer a good choice.

To summarize, we have observed that the effect described in Figure 1 can be seen in all of our experiment
configurations: We continuously add records to our datasets, which increases the probability that we add a
false duplicate to an existing cluster. Thus, the F-Measure value decreases and an adaption of the threshold
is necessary to improve it. The problem becomes worse if we have larger clusters, as we can see from the
comparison of the Febrl datasets. The threshold window for good F-Measure values is smaller for the large
Febrl dataset and additionally the F-Measure value decreases much faster. It is worth noting that the effect
does not depend on the used similarity measure, as we can see from our results with the Febrl datasets and
the JaroWinkler and Levenshtein similarity measures.

3 Related Work

The past decade has seen a renaissance of duplicate detection research, spawning many new algorithms,
variations of old algorithms, use cases, and surveys, such as [4, 8]. Our contribution lies not in a new
duplicate detection algorithm or framework, but rather in observing a general property of the duplicate
detection process, namely the sensitivity of the selected threshold to an increase of the dataset size. Thus,
in this section we discuss other work that attempts to evaluate duplicate detection algorithms, showing that
most of them do not address this particular issue that is the focus of this paper.

Hassanzadeh et al. analyze several clustering algorithms for duplicate detection with the focus on finding
an algorithm that is robust to the threshold with regard to the used approximate join [9]. They used 29
datasets with different sizes and evaluated different thresholds. However, they do not evaluate different
pair selection algorithms and do not consider changes of the datasets sizes and their influence on threshold
choice.

Köpcke et al. have also addressed the issue of comparing different duplicate detection approaches [13].
They state that the used configuration of the algorithms, including the threshold, is one of the decisive
factors for the resulting match quality. So for non-learning based approaches, they had to optimize the used



thresholds. This optimization was done for a fixed dataset size, so their evaluation does not include the effect
of adding records to a dataset. The same holds true for the comparison of learning-based approaches, for
which they use different training set sizes, but do not vary the dataset size.

4 Conclusions

The goal of this paper was to show that the selection of a good threshold for the classification of record
pairs as duplicate depends on the size of the dataset. This issue is relevant in practice, when the threshold is
selected based on a small subset or when the dataset size increases over time.

Our experiments on four artificial and real-world datasets have shown that is problem is independent of
the used datasets, similarity measures, or the pair-selection algorithm. Our next step will be to confirm our
observations with further datasets and similarity measures. In a second step, we shall try to predict when and
how the threshold should be adapted, for instance through interpolation of the best-threshold graphs. Such
a step could be one building block to automate the significant manual overhead of configuring a duplicate
detection program. Others have regarded automatically selecting blocking keys [1, 12, 15, 18] or similarity
measures [2, 17].

So far, we have considered only non-learning based approaches. Köpcke et al. have shown for learning-
based approaches that the training set size has a great impact on the F-Measure value [13]. Another research
area is to evaluate whether the learning-based approaches are robust to an increasing test set size compared
to non-learning based approaches. The goal could be to determine a suitable ratio of the training set and the
data set size, that suggest when to repeat the training step with a larger training set size.
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