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ABSTRACT
Efficient top-k retrieval of records from a database has been
an active research field for many years. We approach the
problem from a real-world application point of view, in which
the order of records according to some similarity function on
an attribute is not unique: Many records have same values in
several attributes and thus their ranking in those attributes
is arbitrary. For instance, in large person databases many in-
dividuals have the same first name, the same date of birth,
or live in the same city. Existing algorithms, such as the
Threshold Algorithm (TA), are ill-equipped to handle such
cases efficiently.

We introduce a variation of TA, the Bulk Sorted Access
Algorithm (BSA), which retrieves larger chunks of records
from the sorted lists using fixed thresholds, and which fo-
cusses its efforts on records that are ranked high in more
than one ordering and are thus more promising candidates.
We experimentally show that our method outperforms TA
and another previous method for top-k retrieval in those
very common cases.

1. TOP-K SEARCH IN LARGE DATABASES
Given a set of objects, a query object, and an overall simi-
larity function (also called ranking, scoring, or aggregation
function), the goal of top-k retrieval is to determine the k

objects in the set that have highest overall similarity to the
query object. The similarity function is often a monotonous
function that combines a set of base similarity functions,
each responsible for calculating the similarity of a specific as-
pect. For example, an overall similarity function for records
in a person database may be the weighted sum of similarity
functions for the first name, last name, and city attributes
of a person record.

Fagin’s Threshold Algorithm (TA) is among the most well-
known algorithms for retrieving the top-k objects from a
database [3]. Its main idea is to retrieve similar objects from
several sorted lists. The lists offer a view on all objects, each
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sorted by their similarity regarding one of the base similarity
functions. Various improvements of the original algorithm
have been proposed, as surveyed by Ilyas et al. [4]. TA and
its variants use a simple round-robin approach to access the
attribute lists [1, 3], or they consider how fast similarity
values decrease in the sorted lists [6].

However, the proposed solutions cannot handle data with
frequent attribute values well: For instance, consider a data-
base of US citizens and a query for a person with the first
name Peter, last name Smith, and city New York. TA now
prepares a sorted list for each given query value. Because
of the frequent query values, all sorted lists start with many
records with a similarity value of 1.0 (representing exact
matches). In these sorted lists, all records with the same

similarity value are ordered arbitrarily. Such arbitrary or-
der can also occur for similarity values below 1.0: for exam-
ple, a similarity function for zip codes might only count the
matching digits, so that the function produces only a small
set of different similarity values.

For algorithms that rely on a round-robin approach for ac-
cessing the sorted lists, the probability is high that many
records need to be evaluated before the overall most simi-
lar records can be found. In our example, there are many
people with the last name Smith who do not live in New

York, and many New York citizens with a last name differ-
ent than Smith. All those irrelevant records may have higher
positions in the sorted lists than a person that has similar
values for all three query values. To avoid this problem, we
should favor records that have several similar values. Find-
ing relevant records earlier allows earlier pruning of irrele-
vant records as well as providing better results when only
limited query time is available.

We exploit these observations in our Bulk Sorted Access Al-
gorithm (BSA). Our idea is to first perform a bulk sorted
access, i.e., to retrieve a bulk of records with a similarity
value above a threshold from each sorted list, in particu-
lar all those with same similarity values. We have one or
more attribute similarity values for each retrieved record,
and there may be missing similarity values. We combine
the retrieved information into a priority score where the pri-
ority represents the maximum achievable similarity (upper
bound) of each record. We process the records according
to their priority: With the available information, we per-
form comparisons with the most promising records first – a
significant advantage if only limited query time is available.
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Moreover, we can reduce the number of required attribute
and overall similarity calculations as records with low max-
imum achievable similarity can be pruned earlier. We show
in an evaluation on two large real-world data sets (10m and
2.2m records) that our method outperforms TA and another
previous method [1] for top-k retrieval in most cases.

2. RELATED WORK
Ilyas et al. provide a recent survey on top-k retrieval algo-
rithms in relational database systems [4]. Our work is based
on Fagin’s Threshold Algorithm (TA) [3]. We also retrieve
a set of records with highest similarity for each attribute.
In contrast to TA, we first perform a bulk sorted access and
then aggregate available information. Because TA is among
the most popular top-k retrieval algorithms and shares many
ideas with subsequent work, we perform empirical compar-
isons with TA in Section 5. In another work, Fagin et al.
define novel metrics for rankings with many ties [2], while
our work focuses on arbitrary monotonous overall metrics.

A related approach is proposed by Bruno et al. [1]. In
the same way as TA, their approach “Upper” first retrieves
records from sorted lists. Then it builds a priority queue
with the retrieved information, an idea that we adopt in our
approach. Their approach then schedules the next sorted
and random accesses for the different lists. In contrast to
this fine-grained approach, we perform a bulk sorted access
only at the beginning and then process the retrieved record
lists as efficiently as possible. Similar to TA, Upper performs
sorted accesses in a round-robin style and has thus similar
drawbacks regarding records with several frequent values, as
our comparative evaluation in Section 5 confirms.

Some researchers have analyzed algorithms that have only
a limited amount of time (or limited number of sorted and
random accesses). In our own previous work on similar-
ity range queries, we suggest to determine a query plan for
accessing the sorted lists with high recall and cost below
the specified cost threshold [5]. A different approach, by
Shmueli-Scheuer et al., first retrieves an initial set of records
from all available sorted lists and then tries to guess which
sorted list to access next to achieve highest recall given the
limited amount of sorted and random accesses [6]. Their
approach explicitly exploits a given budget for the amount
of allowed accesses. In contrast, our approach is, in their
terms, budget-oblivious. However, due to the priority queue
used, it can be useful in scenarios with limited query time.

3. PROBLEM SETTING
We follow the common notion of defining individual simi-
larity measures for different attributes and attribute types.
These individual similarities are subsequently combined to
define the global similarity of two records (in this case: the
query record and the database record).

We define a set of base similarity measures sima(q, r),
each responsible for calculating the similarity of the values
from the specific attribute a of the compared records q and
r from a universe U of possible records. Record q is typ-
ically the query record and record r a record in the data
set. In our person data use case, we have the base similarity
measures simFirstName, simLastName, simBirthDate, simCity, and
simZip, which can be chosen independently. For example,

we could use Jaro-Winkler distance for simFirstName, the rela-
tive distance between dates for simBirthDate, and the numeric
difference for simZip. We assume the domain of the simi-
larity measures to be between 0 and 1, with 1 representing
identity and 0 dissimilarity of the compared record parts:
sima : (U × U) → [0, 1] ⊂ R. A composed similarity

measure simOverall (also known as ranking or aggregation
function) uses the base similarity measures to derive an over-
all similarity of the two compared records.

With a query record q ∈ U and a record set R ⊆ U , a top-

k query retrieves a set S of k records from R where the
following condition holds (following [7]): ∀rk ∈ S : ∀rn ∈
R \ S : simOverall(q, rn) ≤ simOverall(q, rk). Our goal is to
answer top-k queries with a low number of overall similarity
calculations, especially in the presence of many attribute
values with same similarity.

4. BULK SORTED ACCESS ALGORITHM
One of the most popular top-k retrieval algorithms is Fagin’s
Threshold Algorithm [3], which is the basis of our approach.
As we described in Section 1, TA performs poorly in cases
of many frequent attribute values. If there are many records
with the same similarity (for instance, if they have the same
attribute value), there is no use of the sortation for those
records. TA then depends on the (random) position of the
matching record in the sorted list. Also, TA does not recog-
nize records that have high similarities for multiple attribute
values. In a situation where many records have a high simi-
larity in only one attribute (“similarity outliers”), TA spends
much effort on processing probably irrelevant records.

Our Bulk Sorted Access Algorithm (BSA) addresses TA’s
drawbacks. The main idea of BSA is to first retrieve high
similarity records for all attributes, and then combine the
results into a priority queue. With BSA, the most promis-
ing records are considered first, and the search can often
be stopped even earlier than with TA. BSA sequentially
performs the following steps:

First, we perform a bulk sorted access for every available
attribute a ∈ A and its given threshold θa. We retrieve all
records r ∈ R with sima(q, r) ≥ θa. We later discuss the sig-
nificance of appropriate selection of the retrieval thresh-

old θa. For every retrieved record, we now know the sim-
ilarity regarding one (and sometimes more) attributes. We
store the available information for each record in a table.

The next step is to aggregate the retrieved attribute in-

formation. We observe that the combinations of attribute
similarities are often not unique. For instance, there may
be many records where we have retrieved only the attribute
similarity simName(q, r) = 1. To save any further similar-
ity calculations, we group all records according to the re-
trieved attribute similarities. A group of records consists of
all records with the same values for all attribute similarities
(including missing similarities).

We then build a priority queue to determine the order
in which the retrieved record groups are processed. Our
goal is to have the most promising record groups at the
top, i.e., the records with probably highest similarity should
have the highest priority. For any attribute a of a record

2



r from a record group, we either have retrieved the exact
attribute similarity sima(q, r) or we know that θa is the
highest possible similarity (because otherwise we would have
retrieved the exact similarity). This allows an upper bound
estimation for any retrieved record group: We determine the
highest possible overall similarity using simOverall on the
attribute similarities (either retrieved or with the threshold
θa) and use the result value as the priority.

Finally, we process the record groups according to the
determined priority. The processing order of records within
any group is irrelevant as any such record has the same avail-
able attribute similarities. For each record, all missing at-
tribute similarities are determined using random accesses,
and the overall similarity is calculated. At any point, we
keep a list of the k records with highest overall similarity
seen so far. Ties are broken arbitrarily. After processing a
group, we decide whether we need to evaluate any further
group. We use the smallest similarity of the current k high-
est observed similarities as the threshold φ. If the highest
possible similarity of the next group (i.e., its priority value)
is lower than φ, the next group as well as all other groups are
discarded. The result consists of the k most similar records.

5. EVALUATION
In this section, we discuss experimental results from two
real-world data sets. We analyze the performance of BSA
regarding different values for the retrieval threshold. In ad-
dition, we show comparative results of BSA with TA and Up-
per, another state-of-the-art approach for top-k retrieval [1].
Upper retrieves record IDs via sorted access in a round-robin
style and schedules further sorted and random accesses ac-
cording to the expected similarity values and their upper
bounds for the retrieved records.

5.1 Data Sets and Evaluation Settings
Schufa data set. Our first data set stems from Schufa,
a German credit-rating agency, and consists of two parts:
a person data set (66m records) and a query data set (2m
queries). We randomly selected 10m records from the person
data set, so that the data fits into main memory of our eval-
uation machine. The relevant fields for our search problem
are name, birth date, and address data (street, city, zip).
We randomly selected 1,000 queries (where each query has
a corresponding match in the selected record subset).

Freebase data set. Freebase is an online knowledge base,
managed by community experts. For our experiments, we
have used the complete set of 2.2m person records avail-
able in Freebase (where at least a name is given). We use
the most commonly filled attributes name, birth date, birth
place, nationality, and profession. We randomly selected
1,000 records from the record set as queries.

For both data sets, we use the weighted average of the at-
tribute similarities as overall similarity measure. We per-
formed all tests on a workstation PC, running Windows XP
on an Intel Core2 Quad 2.5 GHz CPU and 8 GB RAM.

5.2 Experiments
We now experimentally examine the efficiency and recall of
BSA in comparison to TA and Upper. We evaluated the per-
formance of BSA for different values of θa. For conciseness
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Figure 1: Number of retrieved record IDs
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Figure 2: Number of attribute similarity calculations

of the results, we used the same value θ for all attributes.
Figures 1 – 3 show results for both data sets with k = 5. For
BSA we report experimental results for different values of θ,
while for TA and Upper the results are independent of θ.

All compared algorithms first retrieve information about the
records via sorted access. Figure 1 shows the overall number
of retrieved record IDs via sorted access. For BSA, this value
increases with smaller θ. For the Schufa data set, almost all
record IDs are retrieved with θ ≤ 0.3 (for Freebase with
θ ≤ 0.2). In comparison to TA and Upper, BSA retrieves a
larger number of record IDs for θ ≤ 0.8 for Schufa (and for
any θ for Freebase). This disadvantage is mitigated in the
next steps of the algorithm.

After processing the retrieved information into a priority
queue, BSA calculates missing attribute similarities for a
number of records. In Figure 2 the performed similarity
calculations are shown. With smaller values of θ, fewer at-
tribute similarities are calculated. In these cases, more sim-
ilarity values have already been retrieved from the sorted
lists in the previous step (Figure 1). Another reason is that
for lower thresholds more record groups can be discarded.

We show in Figure 3 the number of overall similarity calcu-
lations. The number of overall similarity calculations first
increases until θ = 0.8 for the Schufa data set. Up to
this point, all record groups are processed. With θ = 0.7,
some record groups can be discarded, and the number of
groups is still relatively low. With smaller θ, more groups
are discarded, but there is a much larger number of record
groups, for which the priority needs to be calculated. In
these cases, the dominant part of the overall similarity cal-
culations is now calculating the group priorities. Both TA
and Upper perform more comparisons than the best case
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Figure 3: Number of overall similarity calculations

for BSA (θ = 0.7) and fewer than the worst case for BSA
(θ = 0.0). Upper performs more comparisons than TA, be-
cause it recalculates a record’s priority after each attribute
similarity calculation. The measurements for the Freebase
data set similarly show a slight increase until θ = 0.7, then
have a minimum value with θ = 0.4 and then increase for
the remaining values, when most similarity calculations are
required for the larger number of record groups. Again,
TA and Upper perform worse than the best case of BSA
(θ = 0.4) and better than the worst case of BSA (θ = 0.7).

The runtime of the compared algorithms depends primar-
ily on the number of performed similarity calculations and
retrieved records, but also on the time required to perform
these operations. In our setting, we expect to retrieve record
IDs (sorted accesses) fast (e. g., using an index), while any
additional similarity calculations happen at query time and
can be expensive. BSA requires only few attribute similar-
ity calculations compared to the number of overall similarity
calculations, so that the number of overall similarity calcula-
tions is indeed the dominant factor for runtime. The runtime
of BSA is always better than that of TA and Upper, for its
best case (θ = 0.7, t = 5s) only a fraction of their runtime for
the Schufa data set (TA: t = 50s, Upper: t = 59s). All time
measurements include an average time of 2.7s for preparing
the lists of similar values. For Freebase, BSA performs only
a few seconds better than both TA (t = 24s) and Upper
(t = 23s) even in its best case (θ = 0.5, t = 17s). However,
in this case on average a time of 9.5s is required for prepar-
ing the lists of similar values, which shows that the gain of
BSA is in fact larger than the raw numbers reveal.

To examine how the compared algorithms perform under re-
source constraints, we analyzed the recall after performing
only a limited number of comparisons (also for k = 5). Both
BSA and TA keep a list of the k seen records with highest
similarity, which we use for measuring recall after the lim-
ited number of comparisons. Because Upper does not keep
a temporary result list, we considered a record as found only
if is has been returned it as a result, which may happen late
in the query answering process. Because of this difference,
Upper performs worse than both BSA and TA regarding re-
call for both data sets. Figure 4 shows that with lower θ, we
achieve high recall earlier. The reason is that a low θ results
in more available information per record, so that the esti-
mation of the overall similarity becomes more reliable, and
the priority of the record groups represents a better process-
ing ordering of the records. For the Schufa data set, BSA
performs better than TA for any value of θ. Already with
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Figure 4: Recall with a limited number of comparisons

θ = 1.0 and after comparing only with the top 5 records from
the priority queue, BSA outperforms TA. With lower θ, the
gain of BSA is even larger, while for θ = 0.0, BSA has a
recall of 1.0 (because all record IDs and similarity values
are already known). After performing more comparisons,
recall increases also for higher θ, and is in most cases higher
than the recall of TA. For the Freebase data set, BSA out-
performs TA for θ ≤ 0.8. For small numbers of processed
records, any value of θ results in a higher recall for BSA,
albeit the gain of BSA is large only for small θ.

6. CONCLUSION AND OUTLOOK
The Bulk Sorted Access Algorithm (BSA) for top-k retrieval
extends the well-known Threshold Algorithm (TA). BSA is
optimized for the frequent use case of queries and data sets
with many same similarity values in the lists of similar at-
tribute values, where TA and its variants perform many un-
necessary comparisons. Experimental results on real-world
data sets show that BSA outperforms TA and Upper in
many cases, but comes with the need for appropriately con-
figured similarity thresholds; too high thresholds can cause
relevant records to be not found. We are planning to handle
this drawback by an extended algorithm, which is guaran-
teed to find all similar records at potentially higher costs.
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