
Scalable Discovery of Unique Column Combinations

Arvid Heise_∗ Jorge-Arnulfo Quiané-RuizF Ziawasch Abedjan_∗
Anja Jentzsch_ Felix Naumann_∗

_Hasso Plattner Institute (HPI) FQatar Computing Research Institute (QCRI)
Postdam, Germany Doha, Qatar

{arvid.heise, ziawasch.abedjan, anja.jentzsch, felix.naumann}@hpi.uni-potsdam.de
jquianeruiz@qf.org.qa

ABSTRACT
The discovery of all unique (and non-unique) column combina-
tions in a given dataset is at the core of any data profiling effort.
The results are useful for a large number of areas of data manage-
ment, such as anomaly detection, data integration, data modeling,
duplicate detection, indexing, and query optimization. However,
discovering all unique and non-unique column combinations is an
NP-hard problem, which in principle requires to verify an expo-
nential number of column combinations for uniqueness on all data
values. Thus, achieving efficiency and scalability in this context is
a tremendous challenge by itself.

In this paper, we devise Ducc, a scalable and efficient approach
to the problem of finding all unique and non-unique column com-
binations in big datasets. We first model the problem as a graph
coloring problem and analyze the pruning effect of individual com-
binations. We then present our hybrid column-based pruning tech-
nique, which traverses the lattice in a depth-first and random walk
combination. This strategy allows Ducc to typically depend on
the solution set size and hence to prune large swaths of the lat-
tice. Ducc also incorporates row-based pruning to run uniqueness
checks in just few milliseconds. To achieve even higher scalabil-
ity, Ducc runs on several CPU cores (scale-up) and compute nodes
(scale-out) with a very low overhead. We exhaustively evaluate
Ducc using three datasets (two real and one synthetic) with several
millions rows and hundreds of attributes. We compare Ducc with
related work: Gordian and HCA. The results show that Ducc is up
to more than 2 orders of magnitude faster than Gordian and HCA
(631x faster than Gordian and 398x faster than HCA). Finally, a
series of scalability experiments shows the efficiency of Ducc to
scale up and out.

1. INTRODUCTION
We are in a digital era where many emerging applications (e.g.,

from social networks to scientific domains) produce huge amounts
of data that outgrow our current data processing capacities. These
emerging applications produce very large datasets not only in terms
of the number of rows, but also in terms of the number of columns.
∗Research performed while at QCRI.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/12.

Thus, understanding such datasets before actually querying them is
crucial for ensuring both data quality and query performance.

Data profiling is the activity of discovering and understanding
relevant properties of datasets. One important task of data profil-
ing is to discover unique column combinations (uniques for short)
and non-unique column combinations (non-uniques). A unique is
a set of columns whose projection has no duplicates. Knowing
all uniques and non-uniques helps understand the structure and the
properties of the data [1, 25]. Uniques and non-uniques are useful
in several areas of data management, such as anomaly detection,
data integration, data modelling, duplicate detection, indexing, and
query optimization. For instance, in databases, uniques are primary
key candidates. Furthermore, newly discovered uniqueness con-
straints can be re-used in other profiling fields, such as functional
dependency detection or foreign key detection.

However, many uniques and non-uniques are unknown and
hence one has to discover them. The research and industrial com-
munities have paid relatively little attention to the problem of find-
ing uniques and non-uniques. Perhaps this lack is due to the nature
of this problem: the number of possible column combinations to be
analyzed is exponential in the number of attributes. For instance,
a brute-force approach would have to enumerate 294 − 1 column
combinations to find all uniques and non-uniques in a dataset with
94 attributes (as one of the datasets we use in our experiments).
Performing this enumeration is infeasible in practice. As a result,
commercial products limit the search space to column combina-
tions with only few columns [17, 22, 23]. This restriction loses the
insights that long uniques and non-uniques (i.e., those with many
attributes) can offer. For example, in bio-informatics, long uniques
might lead to the detection of unknown principles between protein
and illness origins [20]. Long non-uniques might lead to the de-
tection of surprising partial duplicates (i.e., rows having duplicate
values in many attributes) in a relation. Moreover, assessing and in-
tegrating many data sources is a widespread problem that requires
fast data analysis. In the life sciences domain, integrating datasets
on genes, proteins, targets, diseases, drugs, and patients helps dis-
covering and developing drugs. The amount of publicly available
data that is relevant for this task has grown significantly over the
recent years [11]. Thus, scientists need new, more efficient ways to
discover and understand datasets from different data sources.

Some existing work has focused on providing more efficient
techniques to discover uniques [1,10,14,16,25]. For example, Gor-
dian [25] pre-organizes the data of a relation into a prefix tree and
discovers maximal non-uniques by traversing the prefix tree; Gi-
anella and Wyss propose a technique that is based on the apriori in-
tuition, which says that supersets of already discovered uniques and
subsets of discovered non-uniques can be pruned from further anal-
ysis [10]; HCA discovers uniques based on histograms and value-

counting [1]. However, none of these techniques have been de-
signed with very large datasets in mind and hence they scale poorly
with the number of rows and/or the number of columns.
Research Challenges. Discovering all (non-)uniques is a NP-hard
problem [14], which makes their discovery in very large datasets
quite challenging:

(1) Enumerating all column combinations is infeasible in practice,
because the search space is exponential in the number of columns.
Thus, one must apply effective and aggressive pruning techniques
to find a solution set in reasonable time.

(2) The solution space can also be exponential: the number of
uniques might reach

(
n

n/2

)
, where n is the number of columns. There

can be no polynomial solution in such cases.

(3) Parallel and distributed approaches are a natural choice in such
settings. However, they require exchanging a large number of mes-
sages among the processes to avoid redundant work. Thus, achiev-
ing scalability in this context is a tremendous challenge by itself.

Contributions and structure of this work. We address the
problem of efficiently finding all uniques and non-uniques in big
datasets as follows:

(1) We formally define (non-)uniques and state the problem of
finding all uniques and non-uniques (Section 2).

(2) We then model unique discovery as a graph processing prob-
lem and analyze the pruning potential of individual uniques and
non-uniques. We observed that aggressive pruning of the lattice
(especially in a distributed environment) may lead to unreachable
nodes. Thus, we propose a technique to find and remove such holes
from the lattice and formally prove its correctness (Section 3).

(3) We present Ducc, an efficient and scalable system for Discov-
ering (non-)Unique Column Combinations as part of the Metanome
project (www.metanome.de). In particular, we propose a new hy-
brid graph traversal algorithm that combines the depth-first and ran-
dom walk strategies to traverse the lattice in a bottom-up and top-
down manner at the same time. We additionally incorporate row-
based pruning to perform uniqueness checks in only a few millisec-
onds and to significantly reduce its memory footprint (Section 4).

(4) Next, we present a general inter-process communication proto-
col to both scale Ducc up and out. Since this communication pro-
tocol is lock-free and fully asynchronous, it allows Ducc to scale
with a very low synchronisation overhead. (Section 5)

(5) We experimentally validate Ducc on real and synthetic datasets
and compare it with Gordian [25] and HCA [1]. The results show
the high superiority of Ducc over state-of-the-art: Ducc is up to
631x faster than Gordian and 398x faster than HCA (Section 6).
We also discuss how different null value semantics impact the per-
formance of Ducc (Section 7).

2. PROBLEM STATEMENT
We define the basic concepts of unique column combinations

and proceed to state the problem we solve in this paper. Given a
relation R with schema S (the set of n attributes) a unique column
combination is a set of one or more attributes whose projection has
only unique rows. In turn, a non-unique column combination has
at least one duplicate row.

Definition 1 ((Non-)Unique Column Combination). A column
combination K ⊆ S is a unique for R, iff ∀ri, r j ∈ R, i , j : ri[K] ,
r j[K]. All other column combinations are non-unique.

We denote the set of (non-)unique column combinations as
(n)Uc. Obviously, any superset of a unique is also unique and any
subset of a non-unique is also non-unique. Thus, the most interest-
ing uniques are those that are not supersets of other uniques. We
call these uniques minimal uniques and denote their set mUcs. In
analogy, we are interested in the maximal non-uniques (mnUcs).
Notice that a minimal unique is not necessarily the smallest unique
and vice versa for maximal non-uniques. We define a minimal
unique in Definition 2 and a maximal non-unique in Definition 3.

Definition 2 (Minimal Unique Column Combination). A
unique K ⊆ S is minimal iff

∀K′ ⊂ K : (∃ri, r j ∈ R, i , j : ri[K′] = r j[K′])

Definition 3 (Maximal Non-Unique Column Combination). A
non-unique K ⊆ S is maximal iff

∀K′ ⊃ K : (∀ri, r j ∈ R, i , j : ri[K′] , r j[K′])

It is worth noting that in the special case of a complete duplicate
row in R, the set of uniques is empty and the set of non-uniques
contains one maximum non-unique with all columns.

Finding a single minimal unique is solvable in polynomial time:
Simply start by checking the combination of all attributes and re-
cursively remove attributes from combinations in a depth-first man-
ner until all removals from a given unique render it non-unique.
The number of combinations to explore is

∑n−1
i=0 (n − i) = O(n2),

where n denotes the number of attributes.
However, the problem we want to solve in this paper is to dis-

cover all minimal uniques and all maximal non-uniques in a given
relation. A naı̈ve approach would have to check all 2n−1 non-empty
column combinations. Each check then involves scanning over all
rows to search for duplicates. Clearly, the complexity O(2n ∗ rows)
renders the approach intractable. In fact, in the worst case, there
can be up to

(
n

n/2

)
≥ 2

n
2 minimal uniques, so the solution space

is already exponential. Furthermore, Gunopulos et al. have shown
that the problem of finding the number of all uniques or all minimal
uniques of a given database is #P-hard [14].

3. UNIQUE OR NON-UNIQUE
We now present a novel approach to column-based pruning that

significantly reduces the amount of combinations to be checked. In
this section, we treat individual uniqueness checks as black boxes;
we add row-based pruning in Section 4.4. We thus focus on the
problem to determine whether we need to check a combination or
whether we can infer the result through prior pruning: Unique or
non-unique – that is the question!

3.1 Aggressively Pruning the Search Space
In this paper, we model the search space as a lattice of all col-

umn combinations. Figure 1 illustrates this lattice for the first 5
attributes from TPC-H lineitem. Each node corresponds to a col-
umn combination and nodes that are in a subset/superset relation-
ship are connected. We use discovered uniques (green squares) and
non-uniques (purple circles) to prune this lattice.

We have exemplarily marked the discovery of OL (OrderKey
and Lineitem) as minimal unique (dark green square) and PSLQ
(PartKey, SupplyKey, Lineitem, and Quantity) as maximal non-
unique (dark purple circle). Both discoveries result into a signif-
icant pruning of the lattice leaving only 8 (white hexagons) of the
31 nodes to be checked. Again, any discovery within the eight re-
maining nodes leads us to further pruning.

We show a larger example with the same color coding in Fig-
ure 2, which shows the lattice created from the first eight columns

www.metanome.de

0,1,2,3,4,5,6,7

0,1,2,3,4,5,60,1,2,3,4,5,7 0,1,2,3,4,6,70,1,2,3,5,6,70,1,2,4,5,6,70,1,3,4,5,6,70,2,3,4,5,6,71,2,3,4,5,6,7

0,1,2,3,4,5 0,1,2,3,4,60,1,2,3,5,6 0,1,2,4,5,60,1,3,4,5,60,2,3,4,5,61,2,3,4,5,60,1,2,3,4,70,1,2,3,5,70,1,2,4,5,70,1,3,4,5,70,2,3,4,5,71,2,3,4,5,7 0,1,2,3,6,70,1,2,4,6,70,1,3,4,6,70,2,3,4,6,71,2,3,4,6,7 0,1,2,5,6,70,1,3,5,6,70,2,3,5,6,71,2,3,5,6,7 0,1,4,5,6,70,2,4,5,6,71,2,4,5,6,7 0,3,4,5,6,71,3,4,5,6,7 2,3,4,5,6,7

0,1,2,3,40,1,2,3,5 0,1,2,4,50,1,3,4,50,2,3,4,51,2,3,4,5 0,1,2,3,6 0,1,2,4,60,1,3,4,60,2,3,4,61,2,3,4,6 0,1,2,5,60,1,3,5,60,2,3,5,61,2,3,5,6 0,1,4,5,60,2,4,5,61,2,4,5,6 0,3,4,5,61,3,4,5,6 2,3,4,5,60,1,2,3,70,1,2,4,70,1,3,4,70,2,3,4,71,2,3,4,7 0,1,2,5,70,1,3,5,70,2,3,5,71,2,3,5,7 0,1,4,5,70,2,4,5,71,2,4,5,7 0,3,4,5,71,3,4,5,7 2,3,4,5,7 0,1,2,6,70,1,3,6,70,2,3,6,71,2,3,6,7 0,1,4,6,70,2,4,6,71,2,4,6,7 0,3,4,6,71,3,4,6,7 2,3,4,6,7 0,1,5,6,70,2,5,6,71,2,5,6,7 0,3,5,6,71,3,5,6,7 2,3,5,6,7 0,4,5,6,71,4,5,6,7 2,4,5,6,73,4,5,6,7

0,1,2,3 0,1,2,40,1,3,40,2,3,41,2,3,4 0,1,2,50,1,3,50,2,3,51,2,3,5 0,1,4,50,2,4,51,2,4,5 0,3,4,51,3,4,5 2,3,4,5 0,1,2,60,1,3,60,2,3,61,2,3,6 0,1,4,60,2,4,61,2,4,6 0,3,4,61,3,4,6 2,3,4,6 0,1,5,60,2,5,61,2,5,6 0,3,5,61,3,5,6 2,3,5,6 0,4,5,61,4,5,6 2,4,5,63,4,5,60,1,2,70,1,3,70,2,3,71,2,3,7 0,1,4,70,2,4,71,2,4,7 0,3,4,71,3,4,7 2,3,4,7 0,1,5,70,2,5,71,2,5,7 0,3,5,71,3,5,7 2,3,5,7 0,4,5,71,4,5,7 2,4,5,73,4,5,7 0,1,6,70,2,6,71,2,6,7 0,3,6,71,3,6,7 2,3,6,7 0,4,6,71,4,6,7 2,4,6,73,4,6,7 0,5,6,71,5,6,7 2,5,6,73,5,6,74,5,6,7

0,1,20,1,30,2,31,2,3 0,1,40,2,41,2,4 0,3,41,3,4 2,3,4 0,1,50,2,51,2,5 0,3,51,3,5 2,3,5 0,4,51,4,5 2,4,53,4,5 0,1,60,2,61,2,6 0,3,61,3,6 2,3,6 0,4,61,4,6 2,4,63,4,6 0,5,61,5,6 2,5,63,5,6 4,5,60,1,70,2,71,2,7 0,3,71,3,7 2,3,7 0,4,71,4,7 2,4,73,4,7 0,5,71,5,7 2,5,73,5,74,5,7 0,6,71,6,7 2,6,73,6,74,6,7 5,6,7

0,10,21,2 0,31,3 2,3 0,41,4 2,43,4 0,51,5 2,53,5 4,5 0,61,6 2,63,6 4,6 5,60,71,7 2,73,74,7 5,76,7

01 23 4 567

Figure 2: Pruning in eight columns of TPCH line-item (color code as in Figure 1).

maximal
non-unique

non-unique non-unique

O P P S S L L Q Q

Order Key Part Key Supp. Key Line No. Quantity

minimal
unique

unique

OP OS OQ PS PS PL PL PQ PQ SL SL SQ SQ LQ LQ OL

OPS OPQ OSQ PSL PSL PSQ PSQ PLQ PLQ SLQ SLQ OPL OSL OLQ

OPSQ PSLQ OPSL OPLQ OSLQ

OPSLQ

unknown

Figure 1: Effects of pruning in the lattice.

of an instance of the TPC-H lineitem table with a scale factor of
0.01. This larger example shows the complexity of the problem
already for few columns and that indeed there are several uniques
that one has to discover.

In general, minimal uniques at the bottom and maximal non-
uniques at the top of the lattice lead to larger sets of nodes that
can be pruned. Discovering a unique of size k prunes 1

2k of the
lattice. However, prior prunings might reduce the information gain:
the unique AB prunes 1

4 of the lattice; the unique BC additionally
prunes only 1

8 , because ABC and its supersets are already known to
be unique. Analogously, a non-unique of size k prunes 1

2(n−k) of the
lattice. In particular, knowing that there is a complete duplicate row
and thus all columns form a non-unique already solves the problem
as it prunes 1

2(n−n) , i.e., the entire lattice.
The greatest pruning effect can be achieved by simultaneously

discovering minimal uniques and maximal non-uniques. However,
one of the main challenges is to (efficiently) choose the most ef-
fective nodes to check first. Prior column-based algorithms (e.g,
a-priori [10]) apply pruning, but they traverse the lattice breadth-
first, which limits the effect of pruning drastically. For example
in a dataset with n columns and uniques of size ≥3, a-priori with
bottom-up pruning finds the first unique after >n +

n∗(n−1)
2 checks

and prunes new combinations after n∗(n−1)∗(n−2)
6 more checks. Ducc

immediately starts pruning at the first combination of size 3 after
n + 2 checks: Either we prune all supersets of this triple, because it
is unique, or we prune all subsets, because it is non-unique. Ducc
is also guaranteed to find a unique in n + n checks, if one exists.

However, when applying such an aggressive pruning, some col-
umn combinations might become unreachable by lattice traversal
strategies as used in Ducc, because all their super- and subsets were

pruned. Thus, in the remainder of this section, we present a novel
and fast technique to identify these “holes” in the lattice and prove
that this technique always leads to the complete solution.

3.2 Uniques and Non-Uniques Interaction
Let us first highlight that for any given unique column combi-

nation there exists a minimal unique column combination that is a
subset of or equal to the given column combination. Formally,

Lemma 1. K ∈ Uc ⇔ ∃K′ ∈ mUcs : K′ ⊆ K

Proof (Sketch). Either K is already minimal, or we can itera-
tively remove columns as long as K remains unique. By Defini-
tion 2, the result after this removal process is a minimal unique.
The negation of the equivalence means that if we cannot find such
a minimal combination, then K is non-unique.

We remark that it suffices to know all minimal unique column
combinations to classify any other column combination as either
unique or non-unique. We state this in Lemma 2.

Lemma 2. Given only the set mUcs of all minimal uniques and
given any column combination K, we can infer whether K is unique
or non-unique without performing a check on the data.

Proof. We know from Lemma 1 that K is unique iff ∃K′ ∈
mUcs : K′ ⊆ K. Otherwise, we know that K is non-unique by
applying the negation of Lemma 1: K ∈ nUc ⇔ @K′ ∈ mUcs :
K′ ⊆ K.

It is worth noticing that Lemmata 1 and 2 are analogously true
given the set mnUcs of all maximal non-uniques. Therefore, taken
together, either the set mUcs or the set mnUcs is sufficient to classify
each node of the lattice:

Corollary 1. Given the complete set of mnUcs for a given re-
lation, one can construct the complete set mUcs for that relation
and vice-versa. We call the constructed set the complementary set
mnUcsC = mUcs.

Notice that the two sets mUcs and mnUcs do not need to have the
same cardinality. An algorithm for constructing mUcs from mnUcs
is given in [25], which we adapt in an incremental version.

3.3 Finding Holes
Lattice traversal algorithms terminate when all reachable nodes

have been either checked or pruned. At that point, the sets mUcs
and mnUcs may be incomplete, but they contain only correct com-
binations. We can leverage the observations of the previous section
to identify possible holes in the lattice. The basic idea is to compare
mUc with mnUcC . Intuitively, we can verify whether an algorithm
produces the complete and correct results using the analogy of col-
oring the lattice nodes according to their uniqueness. If there exists
a difference, we can then conclude (from Corollary 1) that there ex-
ist holes in the lattice. In fact, the difference of such sets effectively

describes at least one column combination in each existing hole.
Thus, one can use the difference to start an additional traversal un-
til the difference of mUc with mnUcC is empty.

Assume we miss one minimal unique K ∈ mUcs. We start color-
ing the lattice two times according to Corollary 1. In other words,
we color all uniques in Ucs and all non-uniques in the derived UcsC .
As we assumed that K < mUcs, we must color K as non-unique.
This is because by definition of mUc there cannot be any other min-
imal unique that covers K. We, then, color the lattice according to
nUcs and nUcsC . Here, we must color K as unique, because we
cannot possibly find any evidence that K is non-unique. We resolve
this contradiction only by assuming that Ucs and nUcs describe dif-
ferent lattices and thus they are not complete. Formally, Theorem 1
shows how to check whether the results are correct and complete.

Theorem 1. Given a lattice with its corresponding sets mUcs
and mnUcs and (intermediate) solution sets U ⊆ mUcs and N ⊆
mnUcs, then (U = mUcs ∧ N = mnUcs) ⇔ NC = U

Proof. “⇒”: follows directly from Corollary 1. “⇐”: we show
this direction (i.e., right to left) for U only; the case for N is ana-
logous. In particular, we show the inverse, i.e., if U ⊂ mUcs then
UC , N: If U ⊂ mUcs there is at least one K ∈ mUcs \ U. We can
now show that ∃K′ ⊇ K with K′ ∈ UC and K′ < N, thus showing
UC , N. K′ ∈ UC is true: As K < U, K is non-unique (accord-
ing to U and Lemma 2). Thus, with Lemma 1, we can find one
corresponding maximal non-unique K′ ∈ UC . K′ < N is also true:
Because K ∈ mUcs, any superset K′ ∈ Ucs, but N ∩ Ucs = ∅.

3.4 Removing Holes
Having shown how to identify holes in the lattice, we now show

that algorithms that use this technique eventually converge to the
complete solution.

Corollary 2. Given a lattice with its corresponding sets mUcs
and mnUcs and intermediate solution sets U ⊂ mUcs and N ⊆
mnUcs then for any K ∈ NC \ U:

(∃K′ ∈ mUcs \ U : K′ ⊆ K) ∨ (∃K′ ∈ mnUcs \ N : K′ ⊇ K)

Each K ∈ NC \ U describes a column combination that should be
a minimal unique according to N, but is not contained in U. Thus,
this element is either a minimal unique and is added to U or it is a
non-unique. In the latter case, it must lead to a new maximal non-
unique according to Lemma 1, because it was not covered so far.
In both cases, we append to U or N and hence eventually converge
to the complete solution. The same holds if N , mnUcs.

4. THE DUCC SYSTEM
Ducc is a system for finding unique and non-unique column

combinations in big datasets. For simplicity, we assume for now
that Ducc is a single-thread process running on a single node. We
relax this assumption in Section 5, where we discuss how Ducc
scales up to several CPU cores and scales out to multiple nodes.

4.1 Overview
Figure 3 illustrates the general architecture of Ducc. Ducc is

composed of a Ducc worker (or worker, for short) that orches-
trates the unique discovery process and a set of light-weight data
structures (position list index (PLI), (non-)uniques graph, and path
trace, explained later). Overall, Ducc first computes a PLI for each
attribute in the input dataset. The PLI of a given attribute (or col-
umn combination) is a list of sets of tuple-ids having the same value
for the given column (or column combination). Notice that PLIs

DUCC

Uniques Graph

Non-Uniques Graph

Seeds

DUCC Worker
getSeed()

isNodePruned()
update()

addPLI()

getPLI()
Path Trace

10

11 12

14

15

13

getNextCC()

PLIs
Repository

Figure 3: Ducc worker architecture.

have also been used by other researchers for discovering functional
dependencies [16] and conditional functional dependencies [3].

Then, Ducc operates as follows: The Ducc worker first fetches
a seed (i.e., an initial column combination) from the set of column
combinations composed of two columns 0 . Then, the worker con-
sults the (non-)uniques graph to check whether it pruned the current
column combination before, i.e., if it is a superset (or a subset) of an
already found unique (non-unique) 1 . If so, the worker then starts
again from 0 . Otherwise, the worker proceeds with the uniqueness
check for the current column combination. For this, the worker
reads the PLIs of all columns of the current column combination 2

. Indeed, the worker might reuse existing PLIs of column combi-
nations relevant to the current column combination. For instance,
assume the Ducc worker has to perform the uniqueness check for
the column combination ABC. If the Ducc worker had previously
computed the PLI for AB, then it would intersect the PLI of AB
with the PLI of C. After the uniqueness check, the worker updates
the (non-)uniques graph 3 . Furthermore, if the current column
combination is non-unique, the worker then adds the resulting PLI
to the repository 4 . This repository is a main memory data structure
having a least-recently-used (LRU) replacement strategy. Then, the
Ducc worker fetches the next column combination to check 5 and
starts again from point 1 . In case that the worker does not find any
unchecked column combination in the current path, it restarts from
point 0 . The worker repeats this process until it does not find more
unchecked column combinations and seeds.

In the remainder of this section, we explain the Ducc worker in
more detail (Section 4.2), then the strategies used by Ducc to ef-
ficiently traverse the lattice of column combinations (Section 4.3),
and the set of light-weight data structures used by Ducc to perform
fast uniqueness checks (Section 4.4).

4.2 DUCC Worker
Algorithm 1 details the way the Ducc worker operates to find

all uniques and non-uniques in a given dataset. Notice that the ap-
proach followed by the Ducc worker is suitable for any bottom-up
and top-down lattice-traversal strategy. The algorithm first checks
each column individually for uniqueness by any suitable tech-
nique (Line 1), e.g., distinctness check in a DBMS. The worker
adds all found unique columns to the set mUc (Line 2). At the
same time, the worker enumerates all pairs of non-unique columns
as seeds, i.e., as starting points for the graph traversal (Line 3).
In the main part of the algorithm (Lines 6–14), the worker pro-
cesses all seeds that are given as starting points. For this, the worker
first chooses a column combination K from the seeds to check for
uniqueness (Line 7). Notice that one can provide any strategyTake

Algorithm 1: DuccWorker
Data: columns
Result: mUcs, mnUcs
check each column for uniqueness;1
mUcs← all unique columns;2
seeds← pairs of non-unique columns;3
mnUcs← ∅;4
repeat5

while seeds , ∅ do6
K← strategyTake(seeds);7
repeat8

if K is unique ∧ all subsets are known to be9
non-unique then

add K to mUcs;10
else if K is non-unique ∧ all supersets are known11
to be unique then

add K to mnUcs;12

K← strategyStep(K);13

until K , null ;14

seeds← strategyNextSeeds();15

until seeds = ∅ ;16

function to decide how the worker chooses K. The advantage of
providing this function is that one can control the parallelization of
the Ducc process (see Section 5 for details). If K is unique and the
worker already classified all subsets as non-unique, the worker then
adds K to mUc (Line 10). Analogously, if K is non-unique and the
worker already classified all supersets as unique, the worker then
adds K to mnUc (Line 12). Next, the worker invokes the strategyS-
tep function to decide on the next column combination to check for
uniqueness. Notice that by providing their own strategyStep, users
can control the way the worker driver has to traverse the graph. If
there are no more column combinations to check in the current path
(i.e., supersets of the current seed), the strategyStep function then
returns null (Line 14). In this case, the worker proceeds with the
next seed (Line 6). The worker repeats this main process until there
are no more seeds.

However, the worker might not cover the complete lattice, be-
cause one might provide highly aggressive pruning strategies in
the strategyStep function (see Section 3.1). Therefore, the worker
may calculate a new set of seeds and reiterate the main pro-
cess (Line 15). For our traversal strategies, Ducc uses the approach
described in Section 3.3 to identify such possible “holes” in the
lattice and use them as new seeds.

4.3 Graph Traversal Strategies
It is worth noting that the strategyTake and strategyStep func-

tions play an important role in the performance of Ducc, because
they guide the Ducc worker in how to explore the lattice (see Sec-
tion 4.2). In this section, we provide two advanced graph traversal
strategies (Greedy and Random Walk) that allow Ducc to traverse
the lattice efficiently. These strategies quickly approach the border
between uniques and non-uniques (see Section 3) and hence allow
Ducc to cover the lattice by visiting only a very small number of
column combinations.

Generally speaking, the main goal of the Greedy strategy is to
find minimal uniques as fast as possible in order to prune all su-
persets from the search space. As a side effect, this strategy also
prunes all subsets of non-uniques that are discovered in the pro-
cess. However, a limitation of the Greedy strategy is that it is not
well suited for parallel computation, because all computation units

Algorithm 2: greedyStep()
Data: Column combination Ki

Result: Next column combination Ki+1

if Ki is non-unique then1
remove all subsets from queue;2
calculate estimates of unchecked supersets;3
update queue with new estimates;4

else5
remove all supersets from queue;6

Ki+1 ← take head from queue;7

can quickly converge to the same combinations causing much re-
dundant computation. One might think of frequently sharing lo-
cal decisions among Ducc workers to deal with this issue, but this
would require significant coordination among Ducc workers. This
is why we introduce the Random Walk strategy, which achieves an
efficient parallelization due to its random nature. Another differ-
ence is that while Greedy approaches the border between uniques
and non-uniques strictly from below, Random Walk jumps back
and forth over the border to approximate its shape faster. Indeed, as
both strategies are two aggressive pruning techniques, they might
miss some column combinations in the lattice (see Section 3.3). We
now discuss in detail the two advanced graph traversal strategies.
Greedy. The main idea of the Greedy strategy is to first visit
those column combinations that are more likely to be unique. For
this, Greedy maintains a priority queue to store distinctness esti-
mates for potentially unique column combinations. The distinct-
ness d : S → (0; 1] is the ratio of the number of distinct values
over the number of all values. A distinctness d(K) = 1 means
that column combination K is unique; the distinctness of a col-
umn combination with many duplicates approaches 0. A sophisti-
cated estimation function may allow Ducc to better prune the search
space, but it can be too costly to perform, outweighing any accu-
racy gain. Thus, we favor a simple estimation function d̃ inspired
by the addition-law of probability:

d̃(P1P2) = d(P1) + d(P2) − d(P1) ∗ d(P2) (1)

Using the above estimation function, we use a greedyTake func-
tion (which is an implementation of strategyTake) that chooses the
seed with the highest estimate. Similarly, we use a greedyStep
function (which is an implementation of strategyStep) as shown
in Algorithm 2. For each given non-unique column combina-
tion, greedyStep removes all subsets of the given column combi-
nation from the priority queue (Line 2), calculates the estimates
for every unchecked superset (Line 3), and updates the priority
queue (Line 4). In turn, for each given unique column combi-
nation, greedyStep simply removes all supersets of the given col-
umn combination from the priority queue (Line 6). At the end,
greedyStep returns the elements with the highest estimated distinct-
ness (Line 7). This means that Greedy returns either a superset or
subset of the given column combination.
Random Walk. This strategy traverses the lattice in a randomized
manner to reduce both unnecessary computation and the coordina-
tion among workers. Random Walk strategy starts walking from a
seed upwards in the lattice until it finds a unique and then it goes
downwards in the lattice until it finds a non-unique. When Ran-
dom Walk finds a non-unique, it again walks upwards looking for a
unique and so on. The main idea behind Random Walk is to quickly
converge to the “border” in the lattice that separates the uniques
from the non-uniques and walk along such a border. All minimal
uniques and maximal non-uniques lie on this border. In contrast to

Algorithm 3: randomWalkStep()
Data: Column combination Ki

Result: Next column combination Ki+1

push Ki into trace;1
if Ki is unique ∧ ∃ unchecked subsets then2

Ki+1 ← random unchecked subset;3
else if Ki is non-unique ∧ ∃ unchecked supersets then4

Ki+1 ← random unchecked superset;5
else6

Ki+1 ← pop trace7

Greedy, Random Walk reduces the likelihood of converging to the
same column combinations when running in parallel.

Random Walk implements a randomWalkTake function
(i.e., strategyTake) that chooses a seed randomly. Additionally,
Random Walk maintains a Path trace, which is initialized with the
seed. For walking through the lattice, this strategy implements a
randomWalkStep function (i.e., strategyStep) that works as shown
in Algorithm 3. First, Random Walk pushes the current column
combination into the path trace. Next, it verifies whether the
current column combination is unique. If it is, Random Walk then
goes down to a random, yet unchecked subset (Line 3). If not, it
analogously chooses a random superset (Line 5). If Random Walk
cannot make any additional step from the current combination, it
then backs up one step and uses the previous combination (Line 7).
The strategy repeats this process until it completely explored the
reachable lattice from the given seed. It is worth noting that Lines 3
and 4 check not only for (non-)uniqueness, but also check whether
the current column combination is covered by a known unique or
non-unique. This strategy allows Random Walk to lazily prune the
search space from the bottom and the top similar to Greedy.

4.4 Light-Weight Data Structures
At its core, Ducc uses a set of data structures that allows it to

quickly check if a given column combination is either unique or
non-unique. The three most important data structures used by Ducc
are: a position list index, a (non-)uniques graph, and a path trace.
Generally speaking, Ducc uses: (i) the position list index to effi-
ciently perform a uniqueness check, (ii) the (non-)unique graph to
avoid uniqueness checks of already pruned column combinations,
and (iii) the path trace to quickly obtain the next column combina-
tion (in the current path) to check. We discuss each of these data
structures in the following.
Position list index. Ducc combines row-based pruning with the
column-based pruning presented in Section 3. When performing
a uniqueness check, we could naı̈vely scan over all rows until we
find a duplicate if existent. However, non-uniques near the border
to uniqueness usually have very few duplicates. We observed that
more than 95% of the maximal non-uniques in fact have only up to
10 duplicate pairs in our real datasets with millions of rows.

The position list index (PLI) and its novel intersection algorithm
is the core of the row-based pruning of Ducc. PLI is a data structure
that keeps track of duplicate tuples for a specific column (or col-
umn combination). In other words, each entry in the PLI of a given
column is a set of tuple-ids having the same value for the given col-
umn. For example, given an attribute a with two sets of duplicates
(records r42 and r10 for the value v1 and records r7 and r23 for the
value v2), the PLI of a is as follows: PLIa = {{r42, r10}, {r7, r23}}.
Since PLIs track only duplicates in a column (or column combi-
nation), Ducc maintains one PLI for each non-unique column (and
column combination) in a relation. Therefore, columns or column

A = {{r1, r2, r3}, {r4, r5}} = {A1, A2}
B = {{r1, r3}, {r2, r5}} = {B1, B2}

r1 --> A1
r2 --> A1
r3 --> A1
r4 --> A2
r5 --> A2

(A1, B1) --> {r1, r3}
(A1, B2) --> {r2}
(A2, B2) --> {r5}

build(A) probe(B)

AB = {{r1, r3}}

11
12

13 get(AB)

initial PLIs

resulting PLI
Figure 4: Example of intersecting two PLIs.

combinations without a PLI are uniques. Notice that Ducc com-
putes the PLI of a column combination by intersecting the PLIs of
its subsets. As a result of using PLIs, Ducc can also apply row-
based pruning, because the total number of positions decreases
monotonously with the size of column combinations. Intuitively,
combining columns makes the contained combination values more
specific with the tendency towards distinctness. This means that
each intersection of PLIs results in smaller- or equal-size PLIs for
the values of the considered column combinations. We observed
that the size of such PLIs follow a power law distribution, where
the size of most PLIs are in the order of KBs for TBs-sized datasets.
It is worth noticing that Ducc intersects two PLIs in linear time in
the size of the smaller PLI. This allows Ducc to perform an inter-
section in a few milliseconds. In fact, Ducc intersects two PLIs in a
similar way in which a hash join operator would join two relations.

Figure 4 shows an example of intersecting two PLIs (A and B).
The PLIs A and B are composed of two different sets of duplicate
records each: A1 and A2 for A and B1 and B2 for B. In this scenario,
Ducc first builds a mapping between each duplicate record ri to the
set of duplicates they point to 1 , e.g., r1 points to set A1. Ducc uses
this mapping to probe each duplicate record in B 2 . This results
in a set of duplicate records that appear in both PLIs. For example,
records r1 and r3 appear in the resulting sets A1 and B1, record r2

appears in the resulting sets A1 and B2, and record r5 appears in the
resulting sets A2 and B2. Notice that record r4 does not appear in
any resulting set, because it appears in only one set (set A2). Finally,
Ducc keeps those resulting sets with more than one record 3 . In
this example, Ducc retains the set with the records r1 and r3.
(Non-)Uniques graph. The (non-)unique graph is a data structure
that maintains, for each column, a list of non-redundant uniques
and non-uniques containing the column. This data structure allows
Ducc to use a lazy pruning strategy rather than using an eager prun-
ing strategy1. In particular, Ducc uses the (non-)uniques graph to
check if any given column combination is a superset (or subset) of
an already found unique (non-unique) column combination. The
main goal of performing this check for a given column combina-
tion is to save CPU cycles by avoiding intersecting the PLIs of the
columns in the given column combination as well as ending the
search path as early as possible. The challenge is that we have
to check whether a superset or subset of any given column com-
bination exists in the order of few milliseconds. Otherwise, this
checking becomes more expensive than the PLIs intersection itself.
For each column, Ducc indexes all non-redundant (non-)uniques in
which the column is involved in order to achieve fast lookups of the

1Using an eager pruning strategy would require Ducc to materialize
the entire lattice in main memory, which is infeasible.

(non-)uniques graph. Indeed, the index size of a column might be-
come too large, which, in turn, increases lookup times. Therefore,
we use a main memory-based, dynamic hash-based index structure.
The idea is that whenever the index of a given column becomes too
big, we split the index into smaller indexes of column combinations
having such a column. For example, assume a relation with four at-
tributes: A, B, C, and D. If the index for column A (or for column
combination BD) goes beyond a given threshold, we split such an
index into the indices AB, AC, and AD (respectively, into indexes
ABD, BCD). This allows us to guarantee on average fast lookups
on the (non-)uniques graph.
Path trace. Since Ducc can traverse the lattice by going up and
down, Ducc uses this data structure to efficiently find another path
to explore when it finishes checking all column combinations of a
single path. The way Ducc implements this data structure depends
on the graph traversal strategy it uses. Random Walk keeps track
of previously visited column combinations in a stack-like trace.
In contrast, Greedy maintains a Fibonacci heap that ranks column
combinations by their estimated distinctness.

5. SCALING DUCC UP AND OUT
So far, we assumed that Ducc runs on a single computing node

and without multi-threading. While that setup might be enough
for several applications, when dealing with big data one should
use several CPU cores and multiple computing nodes. We now
relax the assumption and discuss how Ducc can scale to several
CPU cores as well as to several computing nodes. In this section,
we present a general inter-process communication protocol to scale
Ducc up and out at the same time with a low synchronisation over-
head. We discuss these two points in the remainder of this section.

5.1 Scale Up
As Ducc is mainly CPU-bound, one might think that by scal-

ing the CPU up (in terms of speed and number of cores) Ducc
can achieve linear scalability by running in a multi-threading man-
ner. However, multi-threading comes at a price: it usually incurs
a high overhead due to data structure locking and threads coordi-
nation [26]. To overcome this issue, Ducc mainly relies on a lock-
free coordination mechanism, which allows Ducc to have almost
no overhead when scaling up to several threads.
Lock-free worker coordination. Running on multiple workers re-
quires Ducc to propagate the observations2 done by each worker
to others workers in order to avoid redundant computations across
workers. A simple way of doing this would be by sharing the
(non-)uniques graph among all Ducc workers. Ducc would re-
quire a locking mechanism to coordinate all write operations to
these graphs. However, it has been shown by other researchers that
locking mechanisms usually incur high overheads [26]. Therefore,
Ducc uses a lock-free coordination mechanism to propagate obser-
vations among workers. This mechanism mainly relies on two fea-
tures. First, each Ducc worker maintains a local copy of all uniques
and non-uniques column combinations already observed by other
workers (internal (non-)uniques graph, for short). Second, Ducc
workers share a local event bus to efficiently propagate observa-
tions across workers. Thus, the synchronization between threads is
reduced to concurrent access on the event bus. Figure 5 illustrates
the distributed architecture of Ducc.

2An observation is a mapping of a column combination to a status
type. There exist six different possible statuses for a column com-
bination: mUc, mUc candidate, Uc, mnUc, mnUc candidate, and
nUc.

Distributed Event Bus
Inter-NodeUpdate()

NO
DE

 n

...

DUCC Worker wDUCC Worker 1 ...

Seed Provider
addPLI()
getPLI()

newSeeds() newSeeds()

Local Event Bus

Intra-NodeUpdate() Intra-NodeUpdate()

NODE 1

Inter-NodeUpdate()

addPLI()
getPLI()

11 11

12 12

PLIs Repository

Figure 5: Ducc distributed architecture.

Producer-consumer pattern. This local event bus operates in a
producer-consumer manner to avoid that a Ducc worker waits for
observations made by other Ducc workers. Each Ducc worker sub-
scribes and exposes an event queue to the local event bus. When
a Ducc worker finishes with the uniqueness check of a given col-
umn combination, it updates its internal (non-)uniques graph with
the resulting observation, and pushes such an observation to the
local event bus (1 in Figure 5). In turn, the local event bus en-
queues every incoming observation into the event queue of each
subscribed Ducc worker. Then, a Ducc worker updates its inter-
nal (non-)uniques graph with the observations that are in its own
event queue, i.e., with the observations made so far by other work-
ers. Ducc workers pull observations from their queues right after
pushing their own observations to the local event bus. The main
advantage of this mechanism is that it allows a Ducc worker to up-
date its internal (non-)uniques graph as well as to push and pull the
resulting observations in the order of microseconds.
Asynchronous seed provider. A limitation in scaling up is the dis-
covery of holes. Near the end of one iteration of Ducc (i.e., when all
workers eventually run out of seeds), workers redundantly perform
the same calculation to find new seeds. Therefore, we extracted the
seed calculation process into a separate thread “seed provider”. The
seed provider continuously tries to detect new holes when new min-
imal uniques or maximal non-uniques have been found and prop-
agated over the local event bus. The order in which Ducc chooses
each seed depends on the strategy used by Ducc to traverse the
graph (in particular on the strategyTake function).

5.2 Scale Out
Indeed, only scaling Ducc up does not help us to deal with big

datasets in an efficient manner, as big datasets are typically in the
order of terabytes or petabytes: bringing one petabyte of raw data
into main memory using a single computing node with one hard
disk (having a sustained rate of 210MB/s) would take 59 days.
Therefore, it is crucial for Ducc to scale out to many computing
nodes to efficiently deal with big datasets. To achieve this, Ducc
uses the Hadoop MapReduce framework to parallelize the unique
discovery process across several computing nodes. While Ducc
executes one MapReduce job to create the initial PLIs and dis-
tribute it with HDFS, the main lattice traversal runs in a map-only
MapReduce job where each map task takes a seed at random and
traverse the graph starting from the chosen seed as explained in
Section 4. To prune the search space, each map task maintains
a PLI, a (Non-)Uniques Graph, and a Path Trace data structure lo-
cally, as explained in Section 4.4. However, maintaining these three
light-weight data structures only locally would make each map task
perform redundant work. Thus, map tasks share their observations

with each other. However, propagating hundreds of thousands (or
even millions) of observations through the network would also neg-
atively impact the performance of Ducc.

To deal with this problem, Ducc uses a selective inter-node com-
munication, which allows Ducc to make a tradeoff between net-
work traffic and redundant work. The idea is to propagate only
the observations concerning minimal uniques and maximal non-
uniques across nodes (4 in Figure 5), which by definition prune
more combinations than non-minimal/maximal combinations and
we have thus a good ratio between communication overhead and
pruning effect. Additionally, each worker needs less time to main-
tain its (non-)unique graph, which becomes increasingly important
when scaling out to multiple of computing nodes. Ducc leverages
Kafka (kafka.apache.org) as distributed event bus to efficiently
propagate local observations to all Ducc workers. Similar to the lo-
cal event bus (see Section 5.1), the distributed event bus follows the
same producer-consumer pattern. The local event bus subscribes
and exposes an event queue to the the distribute event bus, which in
turn enqueues every incoming observation into the queue of each
subscriber. Nonetheless, in contrast to the local event bus, the dis-
tributed event bus propagates observations regarding only minimal
uniques and maximal non-uniques to avoid congesting the network.

6. EXPERIMENTS
We evaluate the efficiency of Ducc to find minimal unique col-

umn combinations and maximal non-unique column combinations.
We compare Ducc with two state-of-the-art approaches: Gor-
dian [25] and HCA [1]. We perform the experiments with three
main objectives in mind: (i) to evaluate how well Ducc performs
with different numbers of columns and rows in comparison to re-
lated work; (ii) to measure the performance of Ducc when scaling
up to several CPU cores; (iii) to study how well Ducc scales out to
several computing nodes.

6.1 Setup
Server. For all our single node experiments, we use a server with
two 2.67GHz Quad Core Xeon processors; 32GB of main memory;
320GB SATA hard disk; Linux CentOS 5.8 64-bit; 64-bits Java 7.0.
Cluster. For our scale-out experiments, we use a cluster of nine
computing nodes where each node has: Xeon E5-2620 2GHz with
6 cores; 24GB of main memory; 2x 1TB SATA hard disk; one
Gigabit network card; Linux Ubuntu 12.04 64-bit version. Each
computing node has a 64-bits Java 7.0 version installed. One node
acts as a dedicated Hadoop, Kafka, and ZooKeeper master.
Datasets. We use two real-world datasets and one synthetic
dataset in our experiments. The North Carolina Voter Registration
Statistics (NCVoter) dataset contains non-confidential data about
7,503,575 voters from the state of North Carolina. This dataset is
composed of 94 columns and has a total size of 4.1GB. The Uni-
versal Protein Resource (UniProt, www.uniprot.org) dataset is a
public database of protein sequences and functions. UniProt con-
tains 539,165 fully manually annotated curated records and 223
columns, and has a total size of 1GB. Additionally, we use the syn-
thetic lineitem table with scale-factor 1 from the TPC-H Bench-
mark. The lineitem table has 16 columns. For all datasets the num-
ber of unique values per column approximately follows a Zipfian
distribution: few columns have very many unique values and most
columns have very few unique values.
Systems. We use Gordian [25] and HCA [1] as baselines. While
Gordian is a row-based unique discovery technique, HCA is an
improved version of the bottom-up apriori technique presented
in [10]. We made a best-effort java implementation of Gordian

according to the description given in [25]. For HCA, we use the
same prototype as in [1], but, for fairness reasons, we store the in-
put dataset in main memory rather than in a disk-based database.
For the scale-out experiments, we use Hadoop v0.20.205 with the
default settings. For all our experiments, we execute these three
systems three times and report the average execution times. Fi-
nally, it is worth noting that we do not show the results for Ducc
using the Greedy strategy, because the results are very similar to the
results obtained by Ducc when using the Random Walk strategy.

6.2 Scaling the Number of Columns
In these experiments, we vary the number of columns to evalu-

ate how well Ducc performs with respect to wide tables. We limit
the number of rows to 100k to better evaluate the impact in perfor-
mance of having a different number of columns.

Figure 6a illustrates the results for NCVoter. For few columns,
such as 5 and 10, all algorithms finish in seconds. However, in
both cases Gordian performs worst by needing each time more
than 20 seconds while Ducc and HCA both finish within 2 sec-
onds for 5 columns. On the dataset with 10 columns. Ducc is with
3 seconds runtime already faster than HCA, which needs more than
8 seconds. From 15 columns, Gordian starts to outperform HCA by
nearly one order of magnitude. As the number of columns increases
the bottom-up approach HCA runs into problems. The runtime of
Ducc stays below 4 seconds, outperforming HCA by 2 orders of
magnitude and Gordian by one order of magnitude. On the dataset
with 20 columns HCA is already by more than 2 orders of magni-
tudes slower than Gordian and is not able to finish on the dataset
with 25 columns within 10 hours. Comparing to HCA, the runtime
of Gordian increases moderately until 55 columns when Gordian
is also not able to finish in 10 hours. On 50 columns Ducc is still
one order of magnitude faster than Gordian and is also able to pro-
cess the NCVoter dataset with up to 65 columns in 5.7 hours.

Figure 6b shows the results for the UniProt dataset. In these
results, we observe a similar behaviour of all three systems as
in the results for the NCVoter dataset. As this dataset has fewer
and smaller uniques, all algorithms perform better than on the
NCVoter dataset. In the experiments with 5 and 10 columns, Ducc
is slightly slower than HCA since the only existent uniques are sin-
gle columns, which benefit HCA. Still, Ducc is one order of mag-
nitude faster than Gordian, which mainly suffers from the overhead
of creating the prefix tree. From 15 columns on, we observe that
the runtime behavior is similar to the experiments on the NCVoter
dataset. Ducc significantly outperforms HCA and increases its im-
provement factor over Gordian as more and larger uniques can be
found in the lattice. For example, Ducc is already two orders of
magnitude faster than HCA for 15 columns: Ducc runs in 4.7 sec-
onds while HCA runs in 485 seconds. This difference in perfor-
mance increases significantly on 20 columns, where Ducc runs in
5.7 seconds and HCA runs in 2,523 seconds. Again, we aborted
HCA after 10 hours for the experiment with 25 columns. Ducc
outperforms Gordian already from 25 columns on by more than
one order of magnitude. When running over 50 columns, Ducc
is almost three orders of magnitude faster than Gordian. We also
observe that only Ducc finishes the experiment on 70 columns (in
nearly three hours).

Figure 6c illustrates the results for the lineitem table from the
TPC-H benchmark. These results show again that, for few columns
(5 columns), Ducc has the same performance as HCA and more
than one order of magnitude better performance than Gordian.
Ducc and HCA finished both in 2 seconds while Gordian needed
30 seconds. Ducc significantly outperforms both Gordian and
HCA on more than 5 attributes. In general, as lineitem contains

kafka.apache.org
www.uniprot.org

●

●

●

●
lo

g
E

xe
cu

tio
n

T
im

e
(s

)

Number of Columns

5 10 15 20 25 30 35 40 45 50 55 60 65
1

10

100

1000

10000
GORDIAN
HCA
DUCC

(a) NCVoter

●

●

●

●

Number of Columns

lo
g

E
xe

cu
tio

n
T

im
e

(s
)

5 10 15 20 25 30 35 40 45 50 55 60 65 70
1

10

100

1000

10000
GORDIAN
HCA
DUCC

(b) UniProt

●

●

● ●

lo
g

E
xe

cu
tio

n
T

im
e

(s
)

Number of Columns

5 10 15 16
10^0

10^1

10^2

10^3

10^4
● GORDIAN

HCA
DUCC

(c) TPC-H

●

●

●

lo
g

E
xe

cu
tio

n
T

im
e

(s
)

Number of Rows

10,000 100,000 1,000,000 7,503,575
1

10

100

1000

10000
GORDIAN
HCA
DUCC

(d) NCVoter

●

●

●

lo
g

E
xe

cu
tio

n
T

im
e

(s
)

Number of Rows

10,000 100,000 539,165
1

10

100

1000

10000
GORDIAN
HCA
DUCC

(e) UniProt

●

●

●

lo
g

E
xe

cu
tio

n
T

im
e

(s
)

Number of Rows

10,000 100,000 1,000,000 6,001,215
1

10

100

1000

10000
GORDIAN
HCA
DUCC

(f) TPC-H

Figure 6: Scaling the number of columns on 100,000 rows (top) and scaling the number of rows on 15 columns (bottom).

only 16 columns, all algorithms could deal with the column dimen-
sion of this dataset. However, Ducc was one order of magnitude
faster than HCA running on 10 columns and two orders of magni-
tude on 15 and 16 columns. Throughout all column configurations,
Ducc was one order of magnitude faster than Gordian.

In summary, we observe that HCA has low performance on
datasets with many columns: HCA must verify all column com-
binations on the lower levels of the lattice in order to discover min-
imal uniques of large size. In contrast, Ducc keeps visiting relevant
nodes around the minimal uniques and maximal non-uniques bor-
der only. For example, on the UniProt dataset with 20 columns
and 92 minimal uniques in a solution space of 220 − 1 = 1, 048, 575
combinations, Ducc performs only 756 uniqueness checks resulting
into 1,156 intersections while HCA has to perform 31,443 verifica-
tions. Furthermore, Gordian runs into performance bottlenecks at
two stages. First, Gordianmainly operates on a prefix tree, which is
expensive to create in many cases. Second, Gordian requires con-
siderable amount of time to generate minimal uniques from maxi-
mal non-uniques when input datasets have a high number of min-
imal uniques. Finally, we observe that, in contrast to Gordian and
HCA, Duccmainly depends on the number of minimal uniques and
not on the number attributes.

6.3 Scaling the Number of Rows
We now evaluate Ducc under a different number of rows and

compare it to both Gordian and HCA. For this, we fixed the num-
ber of columns of each dataset at 15, because Gordian and HCA
significantly decrease their performance for more columns. Then,
we scale each dataset (starting from 10,000 rows) by a factor of 10
until we reached the total size of the dataset.

Figure 6 shows the results for these experiments. We observe
in Figure 6d that only Ducc was able to finish the total dataset
within the 10 hour time frame: it finishes in 294 seconds. We had
to abort both Gordian and HCA after ten hours. We observe that
Ducc outperforms both Gordian and HCA in general. In particular,
we observe that the improvement factor of Ducc over both Gordian
and HCA increases as the number of rows increases. For example,

Ducc is 5x faster than HCA (and 1.25x faster than Gordian) for
10k rows and 185x faster than HCA (225x faster than for Gordian)
for 1 million rows.

Figure 6e illustrates the results for UniProt, which is much
smaller than NCVoter. We observe that Ducc outperforms both
Gordian and HCA from 100,000 rows by more than one order of
magnitude. Especially, Ducc outperforms both systems by two or-
ders of magnitude on the complete dataset.

Figure 6f shows the results for TPC-H. Here, we observe the
same behavior as for NCVoter and UniProt. Ducc outperforms
Gordian and HCA by more than two orders of magnitude. In fact,
Ducc is the only one that was able to finish line item with a scale
factor of 1 (which contains more than 6 million rows).

In general, we see that Ducc is clearly superior to both baseline
systems in all our experiments. Especially, we observed that this is
due to the fact that Duccmainly depends on the number of minimal
uniques and not on the number of columns. We study this aspect
in detail in the next subsection. Notice that we focus only on Ducc
in these new experiments since we already showed that it is much
faster than both baseline systems.

6.4 Number of Uniqueness Checks
In the previous two subsections, we observed that Ducc performs

increasingly better on larger numbers of columns and rows than the
previous approaches. The reason is that, in contrast to state-of-the-
art algorithms, Ducc mainly depends on the solution set size and
not on the number of columns. As a result, Ducc conducts a much
smaller number of uniqueness checks.

Figure 7 illustrates the correlation between the number of
uniqueness checks performed by Ducc and the number of minimal
uniques for NCVoter with 5 to 70 columns. In this figure, the line
denotes the regression line and the data points are the real num-
ber of uniqueness checks performed by Ducc to find all minimal
uniques. Please note that the points for up to 35 columns are near
to (0, 0). We observe a strong correlation (coefficient of determi-
nation R2=0.9983) between the number of checks performed by
Ducc and the number of minimal uniques. This clearly shows that

Minimal uniques

U
ni

qu
en

es
s

ch
ec

ks

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

10,000 30,000 50,000 70,000 90,000 110,000

R2 = 0.9983

Figure 7: Correlation analysis of mUcs and Uniqueness checks.

● ● ●
●

●

●

●

●

Number of Columns

E
xe

cu
tio

n
T

im
e

(s
)

5 10 15 20 25 30 35 40

0

5,000

10,000

15,000 ● 1 Thread
2 Threads
4 Threads
8 Threads

Figure 8: Scale-up on the entire NCVoter dataset.

Ducc approaches the border between uniques and non-uniques very
efficiently. For example for 70 columns, Ducc performs 476,881
intersections to find the 125,144 minimal uniques. This number of
checks is roughly double as high as the lower bound to find all min-
imal uniques. The lower bound, in turn, is given by the number of
minimal uniques plus the distinct number of their subsets to verify
minimality. It is worth noting that Ducc performs more checks than
the lower bound, because it has to check some additional column
combinations that are also candidates for being in mUc or mnUc.

6.5 Scale-Up
So far, we could observe the high superiority of Ducc over state-

of-the-art systems. Noneteheless, we also observed in Figures 6a
and 6b that Ducc could not finish within 10 hours. Therefore, we
now evaluate how well Ducc exploits multiple CPU cores to im-
prove execution times. For this, we use the entire NCVoter dataset
since this is the biggest dataset and Ducc showed its limitations
with this dataset. Later, in Section 6.6, we study how well Ducc
scales to multiple compute nodes to further improve performance.

Figure 8 shows the scale up results for Ducc. As expected, we
see that using more workers speed up Ducc significantly with in-
creasing number of columns. In particular, we observe that four
working threads perform more than twice faster than one thread
for 20 or more columns. Adding the hyperthreaded cores does not
speed up the task any further. The suboptimal speedup is caused
by overlapping paths of the random walk algorithm. Although re-
dundant intersections can be avoided with our (non-)unique graphs,
Ducc still needs to find unseen paths for each thread. This becomes
increasingly difficult with later iterations. Especially, plugging
holes becomes a bottleneck for parallelization, because the seed
provider takes longer to detect the holes than the worker threads
need to plug them. It is worth noticing that, at the end, many of the
working threads idle or perform redundant checks in parallel.

● ● ●
●

●

●

●

●

Number of Columns

E
xe

cu
tio

n
T

im
e

(s
)

0

5,000

10,000

15,000

20,000

20 25 30 35 40 45 50

● 1 node
2 nodes
4 nodes
8 nodes

(a) Nodes with 1 thread

● ● ● ●
●

●
●

●

Number of Columns

E
xe

cu
tio

n
T

im
e

(s
)

0

5,000

10,000

15,000

20,000

20 25 30 35 40 45 50

● 1 node
2 nodes
4 nodes
8 nodes

(b) Nodes with 4 threads
Figure 9: Scale-Out on the entire NCVoter dataset

In summary, adding more working threads speeds up Ducc sig-
nificantly, especially in the beginning. However, scaling up does
not help to process datasets that do not fit into main memory.

6.6 Scale-Out
In Sections 6.2 and 6.3, we have considered a single node in

all our experiments for fairness reasons with respect to baseline
systems. We now release this assumption and run Ducc on up to
eight nodes to measure the impact of scaling out. At the same time,
we also scale-up on each individual node.

Figure 9 shows the results when using 1, 2, 4, and 8 computing
nodes (each node with 1 and 4 threads). We see a similar speed-up
when scaling out in comparison to scaling up. Interestingly, there
is not a significant difference in running 4 workers on 1 machine or
4 machines with 1 worker. Thus, depending on the infrastructure at
hand, users may decide to speed up the process by using a few big
machines or several small machines. For example, for 45 columns,
increasing the nodes with one thread from two to eight decreases
the runtime by factor 3. Increasing the number of threads to four
further halves the runtime. Finally, we also observed in our exper-
iments that the overhead of scaling out with Hadoop is negligible:
1.5 minutes on average. These results show the high efficiency of
Ducc to scale out at a very low overhead.

7. NULL-VALUE SEMANTICS
In our discussion and problem definition we have yet ignored the

presence of null-values (⊥) in the data. We have thus implicitly
assumed a SQL-semantic in which (⊥ = ⊥) evaluates to unknown
and thus two null-values do not constitute a duplication of values.
Discovered uniques conform to SQL’s UNIQUE constraint, which
allows only unique non-⊥-values and multiple ⊥-values. In an ex-
treme case, a column with only nulls forms a minimal unique.

Table 1: Example relation for different null-values semantics.

A B C D
a 1 x 1
b 2 y 2
c 3 z 5
d 3 ⊥ 5
e ⊥ ⊥ 5

An alternative semantics is to let (⊥ = ⊥) evaluate to true:
in effect ⊥-values are not distinct and multiple ⊥-values render a
column non-unique. To illustrate the difference for our problem,
regard the small relation of Table 1. Under SQL semantics we can
identify both A and C as minimal uniques and BD as maximal non-
unique. Maybe surprisingly and for a data analyst un-intuitive, the

●

●

●

●
●

●
●

●
●

● ● ●
●

● ●
●

●
●

● ● ● ●●

lo
g

E
xe

cu
tio

n
T

im
e

(s
)

Number of Columns

10 30 50 70 90 110 130 150 170 190 210
1

100

10000

Time (Null = Null)
Time (Null != Null)

Figure 10: Comparing the null semantics in UniProt.

uniqueness of C implies that also CD is unique. This interpreta-
tion changes under the alternative semantics. There, A and BC are
minimal uniques, and BD and CD are maximal non-uniques. Both
semantics are of interest in a data profiling context.

The implementation of this alternative requires only a small
change in the Ducc algorithm: When creating the initial PLIs, we
retain a group of all ⊥-values and thus mark them as duplicates.
In this way, we save significant time, because the solution set con-
tains orders of magnitudes fewer minimal uniques. Hence, Ducc
can process the complete lattice more quickly.

Figure 10 shows an experiment in which we were able to de-
tect all 841 minimal uniques in the complete UniProt dataset with
223 columns in only 4 hours. Notice that this is infeasible with
state-of-the-art algorithms even with this alternative semantics of
null-values. Furthermore, the alternative semantic has the addi-
tional benefit that both the number as well as the size of the mini-
mal uniques are more manageable: The largest minimal unique had
nine columns and the median minimal unique seven. With the SQL
semantics, minimal uniques can easily consist of half the columns.

8. RELATED WORK
Even if the topic of discovering unique column combinations

is of fundamental relevance in many fields (such as databases
and bioinformatics), there have been only few techniques to solve
this problem. Basically, there exist only two different classes of
techniques in the literature: column-based and row-based tech-
niques [1, 10, 25].

Row-based techniques benefit from the intuition that non-
uniques can be detected without considering all rows in a table.
Gordian [25] is an example of row-based techniques. Gordian pre-
organizes the data of a table in form of a prefix tree and discovers
maximal non-uniques by traversing the prefix tree. Then, Gordian
computes minimal uniques from maximal non-uniques. The main
drawback of Gordian is that it requires the prefix tree to be in main
memory. However, this is not always possible, because the pre-
fix tree can be as large as the input table. Furthermore, generating
minimal uniques from maximal non-uniques can be a serious bot-
tleneck when the number of maximal non-uniques is large [1].

Column-based techniques, in turn, generate all relevant column
combinations of a certain size and verify those at once. Giannella
et al. proposed a column-based technique for unique discovery that
can run bottom-up, top-down, and hybrid with regard to the power-
set lattice of a relation’s attributes [10]. Their proposed technique
is based on the apriori intuition that supersets of already discovered
uniques and subsets of discovered non-uniques can be pruned from
further analysis [2]. However, this approach does not scale in the
number of columns, as realistic datasets can contain uniques of very
different size among the powerset lattice of column combinations.

Furthermore, their verification step is costly as it does not use any
row-based optimization. In [1], we presented HCA, an improved
version of the bottom-up apriori technique presented in [10]. HCA
performs an optimized candidate generation strategy, applies statis-
tical pruning using value histograms, and considers functional de-
pendencies (FDs) that have been inferred on the fly. Furthermore,
we combined the maximal non-unique discovery part of Gordian
with HCA, leading to some performance improvements on datasets
with large numbers of uniques. However, as HCA is based on his-
tograms and value-counting, there is no optimization with regard to
early identification of non-uniques in a row-based manner.

Ducc combines the benefits of row-based and apriori-wise
column-based techniques (see Section 4.4 for details), which al-
lows it to perform by orders of magnitude faster than the above
mentioned existing work.

There exist other techniques that are related to unique discovery.
Grahne and Zhu present an apriori approach for discovering ap-
proximate keys within XML data [13]. Their algorithm evaluates
discovered key candidates by the metrics support and confidence.
As a side effect of using position lists to keep track of duplicate val-
ues in Ducc, one can easily extend Ducc to support the discovery
of approximate keys. Moreover, the discovery of FDs [15,16,19] is
also very similar to the problem of discovering uniques, as uniques
functionally determine all other individual columns within a ta-
ble. Thus, some approaches for unique discovery incorporate the
knowledge on existing FDs [1,24]. Saiedian and Spencer presented
an FD-based technique that supports unique discovery by identify-
ing columns that are definitely part of all uniques and columns that
are never part of any unique [24]. They showed that given a min-
imal set of FDs, any column that appears only on the left side of
a FD must be part of all keys. In contrast, any column that ap-
pears only on the right side of a FD cannot be part of any key. It
is worth noting that considering FDs for pruning the lattice more
aggressively is complementary to Ducc. Also related to discovery
of Ucs are the discovery of conditional functional dependencies
(CFDs) [7, 9, 12], inclusion dependencies (INDs) [4, 21, 27] and
conditional inclusion dependencies (CINDs) [3, 5]. However, like
Gordian and HCA (but in contrast to Ducc), all these techniques
depend on the number of attributes and hence they do not scale up
to big datasets. Finally, more references and discussions on more
general concepts of strict, approximate, and fuzzy dependencies
can be found in [6,8,18]. But, all these works are orthogonal to the
techniques presented in this paper.

9. CONCLUSION
In this paper, we addressed the problem of finding all unique and

non-unique column combinations in big datasets (i.e., in datasets
having several millions rows and hundreds attributes). The unique
discovery problem is quite challenging given the exponential num-
ber of column combinations to check. In fact, it has been shown
to be an NP-hard problem [14]. Existing approaches propose ef-
ficient techniques, but none are designed with very large datasets
in mind [1, 10, 14, 16, 25]. Therefore, all these techniques strongly
depend on the number of columns and hence they suffer from scal-
ability issues.

We presented Ducc, a highly scalable and efficient approach
to find (non-)unique column combinations in very large datasets.
Ducc uses a novel hybrid graph traversal technique, which is a com-
bination of the depth-first and random walk strategies. Ducc starts
traversing the graph in a depth-first manner until it finds the first
unique and then it starts following the boundary between uniques
and non-uniques in a random walk manner. This allows Ducc to
mainly depend on the solution set size rather than on the number

of columns. Ducc also uses several light-weight structures that al-
low it to perform uniqueness checks in just a few milliseconds. As
a result of its graph traversal technique and its light-weight data
structures, Ducc can efficiently find uniques and non-uniques in
very large datasets. Additionally, Ducc runs on several CPU cores
and computing nodes to achieve even a higher scalability.

We evaluated Ducc using two real-world and one synthetic
datasets and compared it with two state-of-the-art systems: Gor-
dian and HCA. The results show the high superiority of Ducc
over both; Ducc is up to 631x faster than Gordian and up to 398x
faster than HCA. A series of scalability experiments showed the ef-
ficiency of Ducc to scale up to several CPU cores and to scale out to
multiple computing nodes. Also, our experimental results showed
that Ducc mainly depends on the solution set size and not on the
number of columns. As a result, Ducc can achieve what before
was not possible: processing datasets with hundreds of columns
and many millions of records.

10. REFERENCES
[1] Z. Abedjan and F. Naumann. Advancing the discovery of

unique column combinations. In Proceedings of the
International Conference on Information and Knowledge
Management (CIKM), pages 1565–1570, 2011.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the
International Conference on Very Large Databases (VLDB),
pages 487–499, 1994.

[3] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and
F. Naumann. Discovering conditional inclusion
dependencies. In Proceedings of the International
Conference on Information and Knowledge Management
(CIKM), pages 2094–2098, 2012.

[4] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz.
Efficiently detecting inclusion dependencies. In Proceedings
of the International Conference on Data Engineering
(ICDE), pages 1448–1450, 2007.

[5] L. Bravo, W. Fan, and S. Ma. Extending dependencies with
conditions. In Proceedings of the International Conference
on Very Large Databases (VLDB), pages 243–254, 2007.

[6] P. G. Brown and P. J. Haas. BHUNT: Automatic discovery of
fuzzy algebraic constraints in relational data. In Proceedings
of the International Conference on Very Large Databases
(VLDB), pages 668–679, 2003.

[7] G. Cormode, L. Golab, K. Flip, A. McGregor, D. Srivastava,
and X. Zhang. Estimating the confidence of conditional
functional dependencies. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages
469–482, 2009.

[8] W. Fan. Dependencies revisited for improving data quality.
In Proceedings of the Symposium on Principles of Database
Systems (PODS), pages 159–170, 2008.

[9] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 23(5):683–698,
2011.

[10] C. Giannella and C. Wyss. Finding minimal keys in a relation
instance. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.41.7086, 1999. Technical report.
Last accessed on 2013-02-21.

[11] C. Goble and R. Stevens. State of the nation in data
integration for bioinformatics. J. of Biomedical Informatics,
41(5):687–693, 2008.

[12] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. Proceedings of the VLDB Endowment
(PVLDB), 1(1):376–390, 2008.

[13] G. Grahne and J. Zhu. Discovering approximate keys in
XML data. In Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pages
453–460, 2002.

[14] D. Gunopulos, R. Khardon, H. Mannila, and R. S. Sharma.
Discovering all most specific sentences. ACM Transactions
on Database Systems (TODS), 28:140–174, 2003.

[15] Y. Huhtala, J. Kaerkkaeinen, P. Porkka, and H. Toivonen.
Efficient discovery of functional and approximate
dependencies using partitions. In Proceedings of the
International Conference on Database Theory (ICDT), pages
392–401, 1998.

[16] Y. Huhtala, J. Kaerkkaeinen, P. Porkka, and H. Toivonen.
TANE: an efficient algorithm for discovering functional and
approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[17] IBM InfoSphere Information Analyzer.
http://www-01.ibm.com/software/data/

infosphere/information-analyzer.
[18] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.

CORDS: automatic discovery of correlations and soft
functional dependencies. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages
647–658, 2004.

[19] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola.
Discovering functional and inclusion dependencies in
relational databases. International Journal of Intelligent
Systems, 12:591–607, 1992.

[20] Z. Lacroix and T. Critchlow. Bioinformatics: managing
scientific data. Morgan Kaufmann, Burlington, MA, 2003.

[21] F. D. Marchi, S. Lopes, and J.-M. Petit. Unary and n-ary
inclusion dependency discovery in relational databases.
Journal of Intelligent Information Systems, 32(1):53–73,
2009.

[22] Microsoft Data Profiling Task, 03/2013. http://msdn.
microsoft.com/en-us/library/bb895263.aspx.

[23] Oracle 11g Data Profiling.
http://www.oracle.com/technetwork/middleware/

data-integration/index-082810.html.
[24] H. Saiedian and T. Spencer. An efficient algorithm to

compute the candidate keys of a relational database schema.
The Computer Journal, 39(2):124–132, 1996.

[25] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. Gordian:
efficient and scalable discovery of composite keys. In
Proceedings of the International Conference on Very Large
Databases (VLDB), pages 691–702, 2006.

[26] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era
(it’s time for a complete rewrite). In Proceedings of the
International Conference on Very Large Databases (VLDB),
pages 1150–1160, 2007.

[27] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc,
and D. Srivastava. On multi-column foreign key discovery.
Proceedings of the VLDB Endowment (PVLDB),
3(1-2):805–814, 2010.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7086
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7086
http://www-01.ibm.com/software/data/infosphere/information-analyzer
http://www-01.ibm.com/software/data/infosphere/information-analyzer
 http://msdn.microsoft.com/en-us/library/bb895263.aspx
 http://msdn.microsoft.com/en-us/library/bb895263.aspx
http://www.oracle.com/technetwork/middleware/data-integration/index-082810.html
http://www.oracle.com/technetwork/middleware/data-integration/index-082810.html

	Introduction
	Problem Statement
	Unique or Non-Unique
	Aggressively Pruning the Search Space
	Uniques and Non-Uniques Interaction
	Finding Holes
	Removing Holes

	The DUCC System
	Overview
	DUCC Worker
	Graph Traversal Strategies
	Light-Weight Data Structures

	Scaling Ducc Up and Out
	Scale Up
	Scale Out

	Experiments
	Setup
	 Scaling the Number of Columns
	Scaling the Number of Rows
	Number of Uniqueness Checks
	Scale-Up
	Scale-Out

	Null-Value Semantics
	Related Work
	Conclusion
	References

