
Duplicate Detection on GPUs

Benedikt Forchhammer1, Thorsten Papenbrock1, Thomas Stening1, Sven Viehmeier1,
Uwe Draisbach2, Felix Naumann2

Hasso Plattner Institute
14482 Potsdam, Germany

1firstname.lastname@student.hpi.uni-potsdam.de
2firstname.lastname@hpi.uni-potsdam.de

Abstract: With the ever increasing volume of data and the ability to integrate dif-
ferent data sources, data quality problems abound. Duplicate detection, as an inte-
gral part of data cleansing, is essential in modern information systems. We present
a complete duplicate detection workflow that utilizes the capabilities of modern
graphics processing units (GPUs) to increase the efficiency of finding duplicates in
very large datasets. Our solution covers several well-known algorithms for pair se-
lection, attribute-wise similarity comparison, record-wise similarity aggregation,
and clustering. We redesigned these algorithms to run memory-efficiently and in
parallel on the GPU. Our experiments demonstrate that the GPU-based workflow
is able to outperform a CPU-based implementation on large, real-world datasets.
For instance, the GPU-based algorithm deduplicates a dataset with 1.8m entities 10
times faster than a common CPU-based algorithm using comparably priced hard-
ware.

1. Introduction

Duplicate detection (also known as entity matching	 or record linkage) is the task of iden-
tifying multiple representations of the same real-world entities [NH10]. It is an integral
part of data cleansing and an important component of every ETL process. Duplicate
detection is typically performed by applying similarity functions to pairs of entries in
datasets: Some algorithm carefully selects promising pairs of records. If the values of
two records are sufficiently similar, they are assumed to be duplicates. Due to the large
number of comparisons and the ever-increasing size of many databases, duplicate detec-
tion is a problem that is hard to solve efficiently. However, in most approaches the com-
parisons of record pairs are independent from one another – the problem is highly paral-
lelizable. In this paper, a selection of duplicate detection algorithms and similarity
measures are described and adapted in the context of General Purpose Computation on
Graphics Processing Units (GPGPUs).

General purpose GPU programming has gained much appreciation in the past few years.
Unlike Single Instruction, Single Data (SISD) CPU architectures, Single Instruction,
Multiple Data (SIMD) GPU computing allows the execution of one set of operations on
large amounts of data in a massively parallel fashion. This parallelization can provide
immense speedups in applications that focus on highly data-parallel problems.

Currently, there are only few frameworks for GPGPU development. For our prototype,
we use the OpenCL 1.0 framework, as it allows development for both ATI and NVIDIA
graphics cards. The framework allows the execution of so-called kernels, which are
written in a variant of ISO C99. OpenCL kernels can be executed on different devices;
usually the device is a graphics card, but other devices, in particular the CPU, are also
possible if respective hardware drivers are available. Devices execute kernels as work
items. A work item is a set of instructions that are executed on specific data by one
thread. Further work items are grouped into work groups.

When developing applications for GPUs, memory management is a key factor: GPUs
have four types of memory with different capacities and different access speeds: Global
memory is slow but has the highest capacity; local memory is faster but has a far smaller
capacity; private memory	 is only usable by one operating unit; and constant memory	 is
the fastest but not writable by the graphics card. An additional difficulty lies in the fact
that it is not possible to allocate memory dynamically on the GPU. We address these
memory challenges and opportunities in the next sections. Concerning the execution
units, the graphics card executes a number of threads (usually 32) in so-called warps. All
threads within a warp execute the same instructions on different data. If one thread of a
warp takes a longer execution time, all the others wait. Moreover, conditions in the pro-
gram flow are serialized; each thread waits until the complete warp finishes an if-
statement, before starting with an else-statement. After an else-statement the threads
are synchronized as well. Hence, we avoid divergent branching as far as possible.

Our main contribution is a complete duplicate detection workflow that utilizes the re-
sources of the GPU as much as possible. First, we describe how each algorithm can be
parallelized to utilize a very high amount of GPU cores. Second, we propose algorithm
specific data-partitioning structures and memory access techniques to organize data in
the NUMA architecture of GPUs. Finally, we present experiments that evaluate the per-
formance of the presented workflow based on different CPU and GPU hardware. For
comparison reasons, we optimized the algorithmic parameters for high precision and
recall values (not for speed) and used real world data sets as input data.

In the following Sec. 2, we highlight related work for the areas of duplicate detection
and GPGPU programming. Section 3 introduces the individual components of the dupli-
cate detection workflow. Section 4 describes our adaptations for two popular pair-
selection methods for the GPU environment. In Sec. 5 we adapt algorithms for popular
similarity measures, as well as for the aggregation of different result lists and clustering.
Section 6 evaluates the components of the workflow on various hardware platforms. The
last section summarizes our results and discusses future work.

2. Related Work

Duplicate detection has been researched extensively over the past decades. Recent sur-
veys [EIV07,NH10] explain various techniques for duplicate detection and methods for
improving effectiveness and efficiency. Common approaches to improve the efficiency
of duplicate detection are blocking and windowing methods, such as the Sorted Neigh-

borhood method [HS95], which reduce the number of comparisons. Another approach to
reducing execution time is parallelization, i.e., splitting the problem into smaller parts
and distributing them onto multiple computing resources. Our approach combines both
the Sorted Neighborhood method and parallelization.

Parallelization has been proven to be effective by various authors. One of the first ap-
proaches to parallelizing duplicate detection is the Febrl system [CCH10], which is im-
plemented in Python and parallelized via the well-known Message Passing Interface
(MPI) standard. Kim and Lee presented a match/merge algorithm for cluster computing
based on distributed Matlab [KL07]. Kirsten et al. developed a parallel entity matching
strategy for a service-based infrastructure [KKH10]. They evaluate both the Cartesian
product as well as a blocking approach, and demonstrate that parallelization can be used
to reduce execution time significantly. Kolb et al. explored map-reduce to bring dupli-
cate detection onto a cloud infrastructure [KTR11]. They focus on parallelizing the Sort-
ed Neighborhood method and their experiments show nearly linear speedup for up to 4
and 8 cores. While these papers present effective approaches to the problem of parallel-
izing duplicate detection, they all require multiple CPUs or PC clusters for paralleliza-
tion. This limits the level of parallelization that can be achieved, e.g., Kirsten et al. use
up to 4 nodes and 16 CPUs for evaluation. Compared to what is possible with GPUs, the
respective level of parallelization is low.

Katz and Kider worked on parallelizing transitive closure, i.e., the step of transforming a
list of duplicate pairs into duplicate clusters [KK08]. In contrast to other papers on this
topic [AJ88,To91] which only use CPUs for parallelization, Katz and Kider's approach
utilizes graphics cards. Their algorithm is, however, not scalable for a large number of
input pairs, as it is limited by the amount of memory available on the GPU. Our proto-
type builds on their work and solves this scalability issue.

GPGPU programming has received an increasing amount of attention over past years.
Recent surveys show that applications for GPGPU can be found in a wide area of fields
including database and data mining applications [ND10,OLG07]. For duplicate detec-
tion, however, most approaches have been targeted at distributed infrastructure and do
not consider the unique challenges presented by GPUs. To the best of our knowledge, we
are first to evaluate a complete duplicate detection workflow on GPUs.

3. Duplicate Detection Workflow

This section presents a complete duplicate detection workflow, which combines com-
mon duplicate detection algorithms with the computation capacities of modern graphics
cards. Figure 1 gives an overview of the workflow with the following steps:

Parsing converts the input data, e.g., a CSV file, into an internal character array with all
values concatenated. To allow values of different lengths, an additional array containing
the starting indices of the individual attribute values is needed. This format is essential,
because GPU-kernels can only handle basic data types and arrays with known sizes.

Pair Selection selects record pairs for
comparison. We adapt the Cartesian
product and the Sorted Neighborhood	
algorithms to run on the GPU. To gen-
erate a sorting key for the Sorted
Neighborhood	 algorithm, we present a
simple key-generation function	 and an
adapted Soundex algorithm, both run-
ning on the GPU.

Comparison:	 The selected record pairs
are compared for similarity: We process
each attribute value individually and
return a normalized similarity value for
each pair of attribute values. We de-
scribe the computation of two edit-
based similarity measures on the GPU:
Levenshtein and Jaro-Winkler.

Aggregation:	 The attribute similarities are aggregated to an overall record pair similari-
ty, which is used to decide whether the two records are duplicates or not. We calculate a
weighted average and check similarity values before and after the aggregation against
predefined thresholds.

Clustering:	 The result of a pairwise duplicate detection process may not contain all
transitively related record pairs. Thus, we calculate the transitive closure to obtain a
complete list of duplicate clusters.

4. Pair Selection

Next to the Cartesian product, the literature knows several algorithms that select a subset
of candidate pairs for comparison to avoid the complexity of comparing all pairs; a
popular representative is the Sorted Neighborhood Method [HS95].

Regardless of the used algorithm, to completely utilize the parallel potential of GPUs,
each work item compares exactly one selected pair of attribute values. This leads to a
higher amount of work items than the GPU has processors, and, therefore, allows the
GPU to use optimization techniques like memory latency hiding.

Since the memory of graphics cards is limited, it cannot fit all values of a large dataset.
Thus, we cannot execute all comparisons at once and, instead, have to perform multiple
comparison rounds. Each round consist of the following steps: Copy a subset of attribute
values from the host to the GPU, execute the comparisons on those values, and finally
copy the results back from the GPU to the host. We describe two approaches to divide
the input values into blocks of data and select the comparisons for each round.

Device	 Scheduling

Pair	 selection
Cartesian Product,	 Sorted Neighborhood

Comparison
Jaro-‐Winkler,	 Levenshtein

Input	 data Parsing

Aggregation
Thresholds &	 Weights

Clustering
Transitive	 ClosureDuplicates

Attribute	 values

Duplicate pairs
(per	 attribute)

Duplicate pairs
(aggregated)

Pairs

GPU

GPU

GPU

Figure 1: The duplicate detection workflow

4.1 Cartesian product

The simplest method to select pairs is the Cartesian product. It selects every possible
combination of input values. This leads to high recall, but also to a high number of com-
parisons. In general, the set of pairs must be split into chunks that fit into memory. This
split can be performed easily with CPU and main memory due to dynamic memory allo-
cation. But on the GPU, memory allocations must be done before the GPU executes the
kernel code. Especially, different lengths of input values lead to different memory re-
quirements for each comparison.

For an optimal usage of GPU-resources two
requirements must be met: First, the transfer
of data between main memory and graphics
cards should be minimized, i.e., data on the
GPU should be reused as much as possible.
Second, the entire available memory should
be used to fully utilize the parallel potential
of the GPU. To fulfill these goals, we estab-
lish two blocks of GPU memory of about the
same size: The first block is the pivot-block,
which is kept on the graphics card until all
comparisons with its values are finished. The
second block is the comparison-block, whose
content is exchanged in each round.

Figure 2 shows which blocks of input data
are compared. The x- and y-axes represent
the input values; each cell represents a com-
parison between a value from the x- and a

value from the y-axis. The comparisons under and on the diagonal (white cells) are never
performed, because we assume symmetric comparison measures.

First, the pivot-block contains data d1	 and is compared with itself in round 1.1. Then in
rounds 1.2 to 1.4, the comparison-block is filled with input data d2	 to d4	 and compared
with the pivot-block. The data in the last comparison-block is then kept on the graphics
card and used as the new pivot-block. The selection of the last comparison-block as the
new pivot-block can lead to very small pivot-blocks, which in turn leads to fewer com-
parisons. To avoid this effect, the algorithm pre-calculates the optimal size of the new
pivot-block based on the current pivot-block. We call it the candidate-block, and com-
pare it with the pivot-block after all other comparison-blocks have been processed.

Assuming that the pivot-block contains p elements and the comparison-block contains c
elements, we can do ! ∗ ! comparisons in parallel and thus maximally utilize the parallel
potential of the GPU. The comparisons in rounds x.1 are exceptions, because they com-
pare the pivot-block with itself, with ! ∗ !!!

!
 comparisons in parallel. Every kernel has to

calculate the memory addresses of the values that it should compare. To unify the calcu-

Figure 2: Cartesian product pair selection

lation and to avoid branches, we increase the number of comparisons to ! ∗ !!!
!

. Now,
! 2 work items always compare the same string to one of the following ! 2	 strings –
continuing at the beginning of the value array if its end is reached. This generates dupli-
cate results if p	 is an even number, but the subsequent aggregation algorithm (see Sec.
5.4) filters them out.

We process input values with different lengths. Thus, we cannot use blocks of fixed size.
Instead, the sizes of pivot- and comparison-blocks have to be determined based on input
data and any additional memory required by a specific comparison algorithm. Addition-
ally, the block-sizes are limited by the GPU-memory. This leads to the formula:

!"#$%& ≥ !"#$%&' + !"#$%&'ℎ!"#$# + !"#$%&# (1)

where Strings	 represents the size in bytes of the strings in both blocks (including the
index arrays), AlgorithmData	 represents the individual requirements of a comparison
algorithm, and Results	 is the size of the array that contains the calculated similarity val-
ues. Furthermore, the two goals of using the entire available memory and minimizing the
data transfer have to be fulfilled by the value selection.

Our approach dynamically calculates the block's memory requirements depending only
on the current lengths of the strings in the input data: First, it calculates the size of the
pivot-block, which also depends on the strings in the comparison block, by increasing its
size continuously. Since the strings of the comparison-block are not known at this time,
the content of the comparison-block must be estimated. We assume that the comparison-
block contains one string with average length for every string in the pivot-block. This
approach fulfills the goal of maximizing the number of comparisons in each round. The
pivot-block is filled with strings until the memory is too small to contain the pivot-block,
the estimated comparison-block, and the additional memory for the comparison algo-
rithm. Then the pivot-block is transferred to the GPU and compared with itself. Since the
size and the content of the pivot-block are now fixed, the content of the comparison-
block can be calculated based on the input data and the pivot-block. As the strings have
different lengths, the comparison-block can contain more or fewer strings than the pivot-
block. Our experiments show that usually both contain nearly the same number of
strings, because of the average length estimation.

The Levenshtein algorithm for comparing attribute values needs additional memory:
each comparison of a string from the pivot-block with a string from the comparison-
block requires two times the size of the string from the pivot-block. Thus, it needs the
size of the pivot-block times the number of strings in the comparison-block as additional
memory (see Sec. 5.1 for more details). In the best case, the pivot-block contains many
short strings while the comparison-block contains few long strings. Then, the Le-
venshtein algorithm will only need a small amount of memory and more strings can be
placed on the graphics card. In the worst case, the pivot-block contains few long strings
and the comparison-block contains many short strings. In this case, the Levenshtein
algorithm needs more memory for the comparisons. To avoid the worst case, one could
always compare the shorter with the longer string, but in this case the calculation of
memory addresses in the kernel becomes overly complex. Jaro-Winkler does not need

additional memory for its comparisons; it uses the complete GPU-memory for attribute
values. Thus, the number of comparisons does not depend on the contents of the blocks.

4.2 Sorted Neighborhood

The Sorted Neighborhood Method (SNM) [HS95] greatly reduces the number of com-
parisons compared to the Cartesian product. It consists of three phases: First, a sorting
key is generated; then the records are sorted according to that key in the hope that dupli-
cates have similar sorting keys and thus end up close to each other; and finally a fixed-
size window is slid over the sorted records and all records within the same window are
compared to each other.

For key generation we propose a simple hashing algorithm as well as the Soundex code
(see Sec. 5.3): The simple hashing approach uses the string length and the first letter of
the attribute to be compared, to create a sort key:
1,000 ∙ !"#$%& + !"#$%&'%%'#(ℎ!"#!$%& results in a sorting primarily according to
the length and secondly according to the first letter. Sorting by length leads to compari-
sons of strings of roughly same length, which reduces branch divergence – an advantage
in GPU processing. Further, the first letter is often the same for duplicate strings, e.g.,
because spelling mistakes are less likely to be made here [YF83], and because abbrevia-

tions start with the same letter. The
computation of the simple sort key re-
quires no branching, and therefore all
GPU threads can run in parallel. The
downside of this simple key generation
is that it produces poor results if there
are many strings with the same length,
which results in many similar keys. In
this case, Soundex (described in Sec.
5.3) produces better sort keys, because it
focuses on phonetic characteristics in-
stead of the string length. Altogether,
sorting key generation is well suited for
GPUs, because each calculation only
depends on one string, and therefore can
be easily computed in parallel.

For the sorting step, we choose the
GPU-based merge sort algorithm of

[SKC10]. We did not improve this sorting algorithm; therefore, we do not cover it in this
paper.

Figure 3 shows the comparison matrix for SNM. The colored cells on the diagonal denote
the comparisons that are actually performed by SNM. To compare the attribute values
efficiently, we have to determine the maximum amount of strings that can be transferred
to the GPU at a time. In Fig. 3, a partition visualizes the comparisons that can be done
with the strings on the GPU in one execution. We approximate the number of the strings

Figure 3: Sorted Neighborhood pair selection

Sliding Window Partition

A B C D E F G H I J K L M N O P -‐ -‐ -‐
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
-‐
-‐
-‐

that can be copied to the GPU based on the average string length. The amount of
memory required for one string depends on the length of the string, the number of strings
it is compared with, and the comparison algorithm.

The Sorted Neighborhood approach compares each string with the next ! − 1 strings
where ! is the window size (see the sliding window, Fig. 3). This leads to ! − 1 ∙
!""#$%&'()*'+,%$&$&-' − ! − 1 ! comparisons in one round on the GPU. In this

formula, ! − 1 ! denotes the comparisons that are postponed to the next partition, due
to the window sliding out of the partition boundaries.

With this number of comparisons and the average string length, we approximate the
maximum number of strings that can be copied to the GPU. Since the input strings have
different length, we iteratively calculate the required memory based on the approxima-
tion, until the maximum number of strings that can be computed on the graphics card is
determined. The calculation benefits from the internal data format, produced during the
parsing step (see Sec. 3). It allows the computation of the string lengths just by inspect-
ing the index array with the starting indices of the strings.

Once the data is copied onto the GPU, each string within a partition is compared with the
next ! − 1 strings. The last strings in a partition cannot be compared, because they are
not followed by ! − 1 strings. Therefore, partitions have to overlap by ! − 1 strings to
ensure that no comparisons are missed. To execute the comparisons in the last partition
efficiently, the index array is expanded by ! − 1 dummy string entries (see header-cells
labeled with “-“ in Fig. 3). These dummy strings prevent branching, because the last
strings of the final partition can be treated like any other string without needing condi-
tional checks. Furthermore, the dummies are empty, so their respective comparisons can
easily be omitted by the kernels. Thus, they do not negatively impact computation time.

5. Similarity Classification

This section describes implementations of methods to classify record pairs as duplicate
or non-duplicate. In particular, we present two edit-based and one phonetic (Soundex)
similarity measure to calculate the attribute similarity on graphics cards. Then we de-
scribe how different attribute similarities are aggregated to record similarities and how
we cluster results using GPUs.

5.1 Levenshtein similarity

The Levenshtein distance is defined as the minimum number of character insertions,
deletions, and replacements necessary to transform a string !! into another string !!
[NH10]. To compute the Levenshtein distance !"#$%&'(!!, !!) on a GPU, we use a dy-
namic programming approach [MNU05] and extend this approach to optimize its
memory usage. The comparison of two strings requires a matrix ! of size (|!!| +
1)×(|!!| + 1), where |!| denotes the length of string !. A value in the !-th row and !-th

column of ! is defined by !!,!, where 0 ≤ ! ≤ |!!| and 0 ≤ ! ≤ |!!|. We initialize the
first row !!,! and column !!,! as:

!!,! = ! !!,! = ! (2)

The algorithm then iterates from the top left to the bottom right cell of the matrix. It
recursively computes each value !!,! in the matrix as:

!!,! =
!!!!,!!!

1 +!"#(!!!!,! ,!!,!!!,!!!!,!!!)
 if !!,! = !!,!
otherwise

 (3)

where !!,! denotes the !-th letter in the string !!. In the end, matrix cell !|!!|,|!!| delivers
the Levenshtein distance between !! and !!.

Because dynamic memory allocation is not possible from inside a GPU kernel in
OpenCL, we pre-allocate the needed memory for each comparison. To reduce memory
consumption, we use only two matrix rows for each comparison, because calculation of
row ! depends only upon the current row ! and the previous row ! − 1 (see Equation 3).
Thus, we can swap the current and previous row and calculate row ! + 1 by overwriting
the values of row ! − 1, without affecting performance. We analyzed that the average
string length in our test collection is 14 characters, which results in an average matrix
size of (14 + 1) · (14 + 1) = 225 cells. By using only two rows, we can greatly reduce
the average required cells in our test collection to (14 + 1) · 2 = 30, which is only 13%
of the whole matrix.

To calculate the amount of required memory for the matrix rows, the algorithm can use a
simple formula that takes the arbitrary length of each string |!!| into account. Let ! be
the number of strings that should be compared and ! be the number of strings to which
each of the ! strings is compared to. Then the overall memory in byte that is required for
the matrix rows can be calculated as:

! ∙ !"#$%&(!"#) ∙ 2 ∙ !! + 1
!

!!!

(4)

Within a comparison of two strings, one string defines the length of the two matrix rows.
Therefore, one comparison requires !"#$%&(!"#) · 2 · (|!!| + 1) bytes of memory for the
matrix rows. Our pair selection algorithms are designed to compare each of the ! strings
to ! > 0 other strings, so that each string defines ! times the length of the matrix rows.
For example, the Sorted Neighborhood algorithm sets ! = ! − 1 and the Cartesian
product defines ! = !!!

!
. To calculate the overall amount of matrix memory, the algo-

rithm sums up all ! string specific row lengths |!!| + 1.

As usual, to transform the Levenshtein distance into a normalized similarity measure, we
finally normalize the distance by dividing by the length of the longer string and subtract
the result from 1.

5.2 Jaro-Winkler similarity

Jaro-Winkler similarity was originally developed for the comparison of names in U.S.
census data. The measure is comprised of the Jaro distance [Ja89] and additions by Win-
kler [WT91]. The Jaro distance !"#$%&'((!!, !!) combines the number of common char-
acters ! between two strings !! and !!, the number of transpositions ! between the two
strings of matching characters, and the lengths of both strings:

!"#$%&'(!!, !! =
1
3
∙
!
!!

+
!
!!

+
! − !
!

 (5)

Common characters are only searched for within a range of size !:

! =
!"# !! , !!

2
− 1 (6)

Winkler’s main modification of the Jaro distance is the inclusion of the length of the
common prefix ℓ into the formula (see Eq. 7), which improves similarity scores for
names starting with the same prefix. The common prefix is limited to ≤ 4 and is
weighted by the factor !, for which Winkler’s default value is 0.1.

!"#$%&'()*# !!, !! = !"#$%&'(!!, !! + ℓ! 1 − !"#$%&'(!!, !! (7)

The original algorithm calculates the number of transpositions ! by first calculating the
two strings of matching characters and then comparing them character by character. For
each pair of strings being compared, matching characters are stored in two temporary
variables of length !!"# = !"#(|!!|, |!!|). For graphics cards, these variables pose diffi-
culties: First, the amount of fast private/local memory is limited, which restricts the
amount of work items that can be executed in parallel. In order to still achieve high lev-
els of parallelism, global memory needs to be used, which is slower to access but also
several magnitudes larger. Second, since GPU memory cannot be allocated dynamically
within a kernel at runtime,	 we would have to wastefully pre-allocate the worst-case
amount of memory or perform additional comparisons as in [HYF08].

Our approach focuses on reducing memory consumption with the goal of achieving high
levels of parallelism while primarily using fast private/local memory. This comes at the
cost of increased kernel-time complexity. Instead of pre-computing the strings of match-
ing characters, our algorithm (see Alg. 1) computes the number of matched characters
and transpositions by iterating the input strings twice. The first iteration (lines 3-9) finds
and counts the number of matching characters !. It also keeps track of which characters
have been matched already (array of matched characters !"!,!). The second iteration
(l. 12-25) calculates the number of half-transpositions ! and the length of the common
prefix ℓ. The !"#$(!, !,!") function (l. 4 and l. 13) tries to find a character ! in the
given string !, without matching any characters that were previously matched. This is
done by checking that the respective position in the !" array is not set to 1, and by re-
spectively updating the array once a matching character has been found.

The !"#$ function returns a Boolean value indicating whether a match was found, and
the offset at which it was found. Inter-
nally, the function also considers the
window size ! (see Eq. 6) to match
only characters within the allowed
range of ! ± !.

The !"#$%&!"#$%ℎ!"(!,!") func-
tion (l. 15) counts how many characters
in !! up to position ! cannot be
matched to a character in !! (by in-
specting the !" array). A half-
transposition exists if a character can
be matched without an offset, while
ignoring all unmatched characters (l.
16). The prefix counter ℓ is only in-
creased for the first 4 characters, if the
current character has been matched
without an offset, and all characters on
earlier positions do also match respec-
tively (l. 19).

The key to memory efficiency with this
algorithm lies in the arrays !"!,! and
!"!,! which store only Boolean values
and thus can be represented at the level
of single bits. Our implementation uses
two 8-byte variables allowing compari-
sons of strings up to length 64. Using
the original approach we would need
two 64-byte variables to compare
strings of the same length.

5.3 Soundex

Soundex is a phonetic algorithm for identifying words that are pronounced similarly but
spelled differently [USN07]. The algorithm produces 4-letter codes, which match for
similar sounding words, e.g., Robert and Rupert are both represented by the code R163.
Soundex is good for finding misspelled names but it produces many false positives as
well as false negatives [PS01].

Our implementation consists of two kernels: One for generating Soundex codes for a set
of input strings, and one for comparing pairs of Soundex codes. For comparison we
minimize memory operations by leaving generated Soundex codes on the graphics card
for the comparison phase. To generate Soundex codes we walk through the letters of a
given term and build up the Soundex code by either coding the current letter or moving

Algorithm 1: Jaro-Winkler: computation of matching
characters !, transpositions ! and common prefix ℓ

for two strings !! and !!

01	 m	 ←	 0,	 t	 ←	 0,	 ℓ	 ←	 0	
02	 mc1,x	 ←	 0	
03	 for	 i	 =	 1	 to	 |s1|	 do	
04	 	 [match,offset]	 ←	 find(s1,i,s2,mc1)	
05	 	 if	 match	 =	 True	 then	
06	 	 	 m	 ←	 m	 +	 1	
07	 	 	 mc1,i	 ←	 1	
08	 	 end	 if	
09	 end	 for	
10	 mc2,x	 ←	 0	
11	 uc1	 ←	 0	
12	 for	 i	 =	 1	 to	 |s1|	 do	
13	 	 [match,offset]	 ←	 find(s1,i,s2,mc2)	
14	 	 if	 match	 =	 True	 then	
15	 	 	 uc2	 ←	 countUnmatched(i+offset,mc1)	
16	 	 	 if	 offset	 +	 uc1	 ≠	 uc2	 then	
17	 	 	 	 t	 ←	 t	 +	 1	
18	 	 	 end	 if	
19	 	 	 if	 offset	 =	 0	 and	 ℓ	 =	 i	 −	 1	 	
	 	 	 	 	 and	 i	 ∈	 [1,4]	 then	
20	 	 	 	 ℓ	 ←	 ℓ	 +	 1	
21	 	 	 end	 if	
22	 	 else	
23	 	 	 uc1	 ←	 uc1	 +	 1	
24	 	 end	 if	
25	 end	 for	
26	 t	 ←	 t/2	
27	 return	 m,	 t,	 ℓ	

on to the next one. The compare-kernel uses lists of previously generated Soundex codes
to create pairs of terms that have the same code. Unlike other similarity measures, this
results in similarity values of either 0 or 1.

5.4 Aggregation

To classify whether two records are a duplicate or not, we aggregate the attribute simi-
larities to an overall record similarity. The comparators described in the previous sec-
tions return lists of pairs with similarity values above attribute-specific thresholds. The
aggregated similarity value is a weighted average of all similarity values for the specific
pair. In order to increase the precision of results, merged pairs with a similarity value
below a manually defined overall threshold are removed.

For efficient aggregation each list is first sorted by a unique identifier that represents the
compared data records. This approach reduces the search time for corresponding pairs in
the result lists; additionally, duplicate entries that may have been produced by the Carte-
sian product (see Sec.4.1) can be removed easily.

While the sorting part is suited for the GPU, the merging part is not: First, merging on
the CPU can be a simple Sort-Merge join that requires linear time, so the additional time
required for copying the data to the GPU does not pay off (see Sec. 6.2). On the GPU,
the retrieval of corresponding pairs is more complex, because each kernel instance
would merge one combination of pairs and corresponding pairs in different lists cannot
be found at the same defined places. Pairs can be missing in some lists, due to attribute-
specific thresholds and different comparisons that are triggered by the Sorted Neighbor-
hood method. Thus, a GPU variant would either need a complex kernel with slow
branching, or additional preprocessing of all lists. When iterating all lists, the computa-
tion of the weighted average would only produce little to no computational overhead.
This invalidates the point of using the GPU for merging, so we sort the lists on the GPU
and merge them on the CPU.

5.5 Clustering

As we use pairwise comparisons to find duplicate records, our result may not be transi-
tively closed (e.g. pairs ⟨A,B⟩ and ⟨B,C⟩ are classified duplicates, but not ⟨B,C⟩). We
calculate the transitive closure using the tiled Floyd-Warshall (FW) algorithm by Katz
and Kider [KK08] and adapt it to the specific task of clustering real-world duplicate
pairs. We first present the tiled FW algorithm in a condensed form. Afterwards, we de-
scribe how the algorithm can be extended to optimize its efficiency and scalability in
computing extremely large amounts of data.

The tiled FW extends the original FW [Wa62] in order to run efficiently on the GPU. It
uses dynamic programming and is based on a directed graph, represented by an adjacen-
cy matrix !. In the design of the tiled FW, Katz and Kider assume that the entire matrix
for ! vertices can be loaded into the GPU's global memory at once, but not into local
memory. Therefore, they propose to load all data into global memory first and then split

the computation of the transitive closure into many sub-tasks that can be executed se-
quentially using maximal local memory in each step. After loading ! into global
memory, the tiled FW algorithm partitions ! into sub-matrices of size !×! with ! ≤ !.
Size ! must be chosen small enough so that three sub-matrices can be loaded into local
memory at once. ! then consists of !×! sub-matrices with ! = ! ! . Afterwards,
the algorithm uses an iterative execution strategy for the Floyd-Warshall algorithm (see
Fig. 4). It needs ! stages to calculate the complete transitive closure. Each stage consists
of the following three phases:

Figure 4: Stages and phases of the tiled FW algorithm introduced by Katz and Kider [KK08].

1. Start one work group: The work group loads the submatrix (!, !) as pivot matrix
into local memory, where ! is the current stage number. Then, only one thread in
this work group calculates the transitive closure for this matrix using the original
Floyd-Warshall algorithm.

2. Start ! − 1 ∙ 2 work groups: Each work group loads the pivot matrix (!, !) and a
second sub-matrix (!, !) or (!, !) into local memory. Now the second submatrix is
located in the same row or column as the pivot matrix. Its calculation depends only
upon itself and the pivot matrix. Within a work group, each value in the second
sub-matrix can be computed in parallel by an own thread executing a part of the
Floyd-Warshall algorithm (for more details see [KK08]).

3. Start ! − 1 ! work groups: Each work group loads two sub-matrices that have
been processed in phase 2 and a third sub-matrix into local memory. The third ma-
trix for two previously processed matrices (!, !) and (!, !) is placed at (!, !) and on-
ly depends upon their values and itself in this step. Again, all values of the third
matrix can be processed in parallel by an own thread executing a part of the Floyd-
Warshall algorithm.

In the following, we adapt the approach of Katz and Kider to the specific task of cluster-
ing duplicate pairs and add some modifications to improve the algorithm’s efficiency
and scalability.

5.5.1 Optimizing transitive closure efficiency

The adjacency matrix defines a directed graph, whereas our result graph is undirected, as
we assume a symmetric duplicate relation between different records. Thus, all values in
the adjacency matrix are mirrored across the matrix's diagonal axis. An obvious optimi-

Stage	 1

Phase	 1 Phase	 2

Stage	 n

Phase	 3

Sub-‐matrices	 beeing currently	 processed

Already	 processed	 sub-‐matrices

Unprocessed	 sub-‐matrices

zation approach is to remove redundant edges and hence reduce both the matrix size and
the necessary computation steps in Phases 2 and 3 of the tiled FW algorithm. In Phase 2,
for example, the algorithm could compute only the sub-matrices (!, !) with ! > ! and
(!, !) with ! < !. Nevertheless, the overall performance would decrease for two reasons:
First, the computation of the edge position in the matrix becomes more complex. When-
ever the algorithm needs to read an edge value from the redundant (and therefore not
existing) half of the matrix, it must mirror the edge's coordinates to find the correspond-
ing value, which is a complex operation especially in Phases 2 and 3. Second, Warshall's
algorithm might write the edges (!! , !!) and (!! , !!) at the same time. To guarantee con-
sistent write operations, the kernels would need locking mechanisms, which decrease
performance and restrains parallelism. Thus, we retain the original matrix and store each
duplicate pair as two directed edges in the adjacency matrix.

The original tiled FW represents each value in the adjacency matrix as a single numeri-
cal value. To reduce the physical size of the matrix in memory, our implementation of
the algorithm encodes these values as bitmasks: Each bitmask contains 32 edge values,
because common GPUs address 32 bits at once. This technical optimization reduces the
required memory by 1/32 compared to integers. However, this compression also impacts
the structure of the algorithm: While computing the transitive closure, Floyd-Warshall's
algorithm iterates over multiple rows and columns of the matrix. Each read operation
returns 32 edge values. A horizontal iteration over a row containing bitmasks of edge
values can be done very fast, because it needs ! 32 read operations to receive ! edge
values. In contrast, a vertical iteration over a column of the matrix still needs ! read
operations for ! edges and returns 31 ∙ ! not required values. This becomes a drawback
for the performance, if we execute the Floyd-Warshall algorithm on a bit-compressed
graph matrix. Warren's algorithm [Wa75], which extends the Floyd-Warshall algorithm,
solves this problem by just iterating horizontally in the adjacency matrix. So we use this
approach instead of Warshall's algorithm to calculate Phase 1 without iterating vertical-
ly. In Phases 2 and 3, the algorithm can use the redundant edges in the adjacency matrix
to avoid vertical iterations. Each column ! in the matrix has a corresponding row ! that
is mirrored across the matrix's diagonal axis and contains the same bit values. Therefore,
all iterations over ! can be replaced by iterations over !.

Using bitmasks to encode the matrix also affects the granularity of parallelization. In
Phases 2 and 3 the algorithm can no longer compute the value of each single edge in
parallel. To guarantee consistent writes, each bitmask must be processed by one GPU
thread. However, by using bitwise OR operations for the comparison of two bitmasks,
each thread computes all 32 values at once.

Figure 5 shows how all previously described modifications of the tiled FW work togeth-
er in Phase 2. In this phase, each work group loads the pivot and a second submatrix into
local memory. Then, all bitmasks in the second sub-matrix are computed in parallel.

Let !! , !! − !! , !! be a bitmask ! in the second submatrix. The thread that processes
b iterates over row !! in the pivot matrix and analyses each bit. If a bit !! , !! is 1, the
thread loads the bitmask !! , !! − !! , !! from the second matrix and then compares it
to ! using the bitwise OR operation. After analyzing the whole row !! in the pivot ma-

trix, the thread writes the new values for b into the second matrix. This algorithm also
works for Phase 3. In this phase, three sub-matrices are loaded into local memory. To
compute the bitmask b in the third matrix, a thread iterates over the corresponding row in
the horizontally deferred second matrix and loads bitmasks for the comparison from the
vertically deferred second matrix.

Figure 5: Optimized calculation of Phase 2 using bitmask encoding,
horizontal iteration and bitwise OR comparison.

5.5.2 Achieving scalability

The algorithm of Katz and Kider assumes that the entire adjacency matrix fits into the
GPU's global memory. Given a GPU with 1GB of global memory, this assumption limits
the maximum number of nodes in the result graph to 92,672 even if bitwise encoding is
used. Assuming 5% duplicates as result size, this is not enough to analyze datasets with
2 million records or more. Therefore, we need an additional partitioning of the matrix
between the host's main memory and the GPU's global memory. We achieve this parti-
tioning by using the same stage-wise execution strategy of the tiled FW again to pre-
partition the global adjacency matrix G into smaller, quadratic matrices M! on the host.
The algorithm has to ensure that all matrices M! are equally large and that three matrices
M! fit into the global memory at once. We call this approach the double tiled FW algo-
rithm. It uses the same stages and phases of loading matrices M! into global memory like
the original tiled FW loads sub-matrices into the local memory. In Phase 1, only one
pivot sub-matrix M! resides in global memory. The GPU processes this matrix by exe-
cuting the already known tiled FW. In Phase 2, the algorithm loads the pivot and a se-
cond sub-matrix into global memory. All bitmasks in the second sub-matrix are then
processed in parallel like in Stage 2 of the tiled FW (see Fig. 5). Afterwards, the same
procedure is used for Phase 3, which needs one pivot and two previously processed se-
cond sub-matrices.

6. Evaluation

We evaluated performance and accuracy of our workflow using real-world data sets. In
addition, the execution time of each component is evaluated on different hardware.

Bitmask	 to	 be	 processed
Bitmasks	 to	 be	 read
Other	 bitmasks

6.1 Experimental setup

We evaluated on four different graphics cards, two from NVIDIA and two from ATI. As
ATI’s OpenCL drivers also allow the execution of OpenCL kernels on CPUs, we addi-
tionally evaluated our implementation on two Intel CPUs (see Tab. 2 for specifics of all
six devices).

We used a subset of 1.792 million music CDs extracted from freedb.org for the perfor-
mance evaluation of our algorithms. This dataset contains attributes artist, title, genre,
year of publication, and multiple tracks. The DuDe Duplicate Detection Toolkit [DN10]
provides a gold-standard for a randomly selected subset of 9,763 CDs
(http://www.tinyurl.com/dude-toolkit), which we used to measure the accuracy of our
results. Furthermore, we calculated the similarity of two records based on the values of
four attributes that contain strings of variable length, namely Artist, Title, Track01, and
Track02. This selection is based on our experience with that database.

To ensure a realistic assessment of the workflow efficiency, we first evaluated its effec-
tiveness. We calculated precision (proportion of retrieved real duplicates), recall (propor-
tion of identified real duplicates), and F-measure (harmonic mean of precision and re-
call) for different configurations: Sorted Neighborhood (SNM) and Cartesian product
(CP) for pair selection combined with Levenshtein (L) and Jaro-Winkler (JW) as com-
parison algorithms. Table 1 lists the configuration parameters that delivered the best F-
measure, showing similar results compared to other duplicate detection tools [DN10]. In
Sec. 6.2, we use these configuration parameters to test the performance of our algorithm

For SNM, we tested window sizes between 10 and 500. We observed that any value
above 20 has only minimal effect on the F-measure (at best 2 percentage points in-
crease). Therefore, all experiments used a window size of 20. For the SNM’s sort key
generation, we tested two different generating algorithms. As already mentioned in Sec.
4.2, the Soundex algorithm generates the best sort keys for attributes whose values have
similar lengths, which is true for the artist and track attributes. The values of the title
attribute, however, vary considerably in length. As a result, our own key generation
algorithm performs better for these attributes.

We tried multiple thresholds to determine whether a pair with a certain similarity is
classified as a duplicate. The thresholds are first applied to attribute pairs during compar-
ison and afterwards to record pairs during aggregation. The aggregation step additionally
uses a set of weights to sum up the single attribute similarities. We evaluated various sets
of thresholds and weights and settled on the values in Tab. 1.

Method	 Thresholds	 Weights	 Precision	 Recall	 F-‐Measure	
Overall	 Artist	 Title	 Tracks	 Artist	 Title	 Tracks	

SNM	 +	 L	 0.6	 0.6	 0.6	 0.5	 20%	 30%	 25%	 95.2%	 80.3%	 87.1%	
SNM	 +	 JW	 0.66	 0.6	 0.67	 0.87	 20%	 30%	 25%	 95.2%	 79.6%	 86.7%	
CP	 +	 JW	 0.66	 0.78	 0.75	 0.87	 20%	 30%	 25%	 92.2%	 86.6%	 89.3%	

Table 1: Configurations and results

ID	 Type	 Device	 Name	 Clock	 Memory	 Cores	 System	 Price	 	 (August	 2011,	
http://www.alternate.de)	

G1	 GPU	 Nvidia	 GeForce	
GTX	 570	

732	
MHz	

1280	 MB	
GDDR5	

480	
CUDA	

Win64	 279	 Euro	

G2	 GPU	 Nvidia	 Tesla	
C2050	

1147	
MHz	

3071	 MB	
GDDR5	

448	
CUDA	

Linux64	 2,149	 Euro	

G3	 GPU	 ATI	 Radeon	 HD	
5700	

850	
MHz	

1024	 MB	
GDDR5	

800	 SP	 Win64	 91	 Euro	

G4	 GPU	 ATI	 Mobility	
Radeon	 HD	 5650	

450	
MHz	

1024	 MB	
GDDR3	

400	 SP	 Win64	 unknown	

C1	 CPU	 Intel	 Core	 i5	 750	 2.67	
GHz	

8192	 MB	
DDR3	

4	 Win64	 185	 Euro	

C2	 CPU	 Intel	 Core	 i5	
M560	

2.67	
GHz	

8192	 MB	
DDR3	

2	 Win64	 200	 Euro	

Table 2: Evaluation devices

6.2 Algorithmic complexity

To evaluate the performance of the duplicate detection workflow, we analyzed the exe-
cution times of its individual components. All tests were executed on the NVIDIA Ge-
Force GTX 570 (G1), because our experiments in Sec. 6.3 show that this device per-

forms best.

Figure 6 shows the execu-
tion times of the different
components as parts of the
complete workflow for
various input sizes !. We
used Jaro-Winkler for
comparison and Sorted
Neighborhood for pair
selection. In the follow-
ing, ! denotes the longest
list of found attribute-wise
duplicates after the com-

parison, and ! denotes the
number of record-wise duplicates after the aggregation step. Since we observed that !
and ! increase linearly in proportion to !, the complexities of the subsequent algorithms
can be defined in relation to the input size !.

The diagram shows that with an increasing amount of data, and thus an increasing
amount of duplicates, the execution time of the transitive closure becomes the dominant
part of the workflow. Note that for a complete result one cannot omit this last step and
that its complexity is hardly dependent on the total number of previously found dupli-
cates, but rather on the number of disjoint records in the duplicates. The execution time
of the transitive closure increases fastest, because its complexity is !(!!), whereas the
other complexities are !(!!) for the Cartesian product, !(! log(!)) if ! ≤ log(!) or
otherwise !(! ∙ !) for the Sorted Neighborhood, and !(! log(!)) for the aggregation.

Figure 6: Execution times of different components

0,001

0,01

0,1

1

10

100

1000

10000

Ti
m
e	
(s
ec
)

Number	 of	 input	 records

Total

Transitive	 Closure

Sorting	 (for	 Aggregation)

Comparison	 (SNM	 +	 JW)

Aggregation

Figure 8: Performance of Sorted Neighborhood
with Jaro-Winkler on different devices

0
10
20
30
40
50
60
70
80
90
100

Ti
m
e	 (

se
c)

Number	 of	 input	 records

Levenshtein Jaro-‐Winkler

The sorting, as an aggregation preprocessing step, has the second highest time; more
advanced algorithms [SKC10] might improve this value. The comparisons also have
high execution times, because a string comparison is the most complex calculation on
the GPU. The aggregation step itself has the smallest execution time and thus has only
little impact on the workflow’s overall execution time.

Figure 7 shows the execution times for the comparators only. We observe that Jaro-
Winkler has a much lower execution time for both pair-selection algorithms for three
reasons: First, Levenshtein performs more accesses to global GPU-memory. Second,
Levenshtein performs more comparison rounds due to the higher memory consumption;
these rounds need additional time to be triggered by the host. Third, Jaro-Winkler creates
more work items allowing the GPU to use memory latency hiding to optimize the execu-
tion.

6.3 Comparison of hardware

As discovered in Sec. 6.2, the most efficient configuration uses Sorted Neighborhood in
combination with the Jaro-Winkler comparison algorithm. Figure 8 shows that the best
results are indeed achieved
on GPUs. The fastest GPU
G1 (see Tab. 2) takes 35
minutes (2,095 seconds) to
process 1.792 million en-
tries; this is about 10 times
faster than the fastest CPU
C2, which takes 335
minutes. However, Tab. 2
shows that the CPUs in our
experimental setup are
cheaper than the used GPUs.
To compare them in a fair
way, we placed the execu-

 Cartesian Product Sorted Neighborhood
 Figure 7: Execution times of comparison algorithms in combination with different pair selectors

0.1

1

10

100

1000

10000

100000

Ti
m
e	
(s
ec
)

Number	 of	 input	 values

C1

G4

C2

G3

G2

G1

0

2000

4000

6000

8000

10000

12000

14000

Ti
m
e	 (

se
c)

Number of input records

Levenshtein Jaro-‐Winkler

tion times in relation to the prices by multiplying the price (in Euro) and the execution
time (in minutes). This gives us a measure for the price-performance ratio, which assigns
lower numbers to better devices. Since a GPU cannot be operated without a CPU, we
add the price for the cheapest CPU. Still under this measure, the GPUs perform better
than the CPUs: Again, for 1.792 million entries, G1 has the best results with a value of
279 + 185 · 35 = 16,240 !"#$%&'(compared to the best CPU C2 with a value of
200 · 335 = 67,000 !"#$%&'(; this is a 4-fold better price-performance ratio for the
GPU.

7. Conclusion

We have presented and evaluated a complete duplicate detection workflow that uses
graphics cards to speed up execution. The workflow uses either the Cartesian product or
the Sorted Neighborhood approach for pair selection, and calculates the similarity of a
record pair using Levenshtein, Jaro-Winkler, and Soundex. The evaluation of our work-
flow shows that modern GPUs can execute the duplicate detection workflow faster than
modern CPUs. It has also been shown that the workflow and algorithms are scalable and
can process large datasets.

The experiments also show that the access of global memory on graphics cards is indeed
a bottleneck and has great impact on the performance of our algorithms. Profiling has
shown that reads and writes are mostly non-coalesced and therefore very slow. To solve
this problem in the future, all strings could be interlaced, which is a complicated task
when using strings of variable lengths. Also, the use of local memory could further speed
up execution. More optimizations concerning concrete hardware devices are possible
and could be applied to a concrete usage of the workflow [FTP11]. Currently, only the
comparisons of different attributes are distributed over all available devices. Thus, other
algorithms, especially the computation of the transitive closure, could be further opti-
mized to scale out on multiple devices. The implementation and evaluation of more
similarity measures, e.g., token-based approaches, would allow the processing of real-
world data with different properties and make the workflow more adaptable.

Acknowledgments: This research was supported by the HPI Future SOC Lab and the
German Research Society (DFG grant no. NA 432). We thank Frank Feinbube (HPI) for
his support.

References

[AJ88] R. Agrawal and H. V. Jagadish. Multiprocessor transitive closure algorithms. In Pro-
ceedings of the first international symposium on Databases in parallel and distributed
systems (DPDS), 56-66, Los Alamitos, 1988.

[CCH10] P. Christen, T. Churches, and M. Hegland. Febrl - a parallel open source data linkage
system. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 638-647, Sydney, 2004.

[DN10] U. Draisbach and F. Naumann. DuDe: The duplicate detection toolkit. In Proceedings of

the International Workshop on Quality in Databases (QDB), Singapore, 2010.
[EIV07] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A

survey. IEEE Transactions on Knowledge and Data Engineering (TKDE), 19(1):1-16,
Piscataway, 2007.

[FTP11] F. Feinbube, P. Tröger, and A. Polze. Joint Forces: From Multithreaded Programming to
GPU Computing. IEEE Software, 28(1):51-57, 2011.

[HS95] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD),
127-138, San Jose, 1995.

[HYF08] B. He, K. Yang, R. Fang, M. Lu, N.K. Govindaraju, Q. Luo, P.V. Sander: Relational
joins on graphics processors. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 511-524, Vancouver, Canada, 2008.

[Ja89] M. Jaro. Advances in record-linkage methodology as applied to matching the 1985
census of Tampa, Florida. Journal of the American Statistical Association, 84(406):414-
420, 1989.

[KK08] G. Katz and J. Kider Jr. All-pairs shortest-paths for large graphs on the GPU. In Pro-
ceedings of the ACM Symposium on Graphics Hardware (SIGGRAPH), 47-55, Los An-
geles, 2008.

[KKH10] T. Kirsten, L. Kolb, M. Hartung, A. Groß, H. Köpcke, and E. Rahm. Data partitioning
for parallel entity matching. Proc. of the VLDB Endowment, 3(2), Singapore, 2010.

[KL07] H. Kim and D. Lee. Parallel linkage. In Proceedings of the International Conference on
Information and Knowledge Management (CIKM), 283-292, Lisbon, 2007.

[KTR11] L. Kolb, A. Thor, and E. Rahm. Parallel sorted neighborhood blocking with mapreduce.
In Proceedings of the Conference Datenbanksysteme in Business, Technologie und Web
Technik (BTW), 45-64, Kaiserslautern, 2011.

[MNU05] V. Makinen, G. Navarro, and E. Ukkonen. Transposition invariant string matching.
Journal of Algorithms, 56(2):124-153, 2005.

[ND10] J. Nickolls and W. Dally. The GPU computing era. Micro, IEEE, 30(2):56-69, 2010.
[NH10] F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Morgan & Clay-

pool, 2010.
[OLG07] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.

Purcell. A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum, 26(1):80-113, 2007.

[PS01] F. Patman and L. Shaefer. Is Soundex good enough for you? On the hidden risks of
Soundex-based name searching. Language Analysis Systems, Inc., Herndon, 2001.

[SKC10] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey. Fast
sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In Proceedings of
the ACM International Conference on Management of Data (SIGMOD), 351-362, Indi-
anapolis, 2010.

[To91] A. Toptsis. Parallel transitive closure computation in highly scalable multiprocessors.
Advances in Computing and Information (ICCI), 197-206, Ottawa, 1991.

[USN07] The U.S. National Archives and Records Administration. The Soundex indexing system,
May 2007. URL: http://www.archives.gov/research/census/soundex.html. Retrieved on
Sept. 1, 2011.

[Wa62] S. Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11-12, 1962.
[Wa75] H. Warren Jr. A modification of Warshall's algorithm for the transitive closure of binary

relations. Communications of the ACM, 18(4):218-220, 1975.
[WT91] W. E. Winkler and Y. Thibaudeau. An application of the Fellegi-Sunter model of record

linkage to the 1990 U.S. decennial census. In U.S. Decennial Census. Technical report,
US Bureau of the Census, 11-13, 1991.

[YF83] E. J. Yannakoudakis and D. Fawthrop. The rules of spelling errors. Information Pro-
cessing and Management, 19(2):87-99, 1983.

