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Abstract. Publicly available Linked Data repositories provide a mul-
titude of information. By utilizing Sparql, Web sites and services can
consume this data and present it in a user-friendly form, e.g., in mash-
ups. To gather RDF triples for this task, machine agents typically issue
similarly structured queries with recurring patterns against the Sparql
endpoint. These queries usually differ only in a small number of individ-
ual triple pattern parts, such as resource labels or literals in objects. We
present an approach to detect such recurring patterns in queries and in-
troduce the notion of query templates, which represent clusters of similar
queries exhibiting these recurrences. We describe a matching algorithm
to extract query templates and illustrate the benefits of prefetching data
by utilizing these templates. Finally, we comment on the applicability of
our approach using results from real-world Sparql query logs.

1 Introduction

Public Sparql endpoints provide valuable resources for various information
needs, e.g., drug information1 or government spending data2. While end users
are in most cases free to query these endpoints using Web forms, a much more
widespread way to consume the provided data is through an intermediary soft-
ware or service [14], including mash-ups3,4 or general-purpose exploration5 tools.

Whereas such frontends may increase usability, they typically reduce the
scope of issued queries. Depending on the architecture and purpose of the soft-
ware, requests exhibit certain recurring patterns [14], e.g., based on interaction
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with a fixed user interface. Potentially, these patterns result from combining
Linked Data with unstructured or semi-structured information. For example,
literals, such as labels or latitude and longitude specifications, may be extracted
from user input and serve as objects of an individual triple pattern within a
query, whereas the overall structure of this query is hard-coded. Hence, the ap-
plication or Web site issues many highly-similar queries on behalf of its users
and utilizes only a subset of the information provided by the Sparql endpoint.
However, those (nearly) identical requests generated by user input increase the
load on the Sparql endpoint as well as the response time of the application’s
frontend. Additionally, in case the Sparql endpoint becomes unavailable, the
entire application has no access to the data.

One solution to this problem is to employ result caching. Caching eliminates
the need to issue identical requests to the Sparql endpoint multiple times as-
suming the knowledge base does not change over time. However, this solution
works only if the exact same query is discovered in subsequent requests. In a real-
world scenario however, it is more likely to encounter similar queries retrieving
information about related resources. For these new queries, none or only partial
locally cached information of previous requests can be used.

However, it might prove beneficial to gather the data relevant for related
resources if a recurring access pattern is discovered. There exist different ap-
proaches of how to detect such related resources, including considering ontology
information or graph distance metrics. In this work, we do not assume knowl-
edge of such metadata and instead focus on structural elements of the Sparql
queries to determine the relatedness of RDF resources. We present an approach
to detect recurring query patterns and use these patterns to introduce the no-
tion of query templates. Query templates can be considered representatives of
potentially overlapping query clusters containing structurally similar Sparql
queries. Furthermore, we introduce a use case for these query templates where
the idea is to reduce the number of queries issued against a Sparql endpoint
by prefetching data relevant for subsequent requests.

This paper is organized as follows: We present related research in the fields of
Sparql query profiling and semantic caching in Sec. 2. In Sec. 3, we introduce
fundamental notions required for this work. Section 4 provides details of our
approach for discovering triple pattern mappings and graph pattern mappings
as well as an algorithm for detecting and extracting query templates. We present
some results for determining query templates in query sessions and evaluate our
query rewriting approach on real-world Sparql query logs in Sec. 5. Lastly, we
conclude this work and comment on future research activities in Sec. 6.

2 Related Work

The related work for this paper draws mainly from two fields (i) SPARQL Query
Profiling, e.g., the systematic analysis of queries to detect usage patterns, and (ii)
Semantic Caching and Prefetching, e.g., techniques to either retain previously
fetched data or retrieve data relevant for subsequent queries.



2.1 SPARQL Query Profiling

There have been a number of scientific projects aiming for a better understanding
of structures and patterns of Linked Data. Here, most of the work has focused on
profiling the data itself, such as [1, 4, 8]. However, analyzing and profiling actual
queries on Linked Data has recently also spawned a number of applications, such
as Sparql benchmarking [3, 12] or providing query suggestions [9, 16].

Our work is closely related to the latter topic. As the results in [14] suggest,
there is great potential for discovering and reusing patterns of Sparql queries.
Indeed, in [9] the authors present a supervised machine learning framework to
suggest Sparql queries based on examples previously selected by the user. The
authors claim that their approach benefits users who have no knowledge of the
underlying schema or the Sparql query language. A similar approach in [16]
allows users to refine an initial query based on keywords.

In contrast to these works, the goal of our research is an automated ap-
proach to prefetch information without a priori knowledge of the knowledge
base. Moreover, we rely on the structure of queries instead of applying natural
language processing techniques on potentially unrelated keywords or resources.
Additionally, we allow analysis of complex Sparql queries and offer a means to
cluster such queries for subsequent analysis. Overall, our research extends previ-
ous works on profiling Linked Open Data usage [11, 14] by suggesting a concrete
use case for recurring patterns in Sparql queries.

2.2 Semantic Caching and Prefetching

Semantic caching builds on the idea of maintaining a local copy of retrieved data
that can be used for subsequent queries. As with traditional caching, one of the
motivations for semantic caching is to reduce the transmission overhead when
retrieving data over a network link. Conventional approaches, such as tuple or
page caching, usually retain fetched data based on temporal or frequency aspects,
e.g., by prioritizing least-recently or least-frequently used items. Such techniques
also exist for Sparql query result caching [10, 15]. Compared to this, semantic
caching employs more fine-grained information to characterize data, e.g., in order
to establish variable-sized semantic regions containing related tuples [5].

Closely related to semantic caching and our work is prefetching. Instead of
simply retaining tuples retrieved previously, prefetching allows to gather data
that is potentially useful for subsequent queries based on semantic information
derived from past queries or the overall system state. In computer architecture
design, prefetching is usually employed to request instructions that are antic-
ipated to be executed in the future and place them in the CPU cache. For
information retrieval, query prefetching typically assumes a probabilistic model,
e.g., considering temporal features [6]. However, to the best of our knowledge,
there have been no attempts to prefetch RDF data based on the structure of
sequential related Sparql queries within and across query sessions.



3 SPARQL Preliminaries

Sparql is the de facto standard query language for RDF triples. In this section,
we introduce some basic notions of Sparql. Based on this, we illustrate several
concepts used in this work to identify individual elements of a query. We use
these concepts in Sec. 4 to describe a matching algorithm for Sparql queries
based on an underlying query normal form.

3.1 SPARQL Graph Patterns

One central concept of a Sparql query is that of a triple pattern T = (s, p, o) ∈
(V ∪ U) × (V ∪ U) × (V ∪ U ∪ L) with V being a set of variables, U being a
set of URIs, and L being a set of literals. A Sparql query Q contains a number
of graph patterns P1, P2, . . . , which are defined recursively: (i) A valid triple
pattern T is a graph pattern. (ii) If P1 and P2 are graph patterns, then P1 AND
P2, P1 UNION P2, and P1 OPTIONAL P2 are graph patterns [13]. While there is
the notion of empty graph patterns in Sparql, we consider only non-empty
graph patterns. Additionally, we focus on SELECT queries. An example of such
a query is illustrated in Listing 1.
SELECT * WHERE {

{
?p1 foaf:firstName "Alice" .
?p1 ?associationWith example:Bob .

} UNION {
?p2 foaf:firstName "Carol" .
OPTIONAL {

?p2 ?associationWith ?p1 .
}

}
}

Listing 1: SPARQL Query example

In terms of relational operations, the keyword AND represents an inner join of
the two graph patterns, UNION unsurprisingly denotes their union, and OPTIONAL
indicates a left outer join between P1 and P2. Whereas UNION and OPTIONAL
are reserved keywords in actual Sparql queries to indicate the corresponding
connection between two graph patterns, the AND keyword is omitted. In [13], it
is shown that there exists a notion of a normal form for Sparql queries based
on the recursive graph pattern structure presented earlier and the precedence of
the operators connecting those graph patterns. Hence, for this work we assume
a Sparql SELECT query can always be expressed as a composition of graph
patterns, connected either by UNION, AND, or OPTIONAL.

Curly braces delimiting a graph pattern (i.e., {P}) are syntactically required
for both P1 and P2 in a UNION statement and only for P2 in an OPTIONAL state-
ment. Furthermore, we refer to the largest delimited graph pattern P contained
in a Sparql query Q as the query pattern PQ. Note that every query has ex-
actly one query pattern PQ. To increase readability and avoid confusion with



set braces, we omit the brace delimiters in this work whenever possible. For the
remainder of this work, Pi denotes a valid graph pattern contained in PQ.

In Sec. 4, we introduce a matching algorithm for graph patterns. One neces-
sary prerequisite for this algorithm is to identify individual child graph patterns
contained in PQ. For example, the query in Listing 1 contains the following three
non-trivial child graph patterns PAND, POPTIONAL, and PUNION:

PAND := ?p1 foaf: firstName "Alice" .
?p1 ? associationWith example :Bob .

POPTIONAL := ?p2 foaf: firstName "Carol" .
OPTIONAL {

?p2 ? associationWith ?p1 .
}

PUNION = PQ := PAND UNION POPTIONAL

3.2 Graph Pattern Decomposition

To extract child graph patterns, we introduce the three functions ΘUNION(P ),
ΘAND(P ), and ΘOPTIONAL(P ). They each take as input a graph pattern P and totally
decompose P into the set of its non-empty child graph patterns P1, P2, . . . , Pn, all
conjoined exclusively by UNION, AND, or OPTIONAL, respectively. The three func-
tions can then be applied recursively on the individual elements P1, P2, . . . , Pn

in the result set, possibly yielding further non-trivial results.
For example, if we apply ΘUNION(PQ) on the query pattern in Listing 1, we

retrieve the set {PAND, POPTIONAL}. Similarly, ΘAND(PAND) retrieves a set containing
the two triple patterns listed above as elements. If no such total decomposition
can be derived, the result set is empty, e.g., ΘAND(PQ) = ∅ or ΘUNION(PAND) = ∅.

Whereas in general, for ⊕ ∈ {UNION, AND, OPTIONAL} :

Θ⊕(P ) 6= ∅ ⇔ P := P1 ⊕ P2 ⊕ . . .⊕ Pn,

the individual functions are defined as follows (all n ≥ 2):

ΘUNION(P ) :=
{
{P1, . . . , Pn}, iff P := P1 UNION P2 . . . UNION Pn

∅, else.

ΘAND(P ) :=


{P}, iff P is a triple pattern
{P1, . . . , Pn}, iff P := P1 AND P2 . . . AND Pn

∅, else.

ΘOPTIONAL(P ) :=
{
{P1, . . . , Pn}, iff P := P1 OPTIONAL P2 . . . OPTIONAL Pn

∅, else.

We also define the function Θ(P ) as a convenience method to detect whether
for a graph pattern P a decomposition exists for either ΘUNION(P ), ΘOPTIONAL(P ),
or ΘAND(P ) (in this order):



Θ(P ) :=


ΘUNION(P ), iff ΘUNION(P ) 6= ∅
ΘOPTIONAL(P ), iff ΘOPTIONAL(P ) 6= ∅
ΘAND(P ), else.

Except for when P is a triple pattern and we apply ΘAND(P ) = P , we also
assume that all decompositions are non-trivial, i.e., Θ⊕(P ) 6= {P}. Hence, ac-
cording to the underlying graph pattern normal form, all the above cases are
mutually exclusive. We call |P | = |Θ(P )| the size of a graph pattern.

In addition, we introduce the function κ(P ) for a graph pattern P :

κ(P ) :=


UNION, iff ∃P1 ∈ PQ : P ∈ ΘUNION(P1)
OPTIONAL, iff ∃P1, P2 ∈ PQ : P, P2 ∈ ΘOPTIONAL(P1) ∧ P2 OPTIONAL P
AND, else.

The function κ(P ) allows to determine how P is connected to other graph
patterns in a graph pattern decomposition, e.g., ∀Pi ∈ ΘUNION(P ) : κ(Pi) =
UNION. We incorporate the results from both κ(P ) and Θ(P ) in the algorithm
presented in the next section. This information allows us to decide whether two
graph patterns can be matched to one another or not.

4 Query Templates

In real-world applications, a large number of queries processed by a Sparql end-
point exhibit similar structures and vary only in a certain number of resources.
In this section, we present query templates that can be used to cluster these
similar Sparql query structures. To identify such query structures, we present
a triple pattern similarity measure that is used for our recursive graph pattern
matching algorithm. If the algorithm detects a match between the query patterns
of two queries, they share a common query template.

4.1 Triple Pattern Similarity and Merging

We first define similar triple patterns that can be mapped to and merged with
one another. To establish a mapping between two triple patterns T1 = (s1, p1, o1)
and T2 = (s2, p2, o2), we try to match the individual elements of T1 with the
corresponding part of T2, i.e., we align x1 with x2 for x ∈ {s, p, o}. To calculate
the distance of such mappings, we introduce the score ∆(x1, x2):

∆(x1, x2) :=



d(x1, x2)
max(|x1| , |x2|) + 1 ∗ k, if x1 ∈ V ∧ x2 ∈ V , with 0 ≤ k < 1

d(x1, x2)
max(|x1| , |x2|) + 1 , if (x1 ∈ U ∧x2 ∈ U)∨ (x1 ∈ L∧x2 ∈ L)

1, else.



Here, V , U , L are the sets of variables, URIs, and literals, respectively, |x|
is the string length of x and d(x1, x2) → N0 is a string distance measure with
d(x1, x2) = 0 ⇔ x1 = x2. In our work, we use the Levenshtein distance. No-
tice that we apply the Levenshtein distance on the entire resource strings, i.e.,
including possible prefix definitions for URIs or types for literals.

If two queries are identical in structure and content except for their variable
names, the binding result set of those variables retrieved from a Sparql endpoint
is the same. Hence, we assume that variables can be mapped more easily to one
another than URIs or literals, and apply a factor k ≤ 1 to ∆(x1, x2), if both x1
and x2 are variables. In our implementation, we use k = 1

3 .
To evaluate how easily two triple patterns can be merged, we introduce the

triple pattern distance score ∆(T1, T2) that sums up the individual distance
scores, i.e., ∆(T1, T2) := ∆(s1, s2) +∆(p1, p2) +∆(o1, o2).

1 ?p1 foaf:firstName "Alice" .
2 ?p1 ? associationWith example:Bob .
3 example:Bob foaf:firstName "Bob" .
4 example:Bob foaf:lastName "Alice" .
5 ?p2 foaf:firstName "Carol" .
6 ?p2 ? associationWith ?p1 .

Listing 2: Triple pattern similarity example.

Consider the first triple pattern T1 in Listing 2: The minimum distance score
between T1 and all other triple patterns shown, i.e.,min(∆(T1, T2), . . . ,∆(T1, T6)),
is ( 1

12 + 0 + 5
8 ) ≈ 0.71 for T5. For T2, the minimum value is ( 1

12 + 0 + 1) ≈ 1.08
for T6, and for T3 it is (0 + 3

15 + 5
8 ) ≈ 0.83 for T4.

We also allow the calculation of distance scores between two graph patterns
P1, P2 as follows:

∆(P1, P2) :=
{
∆(T1, T2), if Θ(P1) = {T1} ∧Θ(P2) = {T2}
∞, else.

This notation mainly serves as a shorthand for analyzing graph patterns with
size 1, i.e., graph patterns that constitute triple patterns.

Finally, we introduce the generalization function λ(T1, T2) = T̂ that takes as
input two triple patterns T1, T2 and merges them into one T̂ = (ŝ, p̂, ô). It does
so by replacing the non-equal triple pattern elements between T1 = (s1, p1, o1)
and T2 = (s2, p2, o2) with arbitrary, uniquely named variables. More formally,
we first define λ(x1, x2) on the triple pattern parts with x ∈ {s, p, o}:

λ(x1, x2) :=
{
x1, if ∆(x1, x2) = 0
?var, else.

Here, ?var represents a variable unique to both triple patterns. The distance
of any two of these introduced variables ∆(?var1, ?var2) = 0. Thus,

λ(T1, T2) := (λ(s1, s2), λ(p1, p2), λ(o1, o2))



In particular, this means that T̂ = T1 iff ∆(T1, T2) = 0, i.e., no merging is nec-
essary, if the two triple patterns are identical. As with ∆, we use the shorthand
notation λ(P1, P2), if |P1| = |P2| = 1.

4.2 Graph Pattern Matching

Using the triple pattern distance notion, we can now derive matchings between
graph pattern by mapping their individual triple patterns. We consider the task
of finding a match a variation of the stable marriage problem [7], which we
solve greedily using Algorithm 1. The recursive algorithm takes as arguments
two graph patterns P1, P2, a maximum distance threshold ∆max for mapping
any two triple patterns, and an existing mapping between triple patterns. This
mapping is initially empty and is established in polynomial time by iterating over
all graph patterns contained in P1 and P2. If no complete matching between P1
and P2 can be derived, the result of the algorithm is an empty set of mappings.

Two necessary conditions for a match are κ(P1) = κ(P2) and |Θ(P1)| =
|Θ(P2)| (Line 2). Hence, the algorithm does not establish a match between graph
patterns with different keywords or sizes. These conditions are necessary, as there
might exist partial (i.e., non-perfect) matches between graph patterns of different
sizes, but we are interested in discovering only complete matches.

The algorithm traverses over the graph patterns P i
1 contained in S1 (which

is initialized with the results of Θ(P1)) and tries to match these graph patterns
with the graph patterns P j

2 in S2 (comprising the results of Θ(P2)) (Line 7).
In case both graph patterns currently in consideration have size 1, i.e., they
are triple patterns (Line 8), the algorithm checks whether a mapping can be
established between these two triple patterns.

Given that P i
1 and P j

2 exhibit the same keyword (Line 9), a mapping between
the two triple pattern can be established under two conditions: (i) ∆(P i

1, P
j
2 ) ≤

∆max and there is currently no other mapping between P j
2 and another triple

pattern (Line 12), or (ii) the current mapping of P j
2 has a higher distance score

to it than ∆(P i
1, P

j
2 ) (Line 17). In the first case, the mapping is established, in

the second case, the existing mapping is changed accordingly, and the previously
mapped element P ∗

1 is again added to S1 (Line 19). This ensures that the algo-
rithm tries to discover a new match for P ∗

1 in a subsequent iteration. In both
cases, the algorithm sets the value of the Boolean variable foundMapping to
true and continues by examining the next element in S1.

If P i
1 and P j

2 are not triple patterns, i.e., their size is greater than 1, the
algorithm is executed recursively, using P i

1 and P j
2 along with mappings as

arguments (Line 24). If mappings has changed, either because there were new
mappings added or previous mappings altered, foundMapping is set to true.

If throughout this iteration, no mapping was discovered between P i
1 and P j

2 ,
i.e., foundMapping is false, the returned mappings are empty (Line 28). Po-
tentially, some mappings could have been determined throughout the recursion
and added to mappings, while overall the current graph pattern P i

1 cannot be



matched to any other graph pattern. To avoid partial matches, mappings is
returned only if matches were established for all child graph patterns.

Algorithm 1: GraphPatternMatching
Input : P1, P2 : Two graph patterns
Input : ∆max : Triple pattern distance threshold
Input : mappings : Current triple pattern mappings
Output: mappings : Symmetric triple pattern mappings between P1, P2

1 S1 ← Θ(P1), S2 ← Θ(P2)
2 if κ(P1) 6= κ(P2) ∨ |S1| 6= |S2| then
3 return ∅
4 while S1 6= ∅ do
5 P i

1 ← S1.pollFirst()
6 foundMapping ← false
7 foreach P j

2 ∈ S2 do
8 if

∣∣P i
1
∣∣ = 1 ∧

∣∣P j
2

∣∣ = 1 then
9 if κ(P i

1) = κ(P j
2 ) then

10 P ∗
1 ← mappings.get(P j

2 )
11 if P ∗

1 = NIL then
12 if ∆(P i

1 , P
j
2 ) ≤ ∆max then

13 mappings.put(P j
2 , P

i
1)

14 foundMapping ← true
15 break

16 else
17 if ∆(P i

1 , P
j
2 ) < ∆(P ∗

1 , P
j
2 ) then

18 mappings.put(P j
2 , P

i
1)

19 S1.add(P ∗
1 )

20 foundMapping ← true
21 break

22 else
23 oldMappings← mappings

24 mappings← GraphPatternMatching(P i
1 , P

j
2 ,mappings)

25 if mappings 6= ∅ ∧mappings 6= oldMappings then
26 foundMapping ← true

27 if ¬foundMapping then
28 return ∅

29 return mappings

As mentioned earlier, Algorithm 1 determines mappings between two triple
patterns T1, T2 only if they reside in graph patterns P1, P2 with identical keyword
and size (Line 2). While there might exist a triple pattern Ti in another graph



pattern Pi with i > 2 and a lower distance score ∆(T1, Ti) < ∆(T1, T2), these
cannot be mapped, e.g., because of different keywords κ(P1) 6= κ(Pi).

Hence, any non-empty set of mappings resulting from Algorithm 1 can be
considered stable in the sense that the mapped triple patterns have minimal
distance to their mapping partner with respect to the graph pattern they are
contained in. If there exists another possible mapping with a lower distance score
for a particular triple pattern, this mapping would have been established instead
of the current one (Line 17). Note however that the algorithm prefers the first
possible triple pattern mapping over all other possible mappings with identical
triple pattern distance (Lines 15 and 21). If for any evaluated graph pattern
no match could be determined, the overall return value of the algorithm is an
empty set of mappings (Line 28). Conversely, any non-empty mapping result is
complete (or perfect) and therefore maximal (the size of non-empty mappings is
determined by the number of triple patterns contained in the graph pattern).

4.3 Query Templates and Clusters

Using the output of Algorithm 1, we can now discover query templates. The idea
of query templates builds on the findings discussed in [14], where the authors
mine Sparql query log files to determine the behavior of agents issuing the
respective query. We extend this approach by establishing a formal definition of
what constitutes a query template and how to find it. In contrast to previous
work, we also show a concrete application of query templates in the next section.

To generate a query template, we evaluate the mappings generated by Graph-
PatternMatching(PQ1 , PQ2 , 1, ∅) for two Sparql queries Q1, Q2 with query pat-
terns PQ1 , PQ2 , respectively. If the output of Algorithm 1 is empty, no query
template can be derived. Otherwise, we initialize the query template Q̂ with the
query Q1 and replace all triple patterns Ti in Q̂ with the merged triple pattern
T̂ that resulted from λ(Ti, Tj) where (Ti, Tj) ∈ map. Whereas in general we
require any introduced variable to be unique with relation to other variables in
both PQ1 , PQ2 , if we observe a repeated merge between two identical triple pat-
tern parts, e.g., two consecutive λ(si, sj) 6= si, we re-use the variable introduced
for the first merge. Finally, we consider Q̂ to be a query template, if Q̂ 6= Q1, i.e.,
Q1 6= Q2 and at least one triple pattern mapping (T1, T2) ∈ map is non-trivial.

Recall that variables introduced during merging have distance 0 to each other
as defined in Subsec. 4.1. Hence, if we determine two query templates that are
identical except for the identifiers of the introduced variables, we consider them
to represent the same template. Thus, all queries sharing a query template form
a query cluster, which may overlap. Notice that all queries in a cluster can be
matched to the cluster’s query template, albeit potentially only for ∆max > 1.
We assume that for most queries in such a cluster a single resource or literal is
replaced throughout all triple patterns as indicated by the findings in [14].



5 Evaluation
To evaluate our template discovery approach we analyzed the DBpedia 3.6 query
log files from the USEWOD 2012 dataset [2]. In total, these files contain around
8.5 million anonymized queries received by the public DBpedia endpoint6 on
14 individual days in 2011. We chose these particular log files mainly for three
reasons: (i) the query intention is to some extent comprehensible to non-domain
experts, (ii) the log files exhibit recurring query patterns [14], and (iii) all queries
are assigned a source (hashed IP address) and timestamp (hourly granularity),
allowing us to to coarsely delimit query sessions.

To illustrate the last point, an excerpt of the query log file 2011-01-24.log
is presented in Listing 3. Each line starts with the hashed IP address of the
issuing source, followed by the timestamp and the actual query. We found that
additional metadata provided in the log files, e.g., the user agent sending the
requests, did not provide any information relevant to our work.

Listing 3 also indicates that the level of granularity in the query log is hours.
For our experiments, we consider all queries from one user within one hour (i.e.,
with the same timestamp) to constitute a query session. Moreover, we also map
queries in such a query session to the clusters they belong to. Hence, for the rest
of our evaluation, query sessions can be considered sequences of query templates
uniquely identified by a timestamp and user id.

1 237 fbf63e8449c1ade56eb7d208ce219 - [24/ Jan /2011 01 :00:00 +0100] "/ sparql /? query ..." 200 512 "-" "-"
2 f452f4195b4d2046c77ad98496c1b127 - [24/ Jan /2011 01 :00:00 +0100] "/ sparql /? query ..." 200 1024 "-" "Java"
3 9 b1d83195dd251275c55c12ac2efa43d - [24/ Jan /2011 02 :00:00 +0100] "/ sparql /? query ..." 200 512 "-" " Mozilla "
4 f452f4195b4d2046c77ad98496c1b127 - [24/ Jan /2011 02 :00:00 +0100] "/ sparql /? query ..." 200 1024 "-" "-"

Listing 3: Excerpt from query log file 2011-01-24.log.
5.1 Query Session Analysis
For our first evaluation, we analyze the size, frequency, and contents of query
sessions across all users. Figure 1 illustrates how often query sessions of different
6 http://dbpedia.org/sparql
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length occur. We distinguish between homogeneous query sessions, i.e., sessions
containing only queries from the same cluster, and heterogeneous query sessions,
i.e., sessions containing queries from at least two clusters. Overall, homogeneous
query sessions occur far more often than heterogeneous query sessions, even
if query sessions of length 1 (which are always homogeneous) are disregarded.
Generally, the average length of homogeneous query sessions is also in order of
magnitudes higher than the average length of heterogeneous query sessions.

Both these findings, i.e., the high frequency and length of homogeneous
query sessions, indicate that most requests received by the DBpedia endpoint
are similarly-structured Sparql queries, most likely issued by machine agents.
On the other hand, only a small percentage of relatively short query sessions are
heterogeneous, possibly indicating human users querying the DBpedia endpoint.

We also evaluated the conditional probability of sequences of length 2 for all
query clusters discovered in the log files and present results in Fig. 2. Here, both
axes Qi and Qi+1 of all individual diagrams correspond to the query clusters,
where a single tick mark on each axis represents one cluster. Both axes are sorted
in descending size of the represented query clusters. The values for p(Qi+1|Qi)
illustrate the probability of observing a query from a certain cluster given the
cluster of the previous query. A high value (represented by a darker color) indi-
cates that queries from two query clusters are likely to occur in sequence.
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Fig. 2: Conditional probabilities for sequences of length 2 of query templates.



While the plots differ slightly for the various dates in Fig. 2, two general
trends can be observed: First, the matrix of all conditional probabilities is
sparsely populated, i.e., for a query belonging to any given query cluster dis-
covered in the log, the subsequent query usually belongs to one of a limited
number of clusters. In addition, there is a high probability that queries from
one query cluster are followed by queries of the same cluster. This notion is
illustrated by the high values on the diagonal of all diagrams.

5.2 Query Template Prefetching

If many individual similarly-structured queries, i.e., queries from the same query
cluster, are issued in immediate succession by an agent, as observed in Sec. 5.1,
this agent essentially utilizes only parts of the provided data. Moreover, while
the relevant information is retrieved one query at a time, it could instead be
gathered all at once and used to populate a locally materialized view on the
knowledge base. This approach yields advantages for both the endpoint provider
and the data consumer by reducing the number of connections on the Sparql
endpoint and eliminating latency overhead (e.g., for query planning, disk access,
and data transmission) on each request, respectively.

Consider the sample query in Listing 4: This query retrieves the English lan-
guage abstract of the resource dbpedia:Charreada. Similar queries concerning
abstracts were discovered around 3.5 million times for varying subjects in the
query log files. The longest individual query sequence consisting only of distinct
queries from this cluster issued by a single user contains 56,633 queries. At the
time of writing, the DBpedia endpoint provides English abstract information for
3,769,926 resources. Hence, during the longest query sequence around 1.5% of all
English DBpedia abstracts are retrieved. We discovered similar request patterns
for other query sessions of this user and among query sequences of other users.
SELECT ?abstract WHERE {

dbpedia:Charreada dbpedia-owl:abstract ?abstract .
FILTER (langMatches(lang(?abstract), "en"))

}

Listing 4: SPARQL sample query retrieving the English abstract of a resource.

To evaluate the accumulated latency overhead caused by such a large amount of
similar queries, we first randomly extracted 100 sample queries from the query
cluster containing requests retrieving English abstracts of a resource. Then, we
sent these queries to the public Sparql endpoint. Based on our measurements,
the average time between issuing a query and receiving a result was around
5.2 ms. Retrieving the abstracts of 1000 resources using the query template on
the other hand took only around 611 ms. Hence, issuing a single query template
to retrieve results for related resources instead of multiple queries each retrieving
only bindings for one resource leads to an execution speedup of nearly factor 10.
For different query templates, we measured similar speedup results.

The benefit of prefetching data for future queries depends on how many
queries actually exploit this locally available data. This number is influenced by



the length of the analyzed time frame. We illustrate the advantages of prefetch-
ing for distinct query sessions in Tab. 1a and for all queries from a specific user
within one day in Tab. 1b. Here, we chose the five users (identified by their
abbreviated IP hash) with the most queries in the respective time frame. We
identified the most common query cluster in this query set, gathered results for
the corresponding template, and materialized these results locally. The coverage
rate describes how many of these prefetched results were also retrieved individ-
ually by the queries within the respective time frame. Higher coverage indicates
that more prefetched results were retrieved by actual queries.

User ID #Queries Coverage Rate
237. . . 6,081 54.21%
ea0. . . 4,951 44.14%
6cb. . . 3,216 28.67%
e36. . . 3,106 27.69%
a40. . . 455 4.05%

(a) Distinct query sessions.

User ID #Queries Coverage Rate
237. . . 68,472 100.00%
f45. . . 29,235 21.11%
6cb. . . 18,844 100.00%
5de. . . 13,500 100.00%
499. . . 9,747 27.84%

(b) All queries within a day.
Table 1: Template coverage rates for the top five users with the most queries.

Table 1 illustrates that for a large number of queries issued over a short period
of time by a distinct user, i.e., a single hour or day, a local cache containing the
data retrieved in advance can efficiently provide results for these queries. This
effect becomes more obvious for longer time periods: As Tab. 1b indicates, there
are cases when prefetched data can be used for myriads of queries on a single day
and all prefetched information is completely utilized during this time frame.

6 Conclusion

In this work, we presented the notion of Sparql query templates. They rep-
resent potentially overlapping clusters of similarly-structured queries, where all
elements within a cluster exhibit recurring query patterns and are subsumed
by the template. We described an algorithm to detect and extract query tem-
plates based on a flexible resource similarity distance function. Furthermore,
we evaluated our approach on real-world Sparql query logs. Here, we discov-
ered three main results: First, the large amount of Sparql queries received by
the DBpedia endpoint can be mapped to a small number of query clusters. In
addition, resulting query sessions are mostly homogeneous, i.e., queries from a
specific cluster are likely to be followed by queries from the same cluster. Lastly,
retrieving combined results for queries from the same cluster instead of issuing
individual queries reduces the latency overhead.

We have illustrated a specific use case for query templates by exploiting these
findings: Result prefetching. Here, instead of issuing multiple queries from the
same cluster, we instead issue the common query template that subsumes these
queries. As we have shown in our evaluation, this is particularly useful for longer



query sessions. If we assume that a cache containing these prefetched results is
maintained in-between query sessions, even more cache hits are generated.

As the findings in this work have proven, there is a huge potential for retriev-
ing semantically relevant data for future queries before these are actually issued.
Whereas the introduced approaches already work well for long query sessions
or across query sessions, they do not cater to short query sessions with mixed
requests, typically encountered when human agents issue exploratory Sparql
queries. Thus, in future work we plan to extend our query prefetching approach
by adapting more sophisticated query rewriting approaches based on common
information retrieval strategies for RDF data. Ultimately, our goal is to train a
classifier to automatically choose the most suitable of these rewriting methods.
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