
Amending RDF Entities with New Facts

Ziawasch Abedjan Felix Naumann

Hasso Plattner Institute, Potsdam, Germany
{ziawasch.abedjan,felix.naumann}@hpi.uni-potsdam.de

Abstract. Linked and other Open Data poses new challenges and op-
portunities for the data mining community. Unfortunately, the large vol-
ume and great heterogeneity of available open data requires significant
integration steps before it can be used in applications. A promising tech-
nique to explore such data is the use of association rule mining. We
introduce two algorithms for enriching Rdf data. The first application is
a suggestion engine that is based on mining Rdf predicates and supports
manual statement creation by suggesting new predicates for a given en-
tity. The second application is knowledge creation: Based on mining both
predicates and objects, we are able to generate entirely new statements
for a given data set without any external resources.

1 Introduction

In the context of Linked Open Data (Lod), knowledge bases are usually in-
complete or ontological structures are simply not available. Data inconsisten-
cies and misusage of ontology axioms make it nearly impossible to infer new
knowledge based on given axioms [6]. It is vital to achieve consistency within
knowledge bases on the one hand by re-engineering ontology definitions [1] and
to support the process of knowledge creation through value suggestions and
auto-completion.

When creating new triples manually, one would hope that the creator ex-
actly knows which properties and values should be created. However, regard-
ing existing Lod data sets this is apparently not true. For instance, authors
of Wikipedia infoboxes are often inexperienced and only infrequently edit such
data. Such users might forget to use certain predicates or might use similar but
not common predicates for a new entry (e.g., city instead of locationCity). Those
heterogeneous entries make integration of the complete dataset difficult. Fur-
thermore, a new user might be grateful for reasonable hints for creating a new
entry. Predicate suggestion remedies the problem, providing users with a list of
commonly used predicates. In case of Wikipedia infoboxes one could imagine
to use the appropriate infobox-template for suggestions. However, reality is too
complex to be covered by fixed static templates, and schema drift occurs1 [1]. So,

1 While the template Infobox company asks for a name, the vast majority of company
infoboxes uses companyName instead.

an instance-based approach is able to suggest predicates based on existing enti-
ties. Extending statistical reasoning to object values, we can create an approach
to amend datasets with completely new facts.

We propose an approach that applies association rule mining at Rdf state-
ment level by using the concept of mining configurations [2,3]. Our approach is
complementary to traditional reasoning approaches, as we do not use ontology
logics but simple basket analysis adapted to the triple structure of Rdf data.
The benefit of a mining approach is that outliers and individual faulty facts do
not affect the overall performance as long as the occurrence of a specific incorrect
fact is not statistically relevant. To this end, we make the following contributions
in extension to [3]:

1. We elaborate the algorithms for schema and value suggestion for new knowl-
edge base entries. Unlike related approaches we do not rely on external
knowledge, such as ontologies or textual information.

2. We introduce a new approach for auto-amendment of Rdf data with new
triples, based on high confidence rules among objects.

2 Related Work

Association rule mining on Rdf data is an emerging topic with several new use
cases [1, 2, 4, 11, 17, 20]. Nebot et al. present a shopping basket analysis frame-
work in medical Rdf data to discover drug and disease correlations among pa-
tients [17]. We introduced mining configurations [2,3], a methodology to generate
association rules in different contexts of an Rdf statement. We further intro-
duced association-rule-based applications to reconcile ontologies with underlying
data [1] and to discover synonyms in knowledge bases [4]. Following a statistical
methodology, Völker and others presented an association rule based approach
for schema induction [11, 20], based on given class membership relations. Our
approach generate facts beyond this explicitly given ontology information.

Most related work on mining the semantic web concentrates on inductive
logic programming (ILP) and machine learning approaches [9, 14, 16]. ILP con-
centrates on mining answer-sets of queries towards a knowledge base. Based on
a general reference concept, additional logical relations are considered to refine
the entries in an answer-set. This approach assumes a clean ontological knowl-
edge base, which is most often not available. ALEPH, WARMR [9], and Sher-
lock [19] are known systems to mine such rules. ALEPH is an ILP system based
on Muggleton’s Inverse Entailment Algorithm [16]. WARMR uses a declarative
language to mine association rules on small sets of conjunctive queries. Sher-
lock uses a probabilistic graphical model to infer first order clauses from a set
of facts for a given relation [19]. A recent system for association rule mining in
Rdf data is AMIE [12]. It concentrates on horn rules among relations, such as
hasChild(p,c) ∧ isCitizenOf(p,s)→ isCitizenOf(c,s). Based on support and con-
fidence thresholds on the instantiations of the variable subject and objects, the
rule generates new relations isCitizenOf(c,s). In a number of experiments AMIE
showed to be the most efficient and effective approach to generate new facts

compared to ALEPH and WARMR [12]. Therefore, we experimentally compare
our system to AMIE.

Complementing the ILP method, many machine learning systems, such as
similarity-based class-membership predictions, kernel-based methods, and mul-
tivariate prediction models, have been introduced [18]. D’Amato et al. propose
approaches to enrich ontologies by applying ILP to heterogeneous sources, such
as RDBMS and web sources [7, 8]. Lisi et al. also present an approach to mine
rules on ontologies and datalog programs [15]. Our approach does not rely on
external data sources or structural information, such as ontologies or templates,
but only the existing Rdf statements of the current corpus.

3 Enriching RDF Data

To enrich Rdf data, we distinguish two different scenarios: (1) Suggestion of
predicates or object values for a given subject. (2) Amendment of Rdf data with
new triples. To this end, we only apply mining configurations in the context of
subjects with predicates or objects as mining targets [2].

3.1 Association rules and triples

The concept of association rules has been widely studied in the context of market
basket analysis [5], yet the formal definition is not restricted to any domain:
Given a set of items I = {i1, i2, . . . , im}, an association rule is an implication
X → Y consisting of the itemsets X,Y ⊂ I with X ∩ Y = ∅. Given a set of
transactions T = {t|t ⊆ I}, association rule mining aims at discovering rules
holding two thresholds: minimum support and minimum confidence.

Support s of a rule X → Y denotes the fraction of transactions in T that
include the union of the antecedent (left-hand side: itemset X) and consequent
(right-hand side: itemset Y) of the rule, i.e., s% of the transactions in T contain
X ∪ Y . The confidence c of a rule denotes the statistical dependency of the
consequent of a rule from the antecedent. The rule X → Y has confidence c if
c% of the transactions T that contain X also contain Y .

To apply association rule mining to Rdf data, it is necessary to identify
the respective item set I as well as the transaction base T and its transactions.
We follow the methodology of mining configurations [2], which is based on the
subject-predicate-object (SPO) view of Rdf data. Any part of the SPO state-
ment can serve as a context, which is used for grouping one of the two remaining
parts of the statement as the target for mining. So, a transaction is a set of target
elements associated with one context element that represents the transaction id
(TID). We call each of those context and target combinations a configuration.

3.2 Suggestion step

Suggestion of predicates or objects aims at two goals: First, a user authoring
new facts for a certain subject might be grateful for reasonable hints. Second,

system feedback might prevent the user from using inappropriate synonyms for
predicates as well as objects. Because the suggestion workflow for both predicates
and objects is identical, we describe our approach referring to predicates. The
suggestion workflow requires two preprocessing steps:

1. Generate all association rules between predicates.
2. Create a rule matrix, which is a two dimensional predicate-predicate matrix,

where one index identifies the antecedents and the other index identifies the
consequents of a rule. Each entry specifies the confidence of the rule involving
the specific antecedent and consequent. For missing rules the entry is zero
by default.

When the user is inserting or editing facts related to a specific subject, the
system is aware of all predicates that have already been inserted for the current
subject. We denote the initial set of these predicates with sP0, where the raised
s refers to the subject at hand. We use a raised letter to denote that a statement
part is fixed by known values, e.g., spo denotes a predicate connecting the subject
s with the object o. The following formula describes the set of predicates sP ′

0 out
of the set of all predicates P that are to be suggested for the current subject s:

sP ′
0 = {p ∈ P |aConf(sP0, p) ≥ minConf}

sP ′
0 contains all predicates from P , for which the function aConf exceeds the

minimum confidence threshold minConf. Here, aConf aggregates the confidence
values of all available rules conf(Q → p) with Q ⊆ s

P0 and creates one overall
confidence value between 0 and 1. In our approach, we took the sum of all
squared confidence values and normalized it by dividing by the number of schema
elements in sP0:

aConf(sP0, p) =

∑
Q∈sP0

conf(Q→ p)2

|sP0|

This choice ensures that the occurrence of few high confidence rules has more
impact than many low confidence rules. Having computed the set sP ′

0, the re-
sults can be sorted by their aggregated confidence values and presented to the
user. When the user chooses the next predicate p to insert into the data set,
sP ′

1 has to be computed based on the new schema set s
P1 = s

P0 ∪{p}. Ta-
ble 1 illustrates some SPO facts extracted from DBpedia. Now, imagine we are
to insert a record for D. Cameron by beginning with the statements “Cameron
birthPlace London.” and “Cameron orderInOffice Prime Minister.” Then sP0 =
{birthPlace, orderInOffice} and the total set of remaining predicates would be
P = {party, instrument}. Considering only rules of size 2, the set of predicate
rules relevant for the next suggestion include birthPlace →party with 66.7%
confidence, orderInOffice → party with 100% confidence, and birthPlace → in-
strument with 33.3% confidence. Having minConf = 50%, the predicate party
would be added to P ′

0, because aConf(s
P0, party) is above minConf.

Table 1: Some SPO facts
Subject Predicate Object

Obama birthPlace Hawaii
Obama party Democrats
Obama orderInOffice President
Merkel birthPlace Hamburg
Merkel orderInOffice Chancellor
Merkel party CDU
Lennon birthPlace Liverpool
Lennon instrument Guitar

Suggesting objects is technically equiva-
lent to that of predicates, but the number
of distinct objects is by magnitudes larger,
resulting in weaker rules. For instance, the
DBpedia 3.6 data set contains 1,100 dis-
tinct predicates but 3,980,642 distinct ob-
jects. Furthermore, for a user, authoring an
object value for a suggested predicate is more
convenient than vice versa. For example, a
user might have created the entry B. Obama
birthPlace Honolulu. Following the object suggestion, the system might contain
an object-to-object rule with enough confidence saying Honolulu → USA and
suggests to add a new fact with USA as its object. The user might not know
how the subject and the proposed object are connected and which predicate
(birthPlace, residence, etc.) to choose. In addition to the semantical fitting of
the predicate, the user has also to consider its appropriateness with regard to
consistency among similar entities. Previously reported experiments also showed
the significant superiority of predicate suggestion to object suggestions [3].

3.3 Amending with new statements

After we were able to suggest one missing part for a given subject, it is possible
to also complete the remaining third part. For example, if the system decides to
suggest the predicate residence for B. Obama, it is also able to choose the right
object, e.g., Washington D.C. from the existing value range of residence. We call
this method of creating new statements where the user decides which subject has
to be amended with new triples user-driven auto-amendment. We described the
user-driven auto-amendment in [3]. A different way of creating new statements
is to let the system itself choose the subjects that should be amended with new
triples. We call this approach data-driven auto-amendment.

In this data-driven approach the subject to be amended with a new fact is
selected on the basis of existing high-confidence object rules. Our approach is
based on the following intuitions:

1. For object rules O′ → o with high confidence (above 90%) and O′ ⊆ O, the

subjects S
O′

occurring with the objects O′ are also likely to occur with the
object o. However, up to 10% of the subjects that occur with O′ violate the
rule by not occurring with o in any fact. Those facts may be absent, because
of missing thoroughness during data creation.

2. A subject s should not be enriched with a fact containing object o if on
the basis of the rules involving schema predicates s

P , no predicate can be
chosen for the connection with o. This intuition allows a softening of the
earlier intuition that expects all subjects that violate O′ → o should be
extended with a triple containing o.

One could adapt the intuitions based on high confidence rules also among pred-
icates. However, the discovery of the appropriate object for a to-be-added predi-

cate is much more cumbersome, because of the large number of available objects.
Concerning the first intuition one could argue that some of these implicitly given
facts can also be generated using ontological dependencies within the data. But,
not all implicit dependencies in the real world are captured within an ontology.
For example the high-confidence object rule South Park → Trey Parker among
television episodes correctly suggests that Trey Parker is involved all episodes of
South Park and should be added as the producer when absent. However, there
can’t be a general ontological rule that each episode of a series should have the
same producer as listed for the complete series entity.
Algorithm overview. The algorithm for data-driven auto-amendment is divided

into three steps:

1. Create predicate-predicate rule matrix as described in Sec. 3.2.
2. Generate high-confidence object rules o1, o2, . . . on → o using FP-Growth [13].
3. Create statements for subjects that violate high-confidence object rules: For

each rule o1, o2, . . . on → o retrieve subjects S that violate the rule and for
each s ∈ S predict the predicate spo that connects s and the object o.

Statement creation. The third step is illustrated in Algorithm 1. For each object
rule O′ → o with O′ = o1, o2, . . . on, all subjects s that occur with the antecedent
of the rule but not with its consequent (s ∈ S

O′
−So) are retrieved in line 2.

This set contains all subjects that may be amended with new facts having the
current object rule consequent o as their value. The choice of 90% as the high
confidence threshold is arbitrary. We report evaluation results on this threshold
in Sec. 4. As multiple object rules may contain the same consequent o, duplicate
subject-object-pairs may be generated, which are naturally ignored. Further we
exclude all rules O′ → o, with a more general rule O′′ → o, i.e., O′ ⊃ O′′,
because S

O′′
−So contains all subjects from S

O′
−So. The rest of the algorithm

is straightforward and starts with retrieving the candidate predicates P
o in line 5

and the schema predicates s
P in line 6. The rating for each retrieved candidate

predicate is computed in line 9. Given the set of schema elements s
P and a

candidate predicate p ∈ P
o, the confidence entries of the rule matrix are used

to generate an overall rating for the specific candidate predicate p. The overall
rating rp for a candidate p is computed by rp = aConf(sP, p), the aggregated
confidence of all rules with Q ⊆ s

P as antecedent and p as consequent. After the
candidate loop, the candidate with the highest rating is returned. Only if there
is a predicate with a rating above a given threshold δ, e.g., 0 for any rating at
all, the new fact spo consisting of the current subject s, the top rated predicate
p, and current object rule consequent o is added to the set of new facts in line 14.
Note, the number of new facts depends on the number of existent high-confidence
rules and their corresponding set of violating subjects S

O′
−So.

4 Experiments and Evaluation

To evaluate the accuracy and quality of our suggestion and auto-completion
approaches we performed multiple experiments on multiple datasets. Table 2

Algorithm 1: Statement Generation Algorithm

Data: objectRules /* with confidence above 90%*/
Result: newStatements

1 foreach objectRule ∈ objectRules do
2 subjects ← getViolatingSubjects (objectRule);
3 consequentObject ← objectRule.getConsequent ();
4 foreach subject ∈ subjects do
5 candidates ← getCandidatePredicates (consequentObject);
6 schema ← getSchema (subject);
7 topRating ← 0;
8 foreach candidate ∈ candidates do
9 currentRating←getRating (schema, candidate);

10 if currentRating > topRating then
11 topRating ← currentRating ;
12 predicate ← candidate;

13 if topRating > δ then
14 newStatements.add (subjects, predicate, consequentObject);

15 return newStatements

Table 2: Experimental data with distinct cardinalities
Data set Triples Subjects Predicates Objects

DBpedia 3.6 13,794,426 1,638,746 1,100 3,980,642
DBpedia 3.7 17,518,364 1,827,474 1,296 4,595,303
DBpedia 3.8 20,514,715 2,342,853 1,313 5,172,511
DBpedia 2.02 7,034,868 1,376,877 10,321 1,778,459
YAGO22 948,044 470,485 36 400,343
YAGO2s2 4,125,966 1,653,882 37 606,789

shows sizes of the different data sets. The entities in each data set correspond to
one or more of the 250 existing types, and so we are able to perform experiments
not only over all entities, but also more fine-grained on entities of a certain type,
resembling data of specific domains. The last three datasets in Table 2 are cleaned
knowledge bases provided by the authors of AMIE2 [12].

We evaluate our amendment approach on multiple datasets. In particular, we
adapt the scenario to compare the quality and efficiency of our approach with
AMIE [12], using the implementation provided by the authors, and show that
our system is competitive to AMIE achieving higher precision.

4.1 Comparing to AMIE

Our system as well as AMIE generates new facts based on evidence in knowledge
bases. While we combine two mining configurations on statement level, AMIE
mines horn rules between parameterized relations. We compared both systems
with regard to prediction quality as well as efficiency.

2 http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/

Table 3: Comparison to AMIE

Dataset Approach Facts Hits Precision

DBpedia 2.0
AMIE (63 rules) 2,359 55 2.3%
mining conf. 2,335 146 6.2%

YAGO2
AMIE 1.658m 8.1k 0.5%
mining conf. 2,086 52 2.5%

DBpedia 3.6
AMIE - - -
mining conf. 26,660 8.2k 30.0%

Prediction quality. We used the same datasets and evaluation scenario as
AMIE for a fair comparison [12]. That means we ran both approaches on YAGO2
and DBpedia 2.0 and compared the predictions to YAGO2s and DBpedia 3.8,
respectively. According to the original experiments reported by the developers,
AMIE generates up to 74K hits in the YAGO2s dataset and 122K hits in DB-
pedia 3.8. However, the ratio of hits to the number of total predictions is below
1‰, as no confidence threshold was defined. To make a fair comparison we chose
the best rules generated by AMIE, that contribute the same number of predic-
tions as our approach. To this end, we sort the horn rules generated by AMIE
by their PCA (partial completeness assumption) confidence as proposed by the
authors and iterate the list in descending order. We configured our approach
with 90% confidence threshold for object rules and 0.1% support for both object
as well as predicate rules.

The results in Table 3 show that our approach leads to a higher precision. Of
course the results confirm only that some facts are true, but cannot confirm that
any of the generated facts are false unless checked by a human expert. On the
YAGO2 dataset we report the precision for all produced rules by AMIE as the
best rule already produced ten times more predictions than our approach. That
specific rule generated for each relation isMarriedTo(a,b) the missing symmetric
relation isMarriedTo(b,a) resulting in 4,424 hits in DBpedia 3.8. Due to memory
consumption restrictions (50GB) we could not evaluate AMIE on the original
DBpedia 3.6 dataset.
Resource consumption. AMIE is a multithreaded approach where the knowl-
edge base is kept and indexed in main memory to compute support and PCA
confidence values in appropriate time. The drawback is clearly the high memory
consumption that requires up to 22 GB to discover rules on the DBpedia 2.0
dataset and 3.4 GB for the YAGO2 dataset. Our mining configuration system
needs only two FP-Trees in memory (one for discovering predicate rules and one
for object rules), resulting in less than 600 MB when running on DBpedia 2.0
and about 200MB for YAGO2. We perform both steps, mining predicates and
objects, consecutively, which could just as well be done in parallel to improve
runtime. The runtime of both approaches, AMIE as well as our mining configu-
rations, on these datasets is under 1 minute.

In general, both approaches are valid strategies to amend a knowledge base
with new facts. While AMIE generates new facts based on closed rules con-
sidering entire fact patterns as rule atoms, our approach is more granular in
considering predicate correlations and object correlations independently.

Table 4: Generated statements on DBpedia v3.6 and their inclusion in v3.7

Type Thing Person Album Animal Artist Film Organis. Place Species Work

Facts 26,646 1,521 43 17,024 426 225 1,465 10,727 26,164 463
Included 8,237 278 25 8,753 219 27 187 1,140 9,448 67
Precision 30.9% 18.9% 58.1% 51.4% 51.5% 12% 18.1% 10.6% 36.1% 14.5%

4.2 Amendment quality on large datasets

To further analyze the capabilities of rule-based triple amendment we performed
more experiments on the DBpedia 3.6 dataset. To identify strengths and weak-
nesses of the approach we also performed experiments on subsets of that dataset.
Table 4 shows the number of generated facts and their inclusion ratio in the DB-
pedia 3.7 data set. The idea here is to automatically evaluate which percentage
of generated triples is “validated” by a more up to date version of the same data
source. The high precision of the results for Animals is caused by the fact that
most of the newly added statements are Animal classification statements that
have been missing in the older version because of the lack of thoroughness dur-
ing data creation. Note, these classification statements do not correspond to the
ontology class designators rdfs:type. Those statements were excluded to identify
more interesting new facts.

While having 31% precision for minconf = 90%, experiments on the complete
data set (all entities of type Thing) with thresholds of 95% and 85% resulted into
44.3% precision having 5,866 new facts and 27.4% precision having 39,589 new
facts, respectively. These results confirm our assumption that the higher this
threshold is set the more precision can be achieved but the fewer facts may be
generated. Those facts that were not included in DBpedia 3.7 are not necessarily
wrong facts. We manually evaluated a random set of 50 not-included facts and
achieved 72% precision.

How true is a high-confidence rule? Our intuition about high-confidence
rules is that subjects that violate these rules are actually not intended to vio-
late them. In other words, we assume that the number of those subjects that
deliberately “violate” the rules is relatively low. We evaluated the quality of
high-confidence rules oi → oj by manually verifying the relation of oj to the
violating subjects on 50 randomly selected violating subjects per data set.

Table 5 shows the results for four data sets (0.1% support and 90% confi-
dence). Each data set corresponds to entities of the given type from DBpedia 3.6.
We observe that the assumption holds for most objects rules in the domains Per-
son and Place, such as American Civil War→ United States for Person instances
and Vosges → Lorraine Region for Place instances. High-confidence rules from
movie data however are mostly the result of true exceptions.However, in movie
data there are also interesting positive examples: the rule Lon Chaney, Sr. →
Silent Film with 93% confidence is a rule where the violating movies are in fact
silent movies and can be updated with the object Silent Film.

Note that our algorithm creates a new fact with the presumably missing
object only if there is a predicate that matches the subject and the object.

Table 5: Percentage of true violations of a high-confidence rule

Type Thing Place Person Film

True Positives 37 41 42 22
Percentage 74% 82% 84% 44%

Completion with predicates. In previous experiments, we analyzed sugges-
tion quality of predicates, where all top-10 recommendations had a success rate
above 50% [3]. As the results conform to other recommendation scenarios, such
as the experiments given in [10], we can conclude that association rule mining is
a reasonable strategy for predicate suggestion. In the following, we analyze the
predicate completion, which is similar to predicate suggestion with the difference
that the object value is known. Given a subject s, its schema s

P , and a related
object so, the aim of predicate completion is to select the most appropriate pred-
icate spo out of all predicates P

o that have o in their range. We evaluated this
step by applying the leave-one-out strategy: For each high-confidence object rule
oi → oj we considered all subjects soj that do not violate this rule and removed
the connecting predicate spoj between the subject s and the consequence object
oj and tried to predict spoj based on the predicate matrix and the predicate
candidates P

o. Table 6 illustrates the results for experiments on the complete
data set (type:Thing) as well as the eight types with the most instances. In
comparison to the suggestion evaluation, we see that the choice of the correct
predicate is very accurate when knowing also the object of the statement. We
achieve lower precision on Person, because many object rules there refer to lo-
cations, such as Buenos Aires → Argentina, and the predicate selection confuses
predicates, such as nationality, deathPlace, and birthPlace. But even though the
removed predicate is confused for these examples, the proposed predicate for the
subject-object pair might still be a valid fact.

Table 6: Results for predicting removed predicates based on object rules

Type Rules Triples Removed Correct Missing Incorrect Precision Recall

Thing 189 13,794,426 1,019,785 919,815 1 99,969 90.2% 90.2%
Place 169 3,605,195 246,731 246,704 0 27 99.9% 99.9%
Person 37 3,618,525 30120 20440 0 9,680 67.9% 67.9%
Work 10 2,910,016 5725 5,669 0 56 99.0% 99.0%
Species 1,128 1,461,468 1,337,734 1,212,080 9 125645 90.6% 90.6%
Organisation 84 1,456,113 24,535 24,258 0 277 98.9% 98.9%
Animal 981 1,035,602 952,340 951,964 8 368 99.9% 99.9%
Album 6 934,005 782 683 0 99 87.3% 87.3%
Film 50 626,875 5,618 5,086 4 528 90.6% 90.5%

The column with the number of missing values represents the number of
subject-object pairs, for which the algorithm does not select any predicate. For
those pairs, the existing schema of the subject s

P and the candidate predicates

P
oj are not related to each other. Because only few triples are concerned, the

precision is always at least as high as the recall. One could assume that by in-
creasing the minimum threshold for the selection decision (see Alg. 1, line 13)
incorrect selections can be avoided by being marked as undecidable. However,

Table 7: Results for predicting 20,000 random predicates for each type

Type Predictions Correct Missing Incorrect Precision Recall

Thing 18,731 16,855 1,269 1,876 89.98% 84.28%
Place 19,775 18,359 225 1,416 92.84% 91.80%
Person 19,936 15,419 64 4,517 77.34% 77.10%
Work 19,865 17,291 135 2,574 87.04% 86.55%
Species 19,986 17,922 14 2,064 89.67% 89.61%
Organization 19,820 16,115 180 3,705 81.31% 80.58%
Animal 19,975 19,968 25 7 99.97% 99.84%
Album 19,861 19,121 239 640 96.27% 95.61%
Film 19,842 18,606 158 1,236 93.77% 93.03%

experiments showed that increasing the threshold yields more undecidable selec-
tions and fewer correctly selected predicates.

Finally, we evaluated the predicate selection based on randomly removed
predicates. We wanted to examine whether the quality of the predicate selection
depends on the choice of the objects and whether the fact that they are connected
with consequences of high-confidence object rules influences the quality. Table 7
illustrates the results for predicting randomly removed predicates and shows
that predicate selection does not depend on the choice of objects as there is no
significant difference to the results in Tab. 6.

5 Conclusions

We showed how an association rule matrix can be used for suggesting both
predicates as well as object values for a user who is inserting new statements for
an entity. We proposed a user-driven and a data-driven approach for generating
new facts without depending on external resources. We conclude that mining
configurations is a reasonable approach to enrich Rdf data. Comparing to state-
of-the-art systems, we achieve higher precision allowing a manual verification
step after generating new facts. In a real-world scenario, it is possible to drop
object rules that denote weak hypotheses, as the predicate selection step works
pretty accurate in turn. The generated facts and an online demonstration tool
embedding our approach can be found on our website3.

Further research includes joint reasoning on both Rdf data using descriptive
logic and statistical occurrences of statement parts, and reasoning and formal-
izing constraints and refinements that allow more complex configurations.

References

1. Z. Abedjan, J. Lorey, and F. Naumann. Reconciling ontologies and the web of
data. In CIKM, pages 1532–1536, 2012.

2. Z. Abedjan and F. Naumann. Context and target configurations for mining RDF
data. In SMER, pages 23–24, 2011.

3 http://www.hpi.uni-potsdam.de/naumann/projekte/mining_rdf_data.html

3. Z. Abedjan and F. Naumann. Improving RDF data through association rule min-
ing. Datenbank-Spektrum, 13(2):111–120, 2013.

4. Z. Abedjan and F. Naumann. Synonym analysis for predicate expansion. In
P. Cimiano, O. Corcho, V. Presutti, L. Hollink, and S. Rudolph, editors, The Se-
mantic Web: Semantics and Big Data, volume 7882 of Lecture Notes in Computer
Science, pages 140–154. Springer Berlin Heidelberg, 2013.

5. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. In SIGMOD, pages 207–216, 1993.

6. P. A. Bonatti, A. Hogan, A. Polleres, and L. Sauro. Robust and scalable linked
data reasoning incorporating provenance and trust annotations. Journal of Web
Semantics, 9(2), 2011.

7. C. d’Amato, V. Bryl, and L. Serafini. Semantic knowledge discovery from het-
erogeneous data sources. In A. Teije, J. Vlker, S. Handschuh, H. Stuckenschmidt,
M. dAcquin, A. Nikolov, N. Aussenac-Gilles, and N. Hernandez, editors, Knowl-
edge Engineering and Knowledge Management, volume 7603 of Lecture Notes in
Computer Science, pages 26–31. Springer Berlin Heidelberg, 2012.

8. C. d’Amato, N. Fanizzi, and F. Esposito. Inductive learning for the semantic web:
What does it buy? Semantic Web Journal, 1(1,2):53–59, Apr. 2010.

9. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7–36, Mar. 1999.

10. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms.
ACM Transactions on Information Systems, 22:143–177, 2004.

11. D. Fleischhacker, J. Völker, and H. Stuckenschmidt. Mining RDF data for property
axioms. In On the Move to Meaningful Internet Systems (OTM), volume 7566 of
Lecture Notes in Computer Science, pages 718–735. Springer Berlin Heidelberg,
2012.

12. L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. AMIE: Association rule
mining under incomplete evidence in ontological knowledge bases. In WWW, 2013.

13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate genera-
tion. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pages 1–12, 2000.

14. J. Józefowska, A. Lawrynowicz, and T. Lukaszewski. The role of semantics in
mining frequent patterns from knowledge bases in description logics with rules.
Theory Pract. Log. Program., 10:251–289, 2010.

15. F. A. Lisi and F. Esposito. Mining the semantic web: A logic-based methodology. In
Proceedings of the Int. Symposium on Foundations of Intelligent Systems (ISMIS),
pages 102–111, Heidelberg, 2005.

16. S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

17. V. Nebot and R. Berlanga. Mining association rules from semantic web data. In
Proceedings of the Int. Conference on Industrial Engineering and other Applications
of applied Intelligent Systems (IEA/AIE), pages 504–513, Berlin, 2010.

18. A. Rettinger, U. Lösch, V. Tresp, C. d’Amato, and N. Fanizzi. Mining the semantic
web - statistical learning for next generation knowledge bases. Data Min. Knowl.
Discov., 24(3):613–662, 2012.

19. S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning first-order horn
clauses from web text. In EMNLP, pages 1088–1098, 2010.

20. J. Völker and M. Niepert. Statistical schema induction. In G. Antoniou, M. Gro-
belnik, E. Simperl, B. Parsia, D. Plexousakis, P. Leenheer, and J. Pan, editors,
The Semantic Web: Research and Applications, volume 6643 of Lecture Notes in
Computer Science, pages 124–138. Springer Berlin Heidelberg, 2011.

