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Abstract: With the ever increasing volume of data and the ability to integrite di
ferent data sources, data quality problems aboDoglicate detectionas an ing-

gral part of data cleansings essential in modern information systems. We present
a complete duplicate detection workflow that utilizes the capabilities of modern
graphics processing units (GPUSs) to increase the efficiency of finding duplicates in
very largedatasets. Our solution covers several skatbwn algorithms for paires
lection, attributewise similarity comparison, recosdise similarity aggregation,
and clustering. We redesigdthese algorithms to run memeefficiently and in
parallel on the GPUOur experiments demonstrate that the GRrided workflow

is able to outperform a CRbased implementation on large, reairld datasets.

For instance, the GRbased algorithndeduplicates dataset with 1r8 entities 10
times faster than a common Chdsedalgorithm usingcomparably pricedhard-
ware.

1. Introduction

Duplicate detection (also known estity matchingpr record linkag is the task of ide-
tifying multiple representations of the same +wakld entities[NH10]. It is an integral
part of data cleansing and an important component of every ETL prd2egkcate
detectionis typically performedby applying similarity functions to pairs of entries in
datasetsSome algorithm carefully selects promising pairs obrds. If the values of
two records are sufficiently similar, they are assumed to be duplicates. Dueldogthe
number of comparisons and theerincreasing size of many databases, duplicatecedete
tion is a problem that is hard to solve efficiently. Hoem in most approaches thenco
parisons of record pairs are independent from one anbtier problem isighly pard-
lelizable. In this paper, a selection of duplicate detection algorithms and similarity
measures are described and adapted in the corft&ereralPurposeComputation on
GraphicsProcessingJnits (GPGPL).

General purpose GPU programmimgs gained much appreciation in the past few years.
Unlike Single Instruction, Single DatéSISD) CPU architecturesSingle Instruction,
Multiple Data(SIMD) GPU computing allows the execution of one set of operations on
large amounts of data in a massively parallel fashion. paiallelizationcan provide
immense speedups applications thatocus on highly datgarallel problems.



Currently, there are &y few frameworks for GPGPU development. For our prototype,
we use the OpenCL 1.0 framework, as it allows development for both ATI and NVIDIA
graphics cards. The framework allows the execution efadled kernels, which are
written in a variant of ISO C99penCL kernels can be executed on different devices;
usually the device is a graphics card, but other devices, in particular the CPU, are also
possible if respective hardware drivers are available. Devices execute kernels as work
items. A work item is aet of instructions that are executed on specific data by one
thread. Further work items are groupetbiwork groups.

When developing applications for GPUs, memory management is a key. faétois

have fourtypes of memory with different capacities ariffestent access speedsiobal
memoryis slow but has the highest capacltcal memoryis faster but has a far smaller
capacity;private memorlis only usable by one operating unit; as@hstant memotis

the fastest but not writable by the graphiesd. An additional difficulty lies in the fact

that it is not possible to allocate memory dynamically on the GPU. We address these
memory challenges and opportunities in the next sections. Concerning the execution
units, the graphics card executesumbe of threadqusually 32)in so-calledwarps All

threads within avarp execute the same instructions on different di&tane thread of

warp takes a longer execution tinadl the others wait. Moreover, conditions in the-pr

gram flow are serialized; eh thread waits until the complete warp finistas!" -
statement, before starting witim #$%#statement. Aftean #$%#statement the threads

are synchronized as wellence we avoid divergent branching as far as possible.

Our man contribution is a comlpte duplicate detection workflow that utilizes thee r
sources of the GPU as much as possibikst, we describe how each algorithm can be
parallelized to utilize a very high amount of GPU cores. Second, we propose algorithm
specific datapartitioning stretures and memory access techniques to organize data in
the NUMA architecture of GPUs. Finally, we present experiments that evaluaterthe pe
formance of the presented workflow based on different CPU and GPU hardware. For
comparison reasons, we optimized thgorithmic parameters for high precision and
recall values (not for speed) and used real world data sets as input data.

In the following Sec. 2, we highlight related work for the areas of duplicate detection
and GPGPU programming. Section 3 introdutesindividual components of the dipl

cate detection workflow. Section 4 describes our adaptationgwimrpopular pair-
selection methods for the GPU environment. In Sec. 5 we adapt algorithppfdar
similarity measures, as well & the aggregationf different result lists and clustering.
Section 6 evaluates the components of the workflow on various hardware platforms. The
last section summarizes our results distussesuture work.

2. Related Work

Duplicate detection has been researched extdpsiver the past decades. Recent su
veys[EIVO7,NH10] explain various techniques for duplicate detection and methods for
improving effectiveness and efficiency. Common approaches to improve the efficiency
of duplicate detection are blocking and windowmethods, such as the Sorted Nreig



borhood metho@HS95), which reduce the number of comparisons. Another approach to
reducing execution time is parallelization, i.e., splitting the problem into smaller parts
and distributing them onto multiple computing gesces. Our approach combines both
the Sorted Neighborhood method and parallelization.

Parallelization has been proven to be effective by various authors. One of the-first a
proaches to parallelizing duplicate detection is the Febrl sygZ€Hh10], whichis im-
plemented in Python and parallelized via the wealbwn Message Passing Interface
(MPI) standard. Kim and Lee presented a match/merge algorithm for cluster computing
based on distributed MatlgKL07]. Kirsten et al. developed a parallel entity matchi
strategy for a serviebased infrastructurfKKH10]. They evaluate both the Cartesian
product as well as a blocking approach, and demonstrate that parallelization can be used
to reduce execution time significantly. Kolb et al. explonegipreduceto bring dupl-

cate detectiomnto a cloud infrastructurgKTR11]. They focus on parallelizing the Sor

ed Neighborhood method and their experiments show nearly linear speedup for up to 4
and 8 cores. While these papers present effective approaches to the mpbeaild-

izing duplicate detection, they all require multiple CPUs or PC clusters for pagalleliz
tion. This limits the level of parallelization that can be achieved, e.g., Kirsten et al. use
up to 4 nodes and 16 CPUs for evaluation. Compared to whassibfe with GPUs, the
respective level of parallelization is low.

Katz and Kider worked on parallelizing transitive closure, i.e., the step of transforming a
list of duplicate pairs into duplicate clustgkKO08]. In contrast to other papers on this
topic [AJ88,T091] which only use CPUs for parallelization, Katz and Kider's approach
utilizes graphics cards. Their algorithm is, however, not scalable for a large number of
input pairs, as it is limited by the amount of memory available on the GPU. Ouor prot
type builds on their work and solves this scalability issue.

GPGPU programming has received an increasing amount of attention over past years.
Recent surveys show that applications for GPGPU can be found in a wide area of fields
including database and datsining applications ND10,0LGO07]. For duplicate dete

tion, however, most approaches have been targeted at distributed infrastructure and do
not consider the unique challenges presented by GPUs. To the best of our knowledge, we
are first to evaluate a corape duplicate detection workflow on GPUs.

3. Duplicate Detection Workflow

This section presents a complete duplicate detection workflow, which combimes co
mon duplicate detection algorithms with the computation capacities of modern graphics
cards. Figurd gives an overview of the workflowith the following steps:

Parsing converts the input data, e.g., a CSV file, into an internal character atraglw
valuesconcatenatedrlo allow valuesof different lengths, an additional array containing
the starting indices of the individual attribute values is needed. This format is essential
because GPWernels can only handle basic data types and awiliknownsizes.



Pair Selection selects ecord pairs for
comparison. We adapt th€artesian
product and the Sorted Neighborhodd
algorithms to run on the GPU. Tomge
..... erate a sorting key for theSorted
Neighborhootlalgorithm, we present a
simple keygeneration functiorand an
adaptedSoundexalgorithm both run-
ning on the GPU.
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Figurel: Theduplicate detectiomworkflow LevenshteimndJaro-Winkler.

Aggregation:!'The attribute similarities are aggregated tooaerallrecord pair similar

ty, which is sed to decide whether the two records are duplicates or not. We calculate a
weighted average and check similarity values before and after the aggregation against
predefined thresholds.

Clustering:! The result of a pairwise duplicate detection process may not contain all
transitively related record pairs. Thus, we calculate the transitive closure to obtain a
complete list of duplicate clusters.

4. Pair Selection

Next to theCartesian produgthe literature knowseveral algorithms that selecsabset
of candidate pairs for comparison to avoid the complexity of comparing all pairs; a
popular representative is the Sorted Neighborhood Mefhi&95.

Regardless ofhe usedalgorithm, b completely utiize the parallel potential of GPUs,
each work item compares exactly one selected pair of attribute values. This leads to a
higher amount of work items than the GPU has processors, and, therefore, allows the
GPU to use optimization techniques like memotgnay hiding.

Since the memory of graphics cards is limited, it cannot fit all values of a large dataset.
Thus, we cannot execute all comparisons at once and, instead, have to perform multiple
comparison rounds. Each round consist of the following stepgy a subset of attribute
values from the host to the GPU, execute the comparisons on those values, and finally
copy the results back from the GPU to the host. We describe two approaches to divide
the input values into blocks of data and select the cdegres for each round.



4.1 Cartesian product

The simplest method to select pairs is the Cartesian product. It selects every possible
combination of input values. This leads to high recall, but also to a high numben-of co
parisons. In general, the set ofrganust be split into chunks that fit into memory. This
split can be performed easily with CPU and main memory due to dynamic menoery all
cation. But on the GPU, memory allocations must be d@fierethe GPU executes the
kernel code. Especiallyifferent lengths of input values lead to different memoey r
quirements for each comparison.

di d2 d3 da For an optimal usage of GPldsources two

— M8 requirements must be met: First, the transfer

d1 p - . of data between main memory and graphics
ol n = cards should be minimized, i.e., data be t

- ™™ GPU should be reused as much as possible.

a2 B IEY K Second, the entire available memory should

be used to fully utilize the parallel potential
of the GPU. To fulfill these goals, we dsta

= ! lish two blocks of GPU memory of about the
same size: The first block is thpdvot-block
which is kept on the graphics card until all
da| ‘2 4 comparisons with its values are finished. The
second block is theomparisorblock whose
content is exchanged in eadund.

N
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D Strings in pivot-block compared with themselves

D Strings in comparison-block compared with pivot-block Figure 2 shows which blés of input data

are compared. The-xand yaxes represent

the input values; each cell represents m-o
parison between a value from the and a
value from the yaxis. The comparisons under and on the diagonal (white cells) are never
performed, because vessume symmetric comparisoreasures

Figure 2:Cartesian product pair selectic

First, the pivotblock contains dat&' !and is compared with itself in round 1.1. Then in
rounds 1.2 to 1.4, the comparisdsiock is filled with input dat&(!to &)!and compared
with the pivotblock. The data in thiast comparisotblock is then kept on the graphics
card and used as the new pimbdck. The selection of the last compariddock as the
new pivotblock can lead to very small pivbtocks, which in turn leads to fewerroe
parisons. To avoid this effedhe algorithmpre-calculates the optimal size of the new
pivot-block based on the current piviolbck. We call it thecandidateblock, and can-
pare it with the pivablock after all other comparisersiocks have been processed.

Assuming that the piveblock containsp elements and the comparisblock contains
elements, we can do! ! comparisons in parallel and thoeximally utilize the parallel
potential of the GPU. The comparisons in rounds x.1 are exceptions, becausearthey co

pare the piveblock with itself, with ! ! ; comparisons in parallel. Every kernel has to
calculate the memory addresses of the values that it should compare. To unifyuhe calc



lation and to avoid branches, we increase the number of comparis!oms{!-t!ze!—]. Now,

I /! work itemsalwayscompare the same string to one of the followind strings®
continuing at the beginning of the value array if its end is reached. This generates dupl
cate results iplis an even number, but the subsequent aggregation algorithm (see Sec.
5.4) filters them out.

We process input values with different lengths. Thus, we cannot use blocks of fixed size.
Instead, the sizes of piwaind comparisofblocks have to be determined based on input
data and any additional memory required by a specifioparison algorithm. Additie

ally, the blocksizes are limited by the GRPdemory. This leads to the formula:

'#$%& 11 I"#$%&'! "#$%&! "#$# | 1"HS%&HIMN T

where Stringdrepresents the size in bytes of the strings in lbddlcks (including the
index arrays)AlgorithmDatd represents the individual requirements of a comparison
algorithm, andResultss the size of the array that contains the calculated similarity va
ues. Furthermore, the two goals of using the entire dlailaemory and minimizing the
data transfer have to be fulfilled by the value selection.

Our approach dynamically calculates the block's memory requirements depending only
on the current lengths of the strings in the input data: First, it calculatez¢hef ghe
pivot-block, which also depends on the strings in the comparison block, by increasing its
size continuously. Since the strings of the comparidonk are not known at this time,

the content of the comparisdnock must be estimated. We assuimat the comparisen

block contains one string with average length for every string in the-pigok. This
approacHulfills the goal of maximizing the number of comparisons in each round. The
pivot-block is filled with strings until the memory is too small to contain the giNotk,

the estimated comparisdiiock, and the additional memory for the comparisoro-alg
rithm. Then the piveblock is transferred to the GPU and compasti itself. Since the

size and the content of the piMabck are now fixed, the content of the comparison
block can be calculated based on the input data and thelppoait As the stringsdve
different lengths, the comparisdmock can contain more or fewer strings than the pivot
block. Our experiments show that usually both contain nearly the same number of
strings because of the average length estimation.

The Levenshtein algorithm foromparing attribute values needs additional memory:
each comparison of a string from the pibbdck with a string from the comparison
block requires two times the size of the string from the giotk. Thus, it needs the
size of the pivablock times thenumber of strings in the comparisbiock as additional
memory (see Sec. 5.1 for more details). In the best case, thebfgektcontains many
short strings while the comparisttock contains few long strings. Then, the-L
venshtein algorithm will only @ed a small amount of memory and more strings can be
placed on the graphics card. In the worst case, the-pigok contains few long strings
and the compariseblock contains many short strings. In this case, the Levenshtein
algorithm needsnorememory br the comparisons. To avoid the worst case, one could
always compare the shorter with the longer string, but in this case the calculation of
memory addresses in the kernel becomesrly complex. JaréNinkler does not need



additional memory for its compaons; it uses the complete Giemory for attribute
values. Thus, the number of comparisons does not depend on the contents of the blocks.

4.2 Sorted Neighborhood

The Sorted Neighborhood Method (SNIHS95 greatly reduces the number ofngo
parisons compad to the Cartesian product. It consists of tipleases First, a sorting

key is generated; then the records are sorted according to that key in the hope ithat dupl
cates have similar sorting keys and thus end up close to each other; and fiixaty a

size window is slid over the sorted records and all records within the same window are
compared to each other.

For key generationve propose aimple hashing algorithm as well as the Soundex code
(see Sec. 5.3): The simple hashing approach uses the string length and the first letter of
the attribute  to be compared, to create a sort key:
P HI"4#$%E + "#$%&'%%'#("#!1$%& results in a sorting primarily according to
the length and secondly according to the first letforting by length leads to compar
sons of string®f roughly same lengttwhichreduces branch divergenBean advantage
in GPU processingFurther, lhe first letter is often the same for duplicate strings, e.qg.,
because spelling mistakes are less likely to be made YIEBS], and because abbreavi
tions start with the same letter. The
computation of the simple sort keg-r
H quires no branching, and therefore all
- GPU threads can run in parallel. The
b downside of this siple key generation

] is that it produces poor resulifs there
are many strings with the same length,
which results in many similar keys. In
this case, Soundex (described in Sec.
5.3) produces bettepd keys, because it
focuses on phonetic characteristics i

stead of the string length. Altogether,
O S O O A A e sorting key generation is well suited for

GPUs because each calculation only
depends on one string, and therefore can

T3 HSHIOR6$() 0O *-##% be easily computed in parallel.

Figure 3:Sorted Neighborhood pair selectior Fqor the sorting step, we choosthe

GPUbased merge sort algorithrof
[SKC1d. We did not improve this sorting algorithm; therefore, we do not cover it in this

paper.

0

Figure 3 shows the comparison matrix for SNM. Tbiredcellson the diagonalenote

the comparisonsthat are actuallyperformedby SNM. To compare the attribute values
efficiently, we have to determine the maximum amount of strings that can be transferred
to the GPU at a time. In Fig. 3, a patrtition visualizes the comparisons that can be done
with the strings on the GPU in one execution. We approximate the number of the strings



that can be copied to the GPU based on the average string length. The amount of
memory required for one string depends on the length of the string, the number of strings
it is compared with, and the comparison algorithm.

The Sorted Neighborhood approach compares each string with thé hekt strings
where! is the window size (see the sliding window, Fig. 3). This Iead@(!to— !
|!""#$%&'()*'+,%$&$&-'I)! (! ' 1)" comparisons in one round on the GRUW this
formula, (! ! !)2ldenotes the comparisons that are postponed to the next paditon
to the window sliding out of the partition boundaries.

With this number of comparisons and the average string lengtlgpgeximate the
maximum number of strings that can be copied to the GPU. Since the input strings have
different length, we iteratively calculate the required memory based on the apgroxim
tion, until the maximum number of strings that can be computedeogrtiphics card is
determined. The calculation benefits from the internal data format, produced during the
parsing step (see Sec. 3). It allows the computation of the string lengths just by-inspec
ing the index arrawith the starting indices of the strisg

Once the data is copied onto the GPU, each string within a partition is compared with the
next! ! | strings. The last strings in a partition cannot be compared, because they are
not followed by! ! ! strings. Therefore, partitions have to overlap! by ! strings to

ensure that no comparisons are missed. To execute the comparisons in the last partition
efficiently, the index array is expanded iy} ! dummy stringentries (see headeells

labeled with @ in Fig. 3)These dummy strings prevent branchibgcause the last
strings of the final partition can be treated like any other string without needing cond
tional checks. Furtharore the dummies are empty, so their respective comparisons can
easily be omitted by the kernels. Thus, they do not negaiiivglgict computation time.

5. Similarity Classification

This section describes implementations of methods to classify record pairs as duplicate
or nonduplicate. In particular, we present two eofitsed and one phonetic (Soundex)
similarity measure to caltate the attribute similarity on graphics cards. Then e d
scribe how different attribute similarities are aggregated to record similarities and how
we cluster results usir@PUs

5.1 Levenshtein similarity

The Levenshtein distance is defined as the mimirmumber of character insertions,
deletions, and replacements necessary to transform a strimjo another strind,
[NH10]. To compute the Levenshtein distan&#$%&'!,!!,! on aGPU, we use ayd
namic programming approacitMNUO5] and extendthis approach to optimize its
memory usage. The comparison of two strings requires a matrof size!|!,!!
Pixi, b titwherel! ! denotes the length of string A value in the-th row and!-th



column of! is defined by! ,,, where! ! I Il,Tand! I 'l 1,1, We initialize the
firstrow! ,, and column ,, as:
A I e I

The algorithm then iterates from the top left to the bottom right cell of the matrix. It
recursively computes each valug, in the marix as:

| | { IRET !!"#”! L i
. EEE L o IMy o D S %& (S

where! ,, denotes thé-th letter in the strind, . In the end, matrix cell |, ., delivers
the Levenshtein distance betwderand!, .

Because dynamic memory allocation is not possibden inside aGPU kernel in
OpenCL, ve preallocatethe needed memory for each comparisdro reduce memory
consumption, we use only two matrix rows for each comparison, because calculation of
row ! depend only upon the current rowand the previous row! ! (see Equation 3).
Thus, we can swap the current and previous row and calculate! rdwby overwriting

the values of row ! !, without affecting performance. We analyzed that the average
string lengh in our test collection is 14 characters, which results in an average matrix
size of!!" 1 1™ 1 111 225 cells. By using only two rows, we caneatlyreduce

the average required cells in our test collectiohto! !'! I'l I 30, which is only 13%

of the whole maix.

To calculate the amount of required memory for the matrix rows, the algorithm can use a
simple formula that takes the arbitrary length of each sttinginto account. Let be

the number of strings that should be compared!abd the number otrings to which

each of the strings is compared to. Then the overall memory in byte that is required for
the matrix rows can be calculated as:

c 1 1"HS%&I"H#! 12 !Z(n! |t

Within a comparison of two strings, one string defines thgtke of the two matrix rows.
Therefore, one comparison requit&gb%&!"#! 11 1111, 11 1) bytes of memory for the
matrix rows. Our pair selection algorithms are designed to compare each ofttivggs

to! ! | other strings, so that each stringfides! times the length of the matrix rows.
For example, the Sorted Neighborhood algorithm $etsw! ! and the Cartesian

product defined ! [%] To calculate the overall amount of matrix memory, the-alg
rithm sums up all string specific row length|!,!! !.
As usual, to transform the Levenshtein distance into a normalized similarity measure, we

finally normalize the distance by dividirgy the length of the longer string and subtract
the result from 1.



5.2 Jaro-Winkler similarity

JareWinkler simiarity was originally developed for the comparison of names in U.S.
census data. The measure is comprised of the Jaro difia88eand additions by Wi-

kler [WT91]. The Jaro distancé#$%&'((!,!!,! combines the number of common cha
acters! between two strings, and!,, the number of transpositiohdbetween the two
strings of matching characteend the lengths of both strings:

Lo I om! !
H$%& (s, 11,) ! ! (m ! !—>!!!!!! 51

Common characters are only searched for withiangeof size! :

11
EGITEDITY
WinklerOs main modification of the Jaro distance isirtbieision of the length of the
common prefix! into the formula (see Eq. 7), which improves similarity scores for
names starting with the same prefix. The comnprefix is limited to! ! and is
weighted by the factdr, for which WinklerOs default value is 0.1.

JaroWinkler(!,1s,) | 1"#$%&'((!,11,)! (!!(!! !"#$%&'((!!!!2)))!!! i

The original algorithm calculates the number of transpostidoy first calculating the

two strings of matching characters and then comparing them character by character. For
each pair of strings being compared, matching characters are stored in two temporary
variables of length,., ! 1"# 111 1111, 11 Forgraphics cards, these variables posd-diff
culties: First, the amount of fast private/local memory is limited, which restricts the
amount of work items that can be executed in parallel. In order to still achieve high le
els of parallelism, global memory ri=eto be used, which is slower to access but also
several magnitudes larger. Secosiice GPU memory cannot be allocated dynamically
within a kernelat runtime'we would have towastefully pre-allocate the worstase
amount of memoryr perform additionatomparisons as in [HYFO08]

Our approach focuses on reducing memory consumption with the goal of achieving high
levels of parallelism while primarily using fast private/local memory. This comes at the
cost of increased kernéime complexity. Instead of prcomputing the strings of mdte

ing characters, our algorithm (see Alg. 1) computes the number of matched characters
and transpositions by iterating the input strings twice. The first iterafites@-9) finds

and counts the number of matching charatitertt also keeps track of which characters
have been matched already (array of matched charactery. The second iteration

(. 12-25) calculates the number of halanspositiong and thelength of thecommon
prefix!. The!"#$ I11s!1" | function (I. 4 and |. 13) tries to find a charactein the

given strind! , without matching any characters that were previously matched. This is
done by checking that the respective position in!thearray is not set to 1, and bbg-
spectivelyupdatng the array once a matching character has been found.



The !"#$ function returns a Boolean value indicating whether a match was found, and
the offset at which it was found. Imte
nally, the function also considers th{* ++ &@+*~+.+ a+*=+1+a+"+
window size! (see Eq. 6) to match *(+/ o +a+*+

only characters within the alloweq L*+23*!*+4++.2+5% 5+&2+
*) +46,7./8-2"%#.9+  A+"1:&% 4 V-] <+

rangeofl ! 1. S T [BHASBOM B +
The I"#S9%&I#$% ! 1" 111" 1 func- | S 8% AT

tion (I. 15) counts how many charactef s~ u4e 1 +

in !, up to position! cannot be |*pg+23 +

matched to a character in (by in- |* +/ o+a++

specting the !" array). A half |" +2/ +a++

transposition exists if a character cg '( +'23+!+4+'+.2+5% . 5+&2+

be matched without an offset, whil{'l ++6,7./8-2"%#.9+  a+":&% - -%-/ (<t
ignoring all unmatched characters (|) *"+.7./8+4+>37#+.8#  +

16). The prefix countet is only in- | = 2/ c+ &+/22.EL7./B#&IA2" %% - L<t
creased for the first 4 characters, if tl @+ +2"%# +AL? -+ 42/ (+.87: +

current character has been match ,2 ::;'_;j,f':m *

without an offset, and all characters q .5, 1 omops +44r47:8+ | +4+1+F++ +
te.arll|er(|p$;|)t|ons do also match respe| , 1i4y 7:04+1+ &+6'-)9+.84 +

ively (l. . (* ++H + A+ FA +

U HHE&H +

The key to memory efficiency with thig E( H#g;f;#'

algorithm lies in the arrays' |, and | (1 +-+2/ +a+2/ +A+'+

I" 4 which storeonly Boolean values| () +#:&+!" +

and thus can be represented at the le| (& #:&+"23 +

of single bits. Our implementation use (@"*+ 8 +G(+

two 8-byte variables alloimg compai- (Br3# 23t ++

sons ofstringsup to length 64. Using igorithm 1: JareWinkler: computation of matchir
the original approach we would nee charactersn, transposition$ and common prefix
two 64byte variables to compare for two strings!, and!,

strings of the same length.

5.3 Soundex

Soundex is a phonetic algorithm fidlentifying wordsthat are pronouncesimilarly but

spelled differently JSNO7. The algorithm produces -fetter codes, which match for
similar sounding words, e.g., Robert and Rupert are both represented by the code R163.
Soundex is good for finding misspelled names but it produces many false positives as
well as false negative®501.

Our implementation consists of two kernels: One for generating Soundex codes for a set
of input strings, and one for comparing pairs of Soundex codes. For comparison we

minimize memory operations by leaving generated Soundex codes on the graphics card
for the comparison phaseoDenera¢ Soundex codewe walk through the letters of a

given term and build up the Soundex code by either coding the current letter or moving



on to the next one. Trmomparekernel uses lists of previously generated Soundex codes
to create pairs of terms that have the same code. Unlike other similarity measures, this
results in similarity values of either O or 1.

5.4 Aggregation

To classify whether two records are a duplicate or not, we aggregate the attribute sim
larities to an oerall record similarity. The comparators described in the previous se
tions return lists of pairs with similarity values above attrikgagecific thresholds. The
aggregated similarity value is a weighted average of all similarity values for the specific
par. In order to increase the precision of results, merged pairs with a similarity value
below a manually defined overall threshold are removed.

For efficient aggregation each listfisst sorted by a uniquiglentifier that represents the
compared data recds. Thisapproactreduces the search time for corresponding pairs in
the result lists; additionally, duplicate entries that may have been produced by #te Cart
sian product (see Sec.4.1) can be removed easily.

While the sorting part is suited for the GPttle merging part is not: First, merging on

the CPUcan bea simple SorMerge join that requires linear time, so the additional time
required for copying the data to the GPU does not pay off (see Sec. 6.2). On the GPU,
the retrieval of corresponding paiis more complex, because each kernel instance
would merge one combination of pairs and corresponding pairs in different lists cannot
be found at the same defined places. Pairs can be missing in some lists, due to-attribute
specific thresholds and differeaomparisons that are triggered by the Sorted Neighbo
hood method. Thus, a GPU variant would either need a complex kernel with slow
branching, or additional preprocessiofyall lists. When iterating all lists, the comput

tion of the weighted average wdubnly produce little to no computational overhead.
This invalidates the point of using the GPU for merging, so we sort the liste G@PU

and merge them athe CPU.

5.5 Clustering

As we ug pairwise comparisons to find duplicate records, our result may not bé trans
tively closed(e.g. pairs!A,B" and!B,C" are classified duplicates, but nd@®,C"). We
calculate the transitive closure using the tilddyd-Warshall (FW)algorithm by Katz

and Kider [KK08] and adapt ito the specific task of clustering reabrld duplicate
pairs. We first present the tiled FW algorithm in a condensed form. Afterwards-we d
scribe how the algorithm can be extended to optimize its efficiency and scalability in
computing extremely large amounts of data.

The tiled FW extends theriginal FW [Wa6J in order to run efficiently on the GPU. It
uses dynamic programming and is based on a directed graph, represented by an adjace
cy matrix! . In the design of the tiled FWWatz and Kider assume that the entire matrix

for ! vertices can be loaded into the GPU's global memory at once, but not into local
memory. Therefore, they propose to load all data into global memory first and then split



the computation of the transitivdosure into many sutasks that can be executeg s
quentially using maximal local memory in each stéfter loading! into global
memory, the tiled FW algorithm partitiohs into submatrices of sizé! ! with ! | 1.

Size! mustbe chosen small enough so that threersalrices can be loaded into local
memory at oncel then consists of ! | submatrices withm ! ![! /!]. Afterwards,

the algorithm uses an iterative execution strategy for the Riégdshall algorithm (see

Fig. 4).It needd stages to calculate the complete transitive closure. Each stage consists
of the following three phases:
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Figure 4: Stages and phases of the tiled FW algorithm introduced by Katz an@kiia8j.
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1. Start one work groupThe work group loadshe submatrix!!!! as pivot matrix
into local memory, wheré is the current stage number. Then, only one thread in
this work group calculates the transitive closure for this matrix using the original
Floyd-Warshall algorithm.

2. Start(! ! !)!2 work groups Each work group loads the pivot mattit!! and a

located in the same row or column as the pivot matrix. Its calculation depends only
upon itself and the pivot matrix. Within a work group, each value in the second
submatrix can be computed in parallel by an own thread executing a part of the
Floyd-Warshall algorithm (for more details sp€K08]).
3. Start(! ! )" work groups Each work group loads two subatrices that have
been processed in phase 2 and a thirdnsabrix into local memory. The third an
trix for two previously processed matridéd!! and!!,!! is placed at! !!! and m-
ly depends upon their values and itself in this step. Again, all values of the third
matrix can be processed in parallel by an own thread executing a part of the Floyd
Warshall algorithm.
In the following, we adapt the approach of Katz and Kider to the specific task of-cluste
ing duplicate pairs and add some modifications to improve the algorithmOs efficiency
and scalability.

5.5.1 Optimizing transitive closure efficiency

The adjacency mak defines a directed graph, whereas our result graph is undirected, as
we assume a symmetric duplicate relation between different records. Thus, all values in
the adjacency matrix are mirrored across the matrix's diagonal axis. An obvious optim



zation appoach is to remove redundant edges and hence reduce both the matrix size and
the necessary computation steps in Phases 2 and 3 of the tiled FW algorithm. In Phase 2,
for example, the algorithm could compute only the-madirices(!!!! with !'! i and

First, the computation of the edge position in the matrix becomes more complex- Whe
ever the algorithm needs to read an edge value from the redundant (and therefore not
existing) half of the matrix, it must mirror the edge's coordinates to find the corgkspon

ing value, which is a complex operation especially in Phases 2 and 3. Second, Warshall's
algorithm might write the edges,!x ! and!!,!!,! at the same timél.o guarantee ¢o

sistent write operations, the kernels would need locking mechanisms, which decrease
performance and restrains parallelism. T retain the original matrix and store each
duplicate pair as two directed edges in the adjacency matrix.

The original tiled FW represents each value in the adjacency matrix as a singlé-numer
cal value. To reduce the physical size of the matrix in memory, our implementation of
the algorithm encodes these values as bitmasks: Each bitmask contains 32 edge values,
because common GPUs address 32 bits at once. This technical optimization reduces the
required memory by 1/3@ompared to integersiowever, this compression also impacts

the structure of the algorithmVhile computing the transitive closure, FleYdarshall's
algorithm iterates over multiple rows and columns of the matrix. Each read operation
returns 32 edge values. A horizontal iteration over a row containing bitmasks of edge
values can be done very fast, because it nEef32] read operations to receiveedge

values. In contrast, a vertical iteration over a column of the matrix still needad
operations fot edges and returrs !! not required values. This becomes a drawback

for the performance, if we execute the Flarshall algorithm on a bitompressed

graph matrix. Warren's algorithriMa79g, which extends the Floy@/arshall algorithm,

solves this problem by just iterating horizontally in the adjacency matrix. So we use this
approach instead of Warshall's algorithm to calculate Phase 1 witamttriy vertich

ly. In Phases 2 and 3, the algorithm can use the redundant edges in the adjacency matrix
to avoid vertical iterations. Each colurhrin the matrix has a corresponding rbwhat

is mirrored across the matrix's diagonal axis and contains the same bit values. Therefore,
all iterations ovet can be replaced by iterations over

Using bitmasks to encode the matrix also affects the granularity of parallelization. In
Phases &and 3 the algorithm can no longer compute the value of each single edge in
parallel. To guarantee consistent writes, each bitmask must be processed by one GPU
thread. However, by using bitwis@R operations for the comparison of two bitmasks,
each threadamputes all 32 values at once.

Figure 5 shows how all previously described modifications of the tiled FW worlhtoget
er in Phase 2. In this phase, each work group loads the pivot and a second submatrix into
local memory. Then, all bitmasks in the secondatrix are computed in parallel.

Let(!, 11! (! ! !) be a bitmask in the second submatrix. The thread that processes
bliterates overow !, in the pivot matrix and analyses each bit. If a(bjt,! ) is 1, the
thread loads the bitmagk,!!,) — (! M !) from the second matrix and then compares it
to! using the bitwiséOR operation. Afteranalyzing the whole row , in the pivot na-



trix, the thread writes the new values fomto the second matrix. This algorithm also
works for Phase 3. In ith phase, three subatrices are loaded into local memory. To
compute the bitmadiin the third matrix, a thread iterates over the corresponding row in
the horizontally deferred second matrix and loads bitmasks for the comparison from the
vertically defered second matrix.

Pivot sub-matrix Second sub-matrix
X, X Xy Y Yi Y y
xa
XJ0 0 0[0 1 01 1 0 | | R " #$%& (#) (*+(,-). +&&cH
| I"H$Y6& & (#) (*+(-+%/
X > O#1+-(*"#$%&'&
Xy

Figure 5: Optimized calculation #hase2 using bitmask encoding,
horizontal iteration and bitwise OR comparison.

5.5.2Achieving scalability

The algorithm of Katz and Kider assumes that the entire adjacency matrix fits into the
GPU's global memory. Given a GPU with 1GB of global memory, this assumption limits
the maximum number of nodes in the result graph to 92,672 even if bitwise encoding is
used. Assuming 5% duplicates as result size, this is not enowagtalzedatasets with

2 million records or more. Therefore, we need an additional partitioning of the matrix
between the host's main memory and the GPU's global memory. We achieve this part
tioning by using thesamestagewise execution strategy of the tiled FW again to- pre
patition the global adjacency matrix G into smaller, quadratic matfiesn the host.

The algorithm has to ensure that all matricgsare equally large and that three matrices

I, fit into the global memory at once. We call this approach the doubleRildlgo-

rithm. It uses the same stages and phases of loading méatricgs global memory like

the original tiled FW loads sufmatrices into the local memory. In Phase 1, only one
pivot submatrix ! , resides in global memory. The GPU processes this matrix &y ex
cuting the already known tiled FW. In Phase 2, the algorithm loads the pivot and a s
cond submatrix into global memory. All bitmasks in the second-mudtrix are then
processed in parallel kkin Stage 2 of the tiled FW (see Fig. 5). Afterwards, the same
procedure is used for Phase 3, which needs one pivot and two previously proeessed s
cond submatrices.

6. Evaluation

We evaluated performance and accuracy ofvearkflow using realworld datasets.In
addition, the execution time oheh component is evaluated on different hardware.



6.1 Experimental setup

We evaluated on four different graphics cards, fieon NVIDIA and two from ATI. As
ATIOs OpenCL drivers also allow the execution of Opek&hels on CPUs, we add
tionally evaluated our implementation on two Intel CPUs (see Tab. 2 for specifics of all
six devices).

We used a subset of 1.792 million music CDs extracted from freedb.org for the perfo
mance evaluation of our algorithms. This dataset contains attributes artist, title, genre,
year of publication, and multiple tracks. The DuDe Duplicate Detection TdDIki10]
provides a goléstandard for a randomly selected subset of 9,763 CDs
(http://mvww . tinyurl.com/dudetoolkit), which we used to measure the accuracy of our
results. Furthermore, we calculated the similarity of two records based on the values of
four attributes that contain strings of variable length, namely Artist, Title, Track01, and
Track02.This selection is based on our experience with that database.

To ensure a realistic assessment of the workflow efficiency, we first evaluated dts effe
tivenessWe calculated precision (proportion of retrieved real duplicates), recall ¢propo
tion of identified real duplicates), and-fReasure (harmonic mean of precision aed r
call) for different configurations: Sorted Neighborhood (SNM) and Cartesian product
(CP) for pair selection combined with Levenshtein (L) and-Ydimkler (JW) as cm-
parison algrithms. Table 1 lists the configuration parameters that delivered the -best F
measureshowingsimilar resultscompared tmther duplicate detection todBN10]. In

Sec. 6.2, we use theconfiguration parameters to test the performance of our algorithm

For SNM, we tested window sizes between 10 and ¥0€.observed that any value
above 20 has only minimal effect on tharieasure (at best 2 percentage points i
crease) Therefore, all experiments used a window size ofR0.the SNMOs sort key
generationwe tested two differergeneratingalgorithms. As already mentioned in Sec.
4.2, the Soundex algorithm generates the best sort keys for attrifutse valuehave
similar lengths which is true forthe artist and track attributes. The values of the title
attribute, however, vargonsiderablyin length. As a result, our own key generation
algorithm performs better for these attributes.

We tried multiple thresholds to determine whether a pair with a certain similarity is
classified as a duplicate. The thields are first applied to attribute pairs during caompa

ison and afterwards to record pairs during aggregation. The aggregation step additionally
uses a set of weights to sum up the single attribute similaktegvaluaédvarioussets

of thresholdsand weightsand settled othe values in Tab. 1.
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Table 1: Configurations and results
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Table 2: Evaluation devices

6.2 Algorithmic complexity

To evaluate the performance of the duplicate detection workflow, we analyzedethe ex
cution times of itdndividual componentsAll testswere executedn the NVIDIA Ge-
Force GTX 570 (G1), because our experiments in 868 show that this device pe

forms best.

il Figure 6 shows the exec
1 X tion times of the different
o / s components as parts of the
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and! increase linearly in proportion tq the complexities of the subsequent algorithms
can be defined in relation to the input size
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Figure 6: Execution times of different components

The diagram shows that with an incrieas amount of dataand thus an increasing
amount of duplicates, thexecution time of the transitive closure becomes the dominant
part of the workflow.Note that for a complete result one cannot omit this last step and
that its complexity is hardly dependent on th&al number of previously found dupl
catesbut rather ontte number of disjoint records in the duplicafBlse execution time

of the trasitive closure ncreaes fasest, ecause its cmplexity is! !'!'1, whereas the
other canplexities are! !'!'! for the Cartsian praluct, ! !n!"#!111 if | < I"#!11 or
othewise! !w !1) for the Sorted Neighlvbood, and !! !"#!! !l for the aggregtion.



The sorting, as an aggregation preprocessing step, has the second highest time; more
advanced algorithms [SKC10] might improve this value. The comparisons also have
high execution times, because a string comparis the most complex calculation on

the GPU. The aggregation step itself has the smallest execution time and thus has only
little impact on the workflowQs overall execution time.

Figure 7 shows the execution times for the comparators only. We observe that Jaro
Winkler has a much lower execution time for both fs&ilection algorithms for three
reasons: First, Levent#in performs more accesses to global @Rémory. Second,
Levenshtein performs more comparison rounds due to the higher memory consumption;
these rounds need additional time to be triggered by the host. Third)/@kier creates

more work items allowinghe GPU to use memory latency hiding to optimize theexec
tion.
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Figure7: Execution times of comparison algorithms in combination with different pair select

6.3 Comparison of hardware

As discovered in Sec. 6.2, the most efficient configuration uses Sorted Neighborhood in
combination with the Jar@/inkler comparison algorithm. Figure 8 shows that the best

on GPUs. The fastest GPL x A

G1 (see Tab. 2) takes 3t / /

minutes (2,095 seconds) tc3 e / e
process 1.792 million re & # B
tries; this is about 10 times  # > % = ¥
faster than the fastest CPL | i %
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minutes. However, Tab. 2 N
. O
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cheaper than the used GPUs. Figure8: Performance of Sorted Neighborhood
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tion times in relation to the prices by multiplying the price (in Euro) and the execution
time (in minutes). This gives us a measure for the fp@réormance ratio, which assigns
lower numbers to better devices. Since a GPU cannapbrted without a CPU, we

add the price for the cheapest CRill under this measure, the GPUgfpem better

than the CPUs: Again, for 1.792 million entries, G1 has the best results with a value of
(g v g ) L 1"H#$%E&' (1 compared to the be€PU C2 with a value of
o '#$%E&!( ; this is a 4fold better priceperformance ratio for the
GPU.

7. Conclusion

We have presented and evaluated a complete dupliedéetion workflow that uses
graphics cards to speed up executiore Workflow ugs either the Cartesian prodact

the Sorted\Neighborhood approach for pair selection, aattulates the similarity of a
record pairusingLevenshtein, JardVinkler, and Soundex. The evaluation of our kvor

flow shows that modern GPUs can extcthe duplicate detection workflow faster than
modern CPUs. It has also been shown that the workflow and algorithms are scalable and
can process large datasets.

The experiments also show that the access of global memory on graphics catded

a botleneck and has great impact on the performance of our algorithms. Profiling has
shown that reads and writes are mostly-noalesced and therefore very slow. To solve
this problem in the future, all strings could be interlaced, which is a complicated task
when using strings of variable lengtidso, the use of local memory could further speed

up execution. More optimizations concerning concrete hardware devices are possible
and could be applieth a concrete usage of the workflgwTP11. Currently, only the
comparisons of different attributes are distributed over all available devices. Thus, other
algorithms, especially the computation of the transitive closure, could be furtter opt
mized to scale out on multiple devices. The implementation and evaluatiorore
similarity measures, e.g., tokéxased approaches, would allow the processing of real
world data with different properties and make the workflow more adaptable.
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