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Abstract: With the ever increasing volume of data and the ability to integrate dif-
ferent data sources, data quality problems abound. Duplicate detection, as an inte-
gral part of data cleansing, is essential in modern information systems. We present 
a complete duplicate detection workflow that utilizes the capabilities of modern 
graphics processing units (GPUs) to increase the efficiency of finding duplicates in 
very large datasets. Our solution covers several well-known algorithms for pair se-
lection, attribute-wise similarity comparison, record-wise similarity aggregation, 
and clustering. We redesigned these algorithms to run memory-efficiently and in 
parallel on the GPU. Our experiments demonstrate that the GPU-based workflow 
is able to outperform a CPU-based implementation on large, real-world datasets. 
For instance, the GPU-based algorithm deduplicates a dataset with 1.8m entities 10 
times faster than a common CPU-based algorithm using comparably priced hard-
ware. 

1. Introduction 

Duplicate detection (also known as entity matching	  or record linkage) is the task of iden-
tifying multiple representations of the same real-world entities [NH10]. It is an integral 
part of data cleansing and an important component of every ETL process. Duplicate 
detection is typically performed by applying similarity functions to pairs of entries in 
datasets: Some algorithm carefully selects promising pairs of records.  If the values of 
two records are sufficiently similar, they are assumed to be duplicates. Due to the large 
number of comparisons and the ever-increasing size of many databases, duplicate detec-
tion is a problem that is hard to solve efficiently. However, in most approaches the com-
parisons of record pairs are independent from one another – the problem is highly paral-
lelizable. In this paper, a selection of duplicate detection algorithms and similarity 
measures are described and adapted in the context of General Purpose Computation on 
Graphics Processing Units (GPGPUs). 

General purpose GPU programming has gained much appreciation in the past few years. 
Unlike Single Instruction, Single Data (SISD) CPU architectures, Single Instruction, 
Multiple Data (SIMD) GPU computing allows the execution of one set of operations on 
large amounts of data in a massively parallel fashion. This parallelization can provide 
immense speedups in applications that focus on highly data-parallel problems.  



Currently, there are only few frameworks for GPGPU development. For our prototype, 
we use the OpenCL 1.0 framework, as it allows development for both ATI and NVIDIA 
graphics cards. The framework allows the execution of so-called kernels, which are 
written in a variant of ISO C99. OpenCL kernels can be executed on different devices; 
usually the device is a graphics card, but other devices, in particular the CPU, are also 
possible if respective hardware drivers are available. Devices execute kernels as work 
items. A work item is a set of instructions that are executed on specific data by one 
thread. Further work items are grouped into work groups.  

When developing applications for GPUs, memory management is a key factor: GPUs 
have four types of memory with different capacities and different access speeds: Global 
memory is slow but has the highest capacity; local memory is faster but has a far smaller 
capacity; private memory	   is only usable by one operating unit; and constant memory	   is 
the fastest but not writable by the graphics card. An additional difficulty lies in the fact 
that it is not possible to allocate memory dynamically on the GPU. We address these 
memory challenges and opportunities in the next sections. Concerning the execution 
units, the graphics card executes a number of threads (usually 32) in so-called warps. All 
threads within a warp execute the same instructions on different data. If one thread of a 
warp takes a longer execution time, all the others wait. Moreover, conditions in the pro-
gram flow are serialized; each thread waits until the complete warp finishes an if-
statement, before starting with an else-statement. After an else-statement the threads 
are synchronized as well. Hence, we avoid divergent branching as far as possible.  

Our main contribution is a complete duplicate detection workflow that utilizes the re-
sources of the GPU as much as possible. First, we describe how each algorithm can be 
parallelized to utilize a very high amount of GPU cores. Second, we propose algorithm 
specific data-partitioning structures and memory access techniques to organize data in 
the NUMA architecture of GPUs. Finally, we present experiments that evaluate the per-
formance of the presented workflow based on different CPU and GPU hardware. For 
comparison reasons, we optimized the algorithmic parameters for high precision and 
recall values (not for speed) and used real world data sets as input data.  

In the following Sec. 2, we highlight related work for the areas of duplicate detection 
and GPGPU programming. Section 3 introduces the individual components of the dupli-
cate detection workflow. Section 4 describes our adaptations for two popular pair-
selection methods for the GPU environment. In Sec. 5 we adapt algorithms for popular 
similarity measures, as well as for the aggregation of different result lists and clustering. 
Section 6 evaluates the components of the workflow on various hardware platforms. The 
last section summarizes our results and discusses future work. 

2. Related Work 

Duplicate detection has been researched extensively over the past decades. Recent sur-
veys [EIV07,NH10] explain various techniques for duplicate detection and methods for 
improving effectiveness and efficiency. Common approaches to improve the efficiency 
of duplicate detection are blocking and windowing methods, such as the Sorted Neigh-



borhood method [HS95], which reduce the number of comparisons. Another approach to 
reducing execution time is parallelization, i.e., splitting the problem into smaller parts 
and distributing them onto multiple computing resources. Our approach combines both 
the Sorted Neighborhood method and parallelization.  

Parallelization has been proven to be effective by various authors. One of the first ap-
proaches to parallelizing duplicate detection is the Febrl system [CCH10], which is im-
plemented in Python and parallelized via the well-known Message Passing Interface 
(MPI) standard. Kim and Lee presented a match/merge algorithm for cluster computing 
based on distributed Matlab [KL07]. Kirsten et al. developed a parallel entity matching 
strategy for a service-based infrastructure [KKH10]. They evaluate both the Cartesian 
product as well as a blocking approach, and demonstrate that parallelization can be used 
to reduce execution time significantly. Kolb et al. explored map-reduce to bring dupli-
cate detection onto a cloud infrastructure [KTR11]. They focus on parallelizing the Sort-
ed Neighborhood method and their experiments show nearly linear speedup for up to 4 
and 8 cores. While these papers present effective approaches to the problem of parallel-
izing duplicate detection, they all require multiple CPUs or PC clusters for paralleliza-
tion. This limits the level of parallelization that can be achieved, e.g., Kirsten et al. use 
up to 4 nodes and 16 CPUs for evaluation. Compared to what is possible with GPUs, the 
respective level of parallelization is low.  

Katz and Kider worked on parallelizing transitive closure, i.e., the step of transforming a 
list of duplicate pairs into duplicate clusters [KK08]. In contrast to other papers on this 
topic [AJ88,To91] which only use CPUs for parallelization, Katz and Kider's approach 
utilizes graphics cards. Their algorithm is, however, not scalable for a large number of 
input pairs, as it is limited by the amount of memory available on the GPU. Our proto-
type builds on their work and solves this scalability issue.  

GPGPU programming has received an increasing amount of attention over past years. 
Recent surveys show that applications for GPGPU can be found in a wide area of fields 
including database and data mining applications [ND10,OLG07]. For duplicate detec-
tion, however, most approaches have been targeted at distributed infrastructure and do 
not consider the unique challenges presented by GPUs. To the best of our knowledge, we 
are first to evaluate a complete duplicate detection workflow on GPUs. 

3. Duplicate Detection Workflow 

This section presents a complete duplicate detection workflow, which combines com-
mon duplicate detection algorithms with the computation capacities of modern graphics 
cards. Figure 1 gives an overview of the workflow with the following steps:  

Parsing converts the input data, e.g., a CSV file, into an internal character array with all 
values concatenated. To allow values of different lengths, an additional array containing 
the starting indices of the individual attribute values is needed. This format is essential, 
because GPU-kernels can only handle basic data types and arrays with known sizes. 



Pair Selection selects record pairs for 
comparison. We adapt the Cartesian 
product and the Sorted Neighborhood	  
algorithms to run on the GPU. To gen-
erate a sorting key for the Sorted 
Neighborhood	   algorithm, we present a 
simple key-generation function	   and an 
adapted Soundex algorithm, both run-
ning on the GPU.  

Comparison:	  The selected record pairs 
are compared for similarity: We process 
each attribute value individually and 
return a normalized similarity value for 
each pair of attribute values. We de-
scribe the computation of two edit-
based similarity measures on the GPU: 
Levenshtein and Jaro-Winkler.  

Aggregation:	  The attribute similarities are aggregated to an overall record pair similari-
ty, which is used to decide whether the two records are duplicates or not. We calculate a 
weighted average and check similarity values before and after the aggregation against 
predefined thresholds.  

Clustering:	   The result of a pairwise duplicate detection process may not contain all 
transitively related record pairs. Thus, we calculate the transitive closure to obtain a 
complete list of duplicate clusters.  

4. Pair Selection 

Next to the Cartesian product, the literature knows several algorithms that select a subset 
of candidate pairs for comparison to avoid the complexity of comparing all pairs; a 
popular representative is the Sorted Neighborhood Method [HS95].  

Regardless of the used algorithm, to completely utilize the parallel potential of GPUs, 
each work item compares exactly one selected pair of attribute values. This leads to a 
higher amount of work items than the GPU has processors, and, therefore, allows the 
GPU to use optimization techniques like memory latency hiding.  

Since the memory of graphics cards is limited, it cannot fit all values of a large dataset. 
Thus, we cannot execute all comparisons at once and, instead, have to perform multiple 
comparison rounds. Each round consist of the following steps: Copy a subset of attribute 
values from the host to the GPU, execute the comparisons on those values, and finally 
copy the results back from the GPU to the host. We describe two approaches to divide 
the input values into blocks of data and select the comparisons for each round. 

Device	  Scheduling

Pair	  selection
Cartesian Product,	  Sorted Neighborhood

Comparison
Jaro-‐Winkler,	  Levenshtein

Input	  data Parsing

Aggregation
Thresholds &	  Weights

Clustering
Transitive	  ClosureDuplicates

Attribute	  values

Duplicate pairs
(per	  attribute)

Duplicate pairs
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GPU

GPU
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Figure 1: The duplicate detection workflow 



4.1 Cartesian product 

The simplest method to select pairs is the Cartesian product. It selects every possible 
combination of input values. This leads to high recall, but also to a high number of com-
parisons. In general, the set of pairs must be split into chunks that fit into memory. This 
split can be performed easily with CPU and main memory due to dynamic memory allo-
cation. But on the GPU, memory allocations must be done before the GPU executes the 
kernel code. Especially, different lengths of input values lead to different memory re-
quirements for each comparison.  

For an optimal usage of GPU-resources two 
requirements must be met: First, the transfer 
of data between main memory and graphics 
cards should be minimized, i.e., data on the 
GPU should be reused as much as possible. 
Second, the entire available memory should 
be used to fully utilize the parallel potential 
of the GPU. To fulfill these goals, we estab-
lish two blocks of GPU memory of about the 
same size: The first block is the pivot-block, 
which is kept on the graphics card until all 
comparisons with its values are finished. The 
second block is the comparison-block, whose 
content is exchanged in each round. 

Figure 2 shows which blocks of input data 
are compared. The x- and y-axes represent 
the input values; each cell represents a com-
parison between a value from the x- and a 

value from the y-axis. The comparisons under and on the diagonal (white cells) are never 
performed, because we assume symmetric comparison measures.  

First, the pivot-block contains data d1	  and is compared with itself in round 1.1. Then in 
rounds 1.2 to 1.4, the comparison-block is filled with input data d2	  to d4	  and compared 
with the pivot-block. The data in the last comparison-block is then kept on the graphics 
card and used as the new pivot-block. The selection of the last comparison-block as the 
new pivot-block can lead to very small pivot-blocks, which in turn leads to fewer com-
parisons. To avoid this effect, the algorithm pre-calculates the optimal size of the new 
pivot-block based on the current pivot-block. We call it the candidate-block, and com-
pare it with the pivot-block after all other comparison-blocks have been processed.  

Assuming that the pivot-block contains p elements and the comparison-block contains c 
elements, we can do ! ∗ ! comparisons in parallel and thus maximally utilize the parallel 
potential of the GPU. The comparisons in rounds x.1 are exceptions, because they com-
pare the pivot-block with itself, with ! ∗ !!!

!
 comparisons in parallel. Every kernel has to 

calculate the memory addresses of the values that it should compare. To unify the calcu-

Figure 2: Cartesian product pair selection 



lation and to avoid branches, we increase the number of comparisons to ! ∗ !!!
!

. Now, 
! 2 work items always compare the same string to one of the following ! 2	  strings – 
continuing at the beginning of the value array if its end is reached. This generates dupli-
cate results if p	   is an even number, but the subsequent aggregation algorithm (see Sec. 
5.4) filters them out.  

We process input values with different lengths. Thus, we cannot use blocks of fixed size. 
Instead, the sizes of pivot- and comparison-blocks have to be determined based on input 
data and any additional memory required by a specific comparison algorithm. Addition-
ally, the block-sizes are limited by the GPU-memory. This leads to the formula: 

!"#$%&   ≥ !"#$%&' + !"#$%&'ℎ!"#$# + !"#$%&#                (1) 

where Strings	   represents the size in bytes of the strings in both blocks (including the 
index arrays), AlgorithmData	   represents the individual requirements of a comparison 
algorithm, and Results	  is the size of the array that contains the calculated similarity val-
ues. Furthermore, the two goals of using the entire available memory and minimizing the 
data transfer have to be fulfilled by the value selection.  

Our approach dynamically calculates the block's memory requirements depending only 
on the current lengths of the strings in the input data: First, it calculates the size of the 
pivot-block, which also depends on the strings in the comparison block, by increasing its 
size continuously. Since the strings of the comparison-block are not known at this time, 
the content of the comparison-block must be estimated. We assume that the comparison-
block contains one string with average length for every string in the pivot-block. This 
approach fulfills the goal of maximizing the number of comparisons in each round. The 
pivot-block is filled with strings until the memory is too small to contain the pivot-block, 
the estimated comparison-block, and the additional memory for the comparison algo-
rithm. Then the pivot-block is transferred to the GPU and compared with itself. Since the 
size and the content of the pivot-block are now fixed, the content of the comparison-
block can be calculated based on the input data and the pivot-block. As the strings have 
different lengths, the comparison-block can contain more or fewer strings than the pivot-
block. Our experiments show that usually both contain nearly the same number of 
strings, because of the average length estimation.  

The Levenshtein algorithm for comparing attribute values needs additional memory: 
each comparison of a string from the pivot-block with a string from the comparison-
block requires two times the size of the string from the pivot-block. Thus, it needs the 
size of the pivot-block times the number of strings in the comparison-block as additional 
memory (see Sec. 5.1 for more details). In the best case, the pivot-block contains many 
short strings while the comparison-block contains few long strings. Then, the Le-
venshtein algorithm will only need a small amount of memory and more strings can be 
placed on the graphics card. In the worst case, the pivot-block contains few long strings 
and the comparison-block contains many short strings. In this case, the Levenshtein 
algorithm needs more memory for the comparisons. To avoid the worst case, one could 
always compare the shorter with the longer string, but in this case the calculation of 
memory addresses in the kernel becomes overly complex. Jaro-Winkler does not need 



additional memory for its comparisons; it uses the complete GPU-memory for attribute 
values. Thus, the number of comparisons does not depend on the contents of the blocks. 

4.2 Sorted Neighborhood 

The Sorted Neighborhood Method (SNM) [HS95] greatly reduces the number of com-
parisons compared to the Cartesian product. It consists of three phases: First, a sorting 
key is generated; then the records are sorted according to that key in the hope that dupli-
cates have similar sorting keys and thus end up close to each other; and finally a fixed-
size window is slid over the sorted records and all records within the same window are 
compared to each other. 

For key generation we propose a simple hashing algorithm as well as the Soundex code 
(see Sec. 5.3): The simple hashing approach uses the string length and the first letter of 
the attribute to be compared, to create a sort key: 
1,000 ∙ !"#$%& + !"#$%&'%%'#(ℎ!"#!$%& results in a sorting primarily according to 
the length and secondly according to the first letter.  Sorting by length leads to compari-
sons of strings of roughly same length, which reduces branch divergence – an advantage 
in GPU processing. Further, the first letter is often the same for duplicate strings, e.g., 
because spelling mistakes are less likely to be made here [YF83], and because abbrevia-

tions start with the same letter. The 
computation of the simple sort key re-
quires no branching, and therefore all 
GPU threads can run in parallel. The 
downside of this simple key generation 
is that it produces poor results if there 
are many strings with the same length, 
which results in many similar keys. In 
this case, Soundex (described in Sec. 
5.3) produces better sort keys, because it 
focuses on phonetic characteristics in-
stead of the string length. Altogether, 
sorting key generation is well suited for 
GPUs, because each calculation only 
depends on one string, and therefore can 
be easily computed in parallel. 

For the sorting step, we choose the 
GPU-based merge sort algorithm of 

[SKC10]. We did not improve this sorting algorithm; therefore, we do not cover it in this 
paper.  

Figure 3 shows the comparison matrix for SNM. The colored cells on the diagonal denote 
the comparisons that are actually performed by SNM. To compare the attribute values 
efficiently, we have to determine the maximum amount of strings that can be transferred 
to the GPU at a time. In Fig. 3, a partition visualizes the comparisons that can be done 
with the strings on the GPU in one execution. We approximate the number of the strings 

Figure 3: Sorted Neighborhood pair selection 
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that can be copied to the GPU based on the average string length. The amount of 
memory required for one string depends on the length of the string, the number of strings 
it is compared with, and the comparison algorithm.  

The Sorted Neighborhood approach compares each string with the next ! − 1 strings 
where ! is the window size (see the sliding window, Fig. 3). This leads to ! − 1 ∙
!""#$%&'()*'+,%$&$&-' − ! − 1 ! comparisons in one round on the GPU. In this 

formula, ! − 1 !  denotes the comparisons that are postponed to the next partition, due 
to the window sliding out of the partition boundaries. 

With this number of comparisons and the average string length, we approximate the 
maximum number of strings that can be copied to the GPU. Since the input strings have 
different length, we iteratively calculate the required memory based on the approxima-
tion, until the maximum number of strings that can be computed on the graphics card is 
determined. The calculation benefits from the internal data format, produced during the 
parsing step (see Sec. 3). It allows the computation of the string lengths just by inspect-
ing the index array with the starting indices of the strings.  

Once the data is copied onto the GPU, each string within a partition is compared with the 
next ! − 1 strings. The last strings in a partition cannot be compared, because they are 
not followed by ! − 1 strings. Therefore, partitions have to overlap by ! − 1 strings to 
ensure that no comparisons are missed. To execute the comparisons in the last partition 
efficiently, the index array is expanded by ! − 1 dummy string entries (see header-cells 
labeled with “-“ in Fig. 3). These dummy strings prevent branching, because the last 
strings of the final partition can be treated like any other string without needing condi-
tional checks. Furthermore, the dummies are empty, so their respective comparisons can 
easily be omitted by the kernels. Thus, they do not negatively impact computation time. 

5. Similarity Classification 

This section describes implementations of methods to classify record pairs as duplicate 
or non-duplicate. In particular, we present two edit-based and one phonetic (Soundex) 
similarity measure to calculate the attribute similarity on graphics cards. Then we de-
scribe how different attribute similarities are aggregated to record similarities and how 
we cluster results using GPUs. 

5.1 Levenshtein similarity 

The Levenshtein distance is defined as the minimum number of character insertions, 
deletions, and replacements necessary to transform a string !! into another string !! 
[NH10]. To compute the Levenshtein distance !"#$%&'(!!, !!) on a GPU, we use a dy-
namic programming approach [MNU05] and extend this approach to optimize its 
memory usage. The comparison of two strings requires a matrix ! of size  (|!!| +
1)×(|!!| + 1), where |!| denotes the length of string !. A value in the !-th row and !-th 



column of ! is defined by !!,!, where 0 ≤ ! ≤ |!!| and 0 ≤ ! ≤ |!!|. We initialize the 
first row !!,! and column !!,! as:  

!!,! = !                                !!,! = !          (2) 

The algorithm then iterates from the top left to the bottom right cell of the matrix. It 
recursively computes each value !!,! in the matrix as: 

!!,! =
!!!!,!!!

1 +!"#(!!!!,! ,!!,!!!,!!!!,!!!)
  if  !!,! = !!,!
otherwise

        (3) 

where !!,! denotes the !-th letter in the string !!. In the end, matrix cell !|!!|,|!!| delivers 
the Levenshtein distance between !! and !!. 

Because dynamic memory allocation is not possible from inside a GPU kernel in 
OpenCL, we pre-allocate the needed memory for each comparison. To reduce memory 
consumption, we use only two matrix rows for each comparison, because calculation of 
row ! depends only upon the current row ! and the previous row ! − 1 (see Equation 3). 
Thus, we can swap the current and previous row and calculate row ! + 1 by overwriting 
the values of row ! − 1, without affecting performance. We analyzed that the average 
string length in our test collection is 14 characters, which results in an average matrix 
size of (14 + 1) · (14 + 1) = 225 cells. By using only two rows, we can greatly reduce 
the average required cells in our test collection to (14 + 1) · 2 = 30, which is only 13% 
of the whole matrix. 

To calculate the amount of required memory for the matrix rows, the algorithm can use a 
simple formula that takes the arbitrary length of each string |!!| into account. Let ! be 
the number of strings that should be compared and ! be the number of strings to which 
each of the ! strings is compared to. Then the overall memory in byte that is required for 
the matrix rows can be calculated as: 

! ∙ !"#$%&(!"#) ∙ 2 ∙ !! + 1           
!

!!!

(4) 

Within a comparison of two strings, one string defines the length of the two matrix rows. 
Therefore, one comparison requires !"#$%&(!"#) · 2 · (|!!| + 1) bytes of memory for the 
matrix rows. Our pair selection algorithms are designed to compare each of the ! strings 
to ! > 0 other strings, so that each string defines ! times the length of the matrix rows. 
For example, the Sorted Neighborhood algorithm sets ! = ! − 1 and the Cartesian 
product defines ! = !!!

!
. To calculate the overall amount of matrix memory, the algo-

rithm sums up all ! string specific row lengths |!!| + 1. 

As usual, to transform the Levenshtein distance into a normalized similarity measure, we 
finally normalize the distance by dividing by the length of the longer string and subtract 
the result from 1. 



5.2 Jaro-Winkler similarity 

Jaro-Winkler similarity was originally developed for the comparison of names in U.S. 
census data. The measure is comprised of the Jaro distance [Ja89] and additions by Win-
kler [WT91]. The Jaro distance !"#$%&'((!!, !!) combines the number of common char-
acters ! between two strings !! and !!, the number of transpositions ! between the two 
strings of matching characters, and the lengths of both strings: 

!"#$%&'( !!, !! =
1
3
∙
!
!!

+
!
!!

+
! − !
!

          (5) 

Common characters are only searched for within a range of size !: 

! =
!"# !! , !!

2
− 1        (6) 

Winkler’s main modification of the Jaro distance is the inclusion of the length of the 
common prefix ℓ into the formula (see Eq. 7), which improves similarity scores for 
names starting with the same prefix. The common prefix is limited to ≤ 4 and is 
weighted by the factor !, for which Winkler’s default value is 0.1. 

!"#$%&'()*# !!, !! = !"#$%&'( !!, !! + ℓ! 1 − !"#$%&'( !!, !!               (7) 

The original algorithm calculates the number of transpositions ! by first calculating the 
two strings of matching characters and then comparing them character by character. For 
each pair of strings being compared, matching characters are stored in two temporary 
variables of length  !!"# = !"#(|!!|, |!!|). For graphics cards, these variables pose diffi-
culties: First, the amount of fast private/local memory is limited, which restricts the 
amount of work items that can be executed in parallel. In order to still achieve high lev-
els of parallelism, global memory needs to be used, which is slower to access but also 
several magnitudes larger. Second, since GPU memory cannot be allocated dynamically 
within a kernel at runtime,	   we would have to wastefully pre-allocate the worst-case 
amount of memory or perform additional comparisons as in [HYF08]. 

Our approach focuses on reducing memory consumption with the goal of achieving high 
levels of parallelism while primarily using fast private/local memory. This comes at the 
cost of increased kernel-time complexity. Instead of pre-computing the strings of match-
ing characters, our algorithm (see Alg. 1) computes the number of matched characters 
and transpositions by iterating the input strings twice. The first iteration (lines 3-9) finds 
and counts the number of matching characters  !. It also keeps track of which characters 
have been matched already (array of matched characters  !"!,!). The second iteration 
(l. 12-25) calculates the number of half-transpositions ! and the length of the common 
prefix  ℓ. The !"#$(!, !,!") function (l. 4 and l. 13) tries to find a character ! in the 
given string  !, without matching any characters that were previously matched. This is 
done by checking that the respective position in the !" array is not set to 1, and by re-
spectively updating the array once a matching character has been found.  



The !"#$ function returns a Boolean value indicating whether a match was found, and 
the offset at which it was found. Inter-
nally, the function also considers the 
window size ! (see Eq. 6) to match 
only characters within the allowed 
range of ! ± !. 

The !"#$%&!"#$%ℎ!"(!,!") func-
tion (l. 15) counts how many characters 
in !! up to position ! cannot be 
matched to a character in !! (by in-
specting the !" array). A half-
transposition exists if a character can 
be matched without an offset, while 
ignoring all unmatched characters (l. 
16). The prefix counter ℓ is only in-
creased for the first 4 characters, if the 
current character has been matched 
without an offset, and all characters on 
earlier positions do also match respec-
tively (l. 19). 

The key to memory efficiency with this 
algorithm lies in the arrays !"!,! and 
!"!,! which store only Boolean values 
and thus can be represented at the level 
of single bits. Our implementation uses 
two 8-byte variables allowing compari-
sons of strings up to length 64. Using 
the original approach we would need 
two 64-byte variables to compare 
strings of the same length. 

5.3 Soundex 

Soundex is a phonetic algorithm for identifying words that are pronounced similarly but 
spelled differently [USN07]. The algorithm produces 4-letter codes, which match for 
similar sounding words, e.g., Robert and Rupert are both represented by the code R163. 
Soundex is good for finding misspelled names but it produces many false positives as 
well as false negatives [PS01].  

Our implementation consists of two kernels: One for generating Soundex codes for a set 
of input strings, and one for comparing pairs of Soundex codes. For comparison we 
minimize memory operations by leaving generated Soundex codes on the graphics card 
for the comparison phase. To generate Soundex codes we walk through the letters of a 
given term and build up the Soundex code by either coding the current letter or moving 

Algorithm 1: Jaro-Winkler: computation of matching 
characters !, transpositions ! and common prefix ℓ  

for two strings !! and !! 

 

01	  m	  ←	  0,	  t	  ←	  0,	  ℓ	  ←	  0	  
02	  mc1,x	  ←	  0	  
03	  for	  i	  =	  1	  to	  |s1|	  do	  
04	  	  [match,offset]	  ←	  find(s1,i,s2,mc1)	  
05	  	  if	  match	  =	  True	  then	  
06	  	  	  m	  ←	  m	  +	  1	  
07	  	  	  mc1,i	  ←	  1	  
08	  	  end	  if	  
09	  end	  for	  
10	  mc2,x	  ←	  0	  
11	  uc1	  ←	  0	  
12	  for	  i	  =	  1	  to	  |s1|	  do	  
13	  	  [match,offset]	  ←	  find(s1,i,s2,mc2)	  
14	  	  if	  match	  =	  True	  then	  
15	  	  	  uc2	  ←	  countUnmatched(i+offset,mc1)	  
16	  	  	  if	  offset	  +	  uc1	  ≠	  uc2	  then	  
17	  	  	  	  t	  ←	  t	  +	  1	  
18	  	  	  end	  if	  
19	  	  	  if	  offset	  =	  0	  and	  ℓ	  =	  i	  −	  1	  	  
	   	  	  	  	   and	  i	  ∈	  [1,4]	  then	  
20	  	  	  	  ℓ	  ←	  ℓ	  +	  1	  
21	  	  	  end	  if	  
22	  	  else	  
23	  	  	  uc1	  ←	  uc1	  +	  1	  
24	  	  end	  if	  
25	  end	  for	  
26	  t	  ←	  t/2	  
27	  return	  m,	  t,	  ℓ	  



on to the next one. The compare-kernel uses lists of previously generated Soundex codes 
to create pairs of terms that have the same code. Unlike other similarity measures, this 
results in similarity values of either 0 or 1. 

5.4 Aggregation 

To classify whether two records are a duplicate or not, we aggregate the attribute simi-
larities to an overall record similarity. The comparators described in the previous sec-
tions return lists of pairs with similarity values above attribute-specific thresholds. The 
aggregated similarity value is a weighted average of all similarity values for the specific 
pair. In order to increase the precision of results, merged pairs with a similarity value 
below a manually defined overall threshold are removed. 

For efficient aggregation each list is first sorted by a unique identifier that represents the 
compared data records. This approach reduces the search time for corresponding pairs in 
the result lists; additionally, duplicate entries that may have been produced by the Carte-
sian product (see Sec.4.1) can be removed easily. 

While the sorting part is suited for the GPU, the merging part is not: First, merging on 
the CPU can be a simple Sort-Merge join that requires linear time, so the additional time 
required for copying the data to the GPU does not pay off (see Sec. 6.2). On the GPU, 
the retrieval of corresponding pairs is more complex, because each kernel instance 
would merge one combination of pairs and corresponding pairs in different lists cannot 
be found at the same defined places. Pairs can be missing in some lists, due to attribute-
specific thresholds and different comparisons that are triggered by the Sorted Neighbor-
hood method. Thus, a GPU variant would either need a complex kernel with slow 
branching, or additional preprocessing of all lists. When iterating all lists, the computa-
tion of the weighted average would only produce little to no computational overhead. 
This invalidates the point of using the GPU for merging, so we sort the lists on the GPU 
and merge them on the CPU. 

5.5 Clustering 

As we use pairwise comparisons to find duplicate records, our result may not be transi-
tively closed (e.g. pairs ⟨A,B⟩ and ⟨B,C⟩ are classified duplicates, but not ⟨B,C⟩). We 
calculate the transitive closure using the tiled Floyd-Warshall (FW) algorithm by Katz 
and Kider [KK08] and adapt it to the specific task of clustering real-world duplicate 
pairs. We first present the tiled FW algorithm in a condensed form. Afterwards, we de-
scribe how the algorithm can be extended to optimize its efficiency and scalability in 
computing extremely large amounts of data. 

The tiled FW extends the original FW [Wa62] in order to run efficiently on the GPU. It 
uses dynamic programming and is based on a directed graph, represented by an adjacen-
cy matrix !. In the design of the tiled FW, Katz and Kider assume that the entire matrix 
for ! vertices can be loaded into the GPU's global memory at once, but not into local 
memory. Therefore, they propose to load all data into global memory first and then split 



the computation of the transitive closure into many sub-tasks that can be executed se-
quentially using maximal local memory in each step. After loading ! into global 
memory, the tiled FW algorithm partitions ! into sub-matrices of size !×! with ! ≤ !. 
Size ! must be chosen small enough so that three sub-matrices can be loaded into local 
memory at once. ! then consists of !×! sub-matrices with ! =    ! ! . Afterwards, 
the algorithm uses an iterative execution strategy for the Floyd-Warshall algorithm (see 
Fig. 4). It needs ! stages to calculate the complete transitive closure. Each stage consists 
of the following three phases: 

 

 

Figure 4:  Stages and phases of the tiled FW algorithm introduced by Katz and Kider [KK08]. 

1. Start one work group: The work group loads the submatrix (!, !) as pivot matrix 
into local memory, where ! is the current stage number. Then, only one thread in 
this work group calculates the transitive closure for this matrix using the original 
Floyd-Warshall algorithm. 

2. Start ! − 1 ∙ 2 work groups: Each work group loads the pivot matrix (!, !) and a 
second sub-matrix (!, !) or (!, !) into local memory. Now the second submatrix is 
located in the same row or column as the pivot matrix. Its calculation depends only 
upon itself and the pivot matrix. Within a work group, each value in the second 
sub-matrix can be computed in parallel by an own thread executing a part of the 
Floyd-Warshall algorithm (for more details see [KK08]). 

3. Start ! − 1 ! work groups: Each work group loads two sub-matrices that have 
been processed in phase 2 and a third sub-matrix into local memory. The third ma-
trix for two previously processed matrices (!, !) and (!, !) is placed at (!, !) and on-
ly depends upon their values and itself in this step. Again, all values of the third 
matrix can be processed in parallel by an own thread executing a part of the Floyd-
Warshall algorithm. 

In the following, we adapt the approach of Katz and Kider to the specific task of cluster-
ing duplicate pairs and add some modifications to improve the algorithm’s efficiency 
and scalability. 

5.5.1 Optimizing transitive closure efficiency 

The adjacency matrix defines a directed graph, whereas our result graph is undirected, as 
we assume a symmetric duplicate relation between different records. Thus, all values in 
the adjacency matrix are mirrored across the matrix's diagonal axis. An obvious optimi-
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zation approach is to remove redundant edges and hence reduce both the matrix size and 
the necessary computation steps in Phases 2 and 3 of the tiled FW algorithm. In Phase 2, 
for example, the algorithm could compute only the sub-matrices (!, !) with ! > ! and 
(!, !) with ! < !. Nevertheless, the overall performance would decrease for two reasons: 
First, the computation of the edge position in the matrix becomes more complex. When-
ever the algorithm needs to read an edge value from the redundant (and therefore not 
existing) half of the matrix, it must mirror the edge's coordinates to find the correspond-
ing value, which is a complex operation especially in Phases 2 and 3. Second, Warshall's 
algorithm might write the edges (!! , !!) and (!! , !!) at the same time. To guarantee con-
sistent write operations, the kernels would need locking mechanisms, which decrease 
performance and restrains parallelism. Thus, we retain the original matrix and store each 
duplicate pair as two directed edges in the adjacency matrix. 

The original tiled FW represents each value in the adjacency matrix as a single numeri-
cal value. To reduce the physical size of the matrix in memory, our implementation of 
the algorithm encodes these values as bitmasks: Each bitmask contains 32 edge values, 
because common GPUs address 32 bits at once. This technical optimization reduces the 
required memory by 1/32 compared to integers. However, this compression also impacts 
the structure of the algorithm: While computing the transitive closure, Floyd-Warshall's 
algorithm iterates over multiple rows and columns of the matrix. Each read operation 
returns 32 edge values. A horizontal iteration over a row containing bitmasks of edge 
values can be done very fast, because it needs ! 32  read operations to receive ! edge 
values. In contrast, a vertical iteration over a column of the matrix still needs ! read 
operations for ! edges and returns 31 ∙ ! not required values. This becomes a drawback 
for the performance, if we execute the Floyd-Warshall algorithm on a bit-compressed 
graph matrix. Warren's algorithm [Wa75], which extends the Floyd-Warshall algorithm, 
solves this problem by just iterating horizontally in the adjacency matrix. So we use this 
approach instead of Warshall's algorithm to calculate Phase 1 without iterating vertical-
ly. In Phases 2 and 3, the algorithm can use the redundant edges in the adjacency matrix 
to avoid vertical iterations. Each column ! in the matrix has a corresponding row ! that 
is mirrored across the matrix's diagonal axis and contains the same bit values. Therefore, 
all iterations over ! can be replaced by iterations over !. 

Using bitmasks to encode the matrix also affects the granularity of parallelization. In 
Phases 2 and 3 the algorithm can no longer compute the value of each single edge in 
parallel. To guarantee consistent writes, each bitmask must be processed by one GPU 
thread. However, by using bitwise OR operations for the comparison of two bitmasks, 
each thread computes all 32 values at once. 

Figure 5 shows how all previously described modifications of the tiled FW work togeth-
er in Phase 2. In this phase, each work group loads the pivot and a second submatrix into 
local memory. Then, all bitmasks in the second sub-matrix are computed in parallel. 

Let !! , !! − !! , !!  be a bitmask ! in the second submatrix. The thread that processes 
b  iterates over row !! in the pivot matrix and analyses each bit. If a bit !! , !!  is 1, the 
thread loads the bitmask !! , !! − !! , !!  from the second matrix and then compares it 
to ! using the bitwise OR operation. After analyzing the whole row !! in the pivot ma-



trix, the thread writes the new values for b into the second matrix. This algorithm also 
works for Phase 3. In this phase, three sub-matrices are loaded into local memory. To 
compute the bitmask b in the third matrix, a thread iterates over the corresponding row in 
the horizontally deferred second matrix and loads bitmasks for the comparison from the 
vertically deferred second matrix. 

 

 

Figure 5: Optimized calculation of Phase 2 using bitmask encoding,  
horizontal iteration and bitwise OR comparison. 

5.5.2 Achieving scalability 

The algorithm of Katz and Kider assumes that the entire adjacency matrix fits into the 
GPU's global memory. Given a GPU with 1GB of global memory, this assumption limits 
the maximum number of nodes in the result graph to 92,672 even if bitwise encoding is 
used. Assuming 5% duplicates as result size, this is not enough to analyze datasets with 
2 million records or more. Therefore, we need an additional partitioning of the matrix 
between the host's main memory and the GPU's global memory. We achieve this parti-
tioning by using the same stage-wise execution strategy of the tiled FW again to pre-
partition the global adjacency matrix G into smaller, quadratic matrices M! on the host. 
The algorithm has to ensure that all matrices M! are equally large and that three matrices 
M! fit into the global memory at once. We call this approach the double tiled FW algo-
rithm. It uses the same stages and phases of loading matrices M! into global memory like 
the original tiled FW loads sub-matrices into the local memory. In Phase 1, only one 
pivot sub-matrix M! resides in global memory. The GPU processes this matrix by exe-
cuting the already known tiled FW. In Phase 2, the algorithm loads the pivot and a se-
cond sub-matrix into global memory. All bitmasks in the second sub-matrix are then 
processed in parallel like in Stage 2 of the tiled FW (see Fig. 5). Afterwards, the same 
procedure is used for Phase 3, which needs one pivot and two previously processed se-
cond sub-matrices. 

6. Evaluation 

We evaluated performance and accuracy of our workflow using real-world data sets. In 
addition, the execution time of each component is evaluated on different hardware. 

Bitmask	  to	  be	  processed
Bitmasks	  to	  be	  read
Other	  bitmasks



6.1 Experimental setup 

We evaluated on four different graphics cards, two from NVIDIA and two from ATI. As 
ATI’s OpenCL drivers also allow the execution of OpenCL kernels on CPUs, we addi-
tionally evaluated our implementation on two Intel CPUs (see Tab. 2 for specifics of all 
six devices).  

We used a subset of 1.792 million music CDs extracted from freedb.org for the perfor-
mance evaluation of our algorithms. This dataset contains attributes artist, title, genre, 
year of publication, and multiple tracks. The DuDe Duplicate Detection Toolkit [DN10] 
provides a gold-standard for a randomly selected subset of 9,763 CDs 
(http://www.tinyurl.com/dude-toolkit), which we used to measure the accuracy of our 
results. Furthermore, we calculated the similarity of two records based on the values of 
four attributes that contain strings of variable length, namely Artist, Title, Track01, and 
Track02. This selection is based on our experience with that database. 

To ensure a realistic assessment of the workflow efficiency, we first evaluated its effec-
tiveness. We calculated precision (proportion of retrieved real duplicates), recall (propor-
tion of identified real duplicates), and F-measure (harmonic mean of precision and re-
call) for different configurations: Sorted Neighborhood (SNM) and Cartesian product 
(CP) for pair selection combined with Levenshtein (L) and Jaro-Winkler (JW) as com-
parison algorithms. Table 1 lists the configuration parameters that delivered the best F-
measure, showing similar results compared to other duplicate detection tools [DN10]. In 
Sec. 6.2, we use these configuration parameters to test the performance of our algorithm 

For SNM, we tested window sizes between 10 and 500. We observed that any value 
above 20 has only minimal effect on the F-measure (at best 2 percentage points in-
crease). Therefore, all experiments used a window size of 20. For the SNM’s sort key 
generation, we tested two different generating algorithms. As already mentioned in Sec. 
4.2, the Soundex algorithm generates the best sort keys for attributes whose values have 
similar lengths, which is true for the artist and track attributes. The values of the title 
attribute, however, vary considerably in length. As a result, our own key generation 
algorithm performs better for these attributes.  

We tried multiple thresholds to determine whether a pair with a certain similarity is 
classified as a duplicate. The thresholds are first applied to attribute pairs during compar-
ison and afterwards to record pairs during aggregation. The aggregation step additionally 
uses a set of weights to sum up the single attribute similarities. We evaluated various sets 
of thresholds and weights and settled on the values in Tab. 1. 

Method	   Thresholds	   Weights	   Precision	   Recall	   F-‐Measure	  
Overall	   Artist	   Title	   Tracks	   Artist	   Title	   Tracks	  

SNM	  +	  L	   0.6	   0.6	   0.6	   0.5	   20%	   30%	   25%	   95.2%	   80.3%	   87.1%	  
SNM	  +	  JW	   0.66	   0.6	   0.67	   0.87	   20%	   30%	   25%	   95.2%	   79.6%	   86.7%	  
CP	  +	  JW	   0.66	   0.78	   0.75	   0.87	   20%	   30%	   25%	   92.2%	   86.6%	   89.3%	  

Table 1: Configurations and results 

 



ID	   Type	   Device	  Name	   Clock	   Memory	   Cores	   System	   Price	  	  (August	  2011,	  
http://www.alternate.de)	  

G1	   GPU	   Nvidia	  GeForce	  
GTX	  570	  

732	  
MHz	  

1280	  MB	  
GDDR5	  

480	  
CUDA	  

Win64	   279	  Euro	  

G2	   GPU	   Nvidia	  Tesla	  
C2050	  

1147	  
MHz	  

3071	  MB	  
GDDR5	  

448	  
CUDA	  

Linux64	   2,149	  Euro	  

G3	   GPU	   ATI	  Radeon	  HD	  
5700	  

850	  
MHz	  

1024	  MB	  
GDDR5	  

800	  SP	   Win64	   91	  Euro	  

G4	   GPU	   ATI	  Mobility	  
Radeon	  HD	  5650	  

450	  
MHz	  

1024	  MB	  
GDDR3	  

400	  SP	   Win64	   unknown	  

C1	   CPU	   Intel	  Core	  i5	  750	   2.67	  
GHz	  

8192	  MB	  
DDR3	  

4	   Win64	   185	  Euro	  

C2	   CPU	   Intel	  Core	  i5	  
M560	  

2.67	  
GHz	  

8192	  MB	  
DDR3	  

2	   Win64	   200	  Euro	  

Table 2: Evaluation devices 

6.2 Algorithmic complexity 

To evaluate the performance of the duplicate detection workflow, we analyzed the exe-
cution times of its individual components. All tests were executed on the NVIDIA Ge-
Force GTX 570 (G1), because our experiments in Sec. 6.3 show that this device per-

forms best.  

Figure 6 shows the execu-
tion times of the different 
components as parts of the 
complete workflow for 
various input sizes  !. We 
used Jaro-Winkler for 
comparison and Sorted 
Neighborhood for pair 
selection. In the follow-
ing, !  denotes the longest 
list of found attribute-wise 
duplicates after the com-

parison, and ! denotes the 
number of record-wise duplicates after the aggregation step. Since we observed that ! 
and ! increase linearly in proportion to !, the complexities of the subsequent algorithms 
can be defined in relation to the input size !.  

The diagram shows that with an increasing amount of data, and thus an increasing 
amount of duplicates, the execution time of the transitive closure becomes the dominant 
part of the workflow. Note that for a complete result one cannot omit this last step and 
that its complexity is hardly dependent on the total number of previously found dupli-
cates, but rather on the number of disjoint records in the duplicates. The execution time 
of the transitive closure increases fastest, because its complexity is !(!!), whereas the 
other complexities are !(!!) for the Cartesian product, !(! log(!)) if ! ≤ log(!) or 
otherwise !(! ∙ !) for the Sorted Neighborhood, and !(! log(!)) for the aggregation. 

Figure 6: Execution times of different components 
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Figure 8: Performance of Sorted Neighborhood 
with Jaro-Winkler on different devices 
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The sorting, as an aggregation preprocessing step, has the second highest time; more 
advanced algorithms [SKC10] might improve this value. The comparisons also have 
high execution times, because a string comparison is the most complex calculation on 
the GPU. The aggregation step itself has the smallest execution time and thus has only 
little impact on the workflow’s overall execution time.  

Figure 7 shows the execution times for the comparators only. We observe that Jaro-
Winkler has a much lower execution time for both pair-selection algorithms for three 
reasons: First, Levenshtein performs more accesses to global GPU-memory. Second, 
Levenshtein performs more comparison rounds due to the higher memory consumption; 
these rounds need additional time to be triggered by the host. Third, Jaro-Winkler creates 
more work items allowing the GPU to use memory latency hiding to optimize the execu-
tion. 

         

 

 

 

 

 

6.3 Comparison of hardware 

As discovered in Sec. 6.2, the most efficient configuration uses Sorted Neighborhood in 
combination with the Jaro-Winkler comparison algorithm. Figure 8 shows that the best 
results are indeed achieved 
on GPUs. The fastest GPU 
G1 (see Tab. 2) takes 35 
minutes (2,095 seconds) to 
process 1.792 million en-
tries; this is about 10 times 
faster than the fastest CPU 
C2, which takes 335 
minutes. However, Tab. 2 
shows that the CPUs in our 
experimental setup are 
cheaper than the used GPUs. 
To compare them in a fair 
way, we placed the execu-

 Cartesian Product        Sorted Neighborhood 
   Figure 7: Execution times of comparison algorithms in combination with different pair selectors 
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tion times in relation to the prices by multiplying the price (in Euro) and the execution 
time (in minutes). This gives us a measure for the price-performance ratio, which assigns 
lower numbers to better devices. Since a GPU cannot be operated without a CPU, we 
add the price for the cheapest CPU. Still under this measure, the GPUs perform better 
than the CPUs: Again, for 1.792 million entries, G1 has the best results with a value of 
279 + 185 · 35 = 16,240  !"#$%&'( compared to the best CPU C2 with a value of 
200 · 335 =   67,000  !"#$%&'(; this is a 4-fold better price-performance ratio for the 
GPU. 

7. Conclusion 

We have presented and evaluated a complete duplicate detection workflow that uses 
graphics cards to speed up execution. The workflow uses either the Cartesian product or 
the Sorted Neighborhood approach for pair selection, and calculates the similarity of a 
record pair using Levenshtein, Jaro-Winkler, and Soundex. The evaluation of our work-
flow shows that modern GPUs can execute the duplicate detection workflow faster than 
modern CPUs. It has also been shown that the workflow and algorithms are scalable and 
can process large datasets.  

The experiments also show that the access of global memory on graphics cards is indeed 
a bottleneck and has great impact on the performance of our algorithms. Profiling has 
shown that reads and writes are mostly non-coalesced and therefore very slow. To solve 
this problem in the future, all strings could be interlaced, which is a complicated task 
when using strings of variable lengths. Also, the use of local memory could further speed 
up execution. More optimizations concerning concrete hardware devices are possible 
and could be applied to a concrete usage of the workflow [FTP11]. Currently, only the 
comparisons of different attributes are distributed over all available devices. Thus, other 
algorithms, especially the computation of the transitive closure, could be further opti-
mized to scale out on multiple devices. The implementation and evaluation of more 
similarity measures, e.g., token-based approaches, would allow the processing of real-
world data with different properties and make the workflow more adaptable. 
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