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ABSTRACT

The discovery of functional dependencies in a dataset is of
great importance for database redesign, anomaly detection
and data cleansing applications. However, as the nature
of the problem is exponential in the number of attributes
none of the existing approaches can be applied on large
datasets. We present a new algorithm DFD for discovering
all functional dependencies in a dataset following a depth-
first traversal strategy of the attribute lattice that combines
aggressive pruning and efficient result verification. Our ap-
proach is able to scale far beyond existing algorithms for up
to 7.5 million tuples, and is up to three orders of magnitude
faster than existing approaches on smaller datasets.
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1. INTRODUCTION

Functional Dependencies (FDs) are among the most rele-
vant dependencies in relational databases. Despite their rel-
evance for normalization of relations, FD constraints gained
importance for data quality and data cleaning applications.
In particular, they can resemble integrity constraints [5] or
denial constraints [4], which can be used to detect and repair
data violations.

The discovery of functional dependencies is a popular topic
in the domain of data profiling [15]. Foundations regarding
the general complexity of the problem, which is in Q(2™)
for m columns, were proven by Mannila et al. [14] in 1992.
Based on those principles, several major papers concern-
ing FD discovery were published between 1999 and 2002.
However, none of the approaches is applicable to realistic
datasets with tens of attributes and millions of tuples. While
further effort was put into the application area of Fbs [4,7],
by extending the FD concept to more specialized constraints,
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such as approximate FDs and conditional FDs, research on
the efficiency of FD discovery approaches has been neglected.
Recent advances in the related domain of unique column
combinations (composite keys) [10,17], however, showed that
it is possible to achieve superior runtime behavior by ag-
gressive pruning of the search space. We adapt the insights
gained from that line of research and create a new efficient
approach for the discovery of F'Ds in a relational table. Next,
we formally define relevant concepts and the computational
challenge of FD discovery and outline the contributions of
this paper.
Functional Dependencies. Given a relational database
schemata R = {C1,C%,...Cyh} with a relational instance
r C dom(C1) X dom(C2) X --- x dom(Cy,), a functional de-
pendency states that an attribute Cy € R is determined by
some other attributes X C R. This can be formally defined
as follows:

DEFINITION 1.1. Functional Dependency (FD). Given
a relational database schema R with a relational instance r.
Let Cx € R and X C R, then X — Cy is a functional
dependency over r iff
Vi1, t2 €7 t1[X] = tQ[X] = tl[Ck] = tz[ck]
X is called the left-hand side (LHS) and C}, is the right-hand
side (RHS) of the dependency.

Accordingly we define a non-functional dependency (non-
FD) as follows:

DEFINITION 1.2. Non-Functional Dependency (Non-
Fp) Let Cy, € R and X C R, then X 4 Cy% is a non-FD
over r iff

Ft1,t2 € r: t1[X] = t2[ X] A t1[Ck] # t2Ck]

Naturally, for any Cy € X the trivial FD X — C}% holds
and can be ignored during the discovery process. Further-
more, the set of all FDs can be generated based on the set
of all minimal FDs, which are defined as follows:

DEFINITION 1.3. Minimal FD. WithCy, € R and X, X' C
R the FD X — Cy is minimal iff VX' C X : X' 4 C.

The maximality of a non-FD can be defined accordingly:

DEFINITION 1.4. Mazimal non-FD. With C,, € R and
X, X' CR the FD X 4 C% is a mazimal non-FD iff
VX' O X: X = Cy

In general, the task of discovering all FDs can be reduced
to the task of discovering all minimal FDs and all maxi-
mal non-dependencies. While for any FD X — C}, fur-
ther non-minimal FDs exist by appending the LHS with fur-
ther columns, for any non-FD the RHS is also non-dependent



from all subsets of the non-dependency’s LHS. In this pa-
per, we show that similar to the key discovery problem [17],
it is possible to leverage the complement relationship be-
tween the set of minimal FDs and the set of maximal non-
dependencies.

Contributions. We make the following contributions:

1. With DFD we present a new FD discovery approach for
very large datasets, significantly outperforming previ-
ous work.

2. Extensive experiments on multiple real world datasets
compare DFD to existing approaches and analyze its
runtime behavior.

The next section discusses and compares related work. In
Section 3 we present our approach DFD. In Section 4 we
evaluate our approach and conclude in Section 5.

2. RELATED WORK

Functional dependency discovery approaches can be clas-
sified into two main groups. The first group consists of algo-
rithms that traverse the search space in a breadth-first, lev-
elwise manner. The strategies of this group can be further
divided into bottom-up, top-down, and hybrid approaches.
The second class is represented by algorithms that traverse
the search space depth-first.

The group of breadth-first levelwise algorithms consists
of Tane [11], FUN [16], FDMine [19], and DepMiner [13].
They all use the Apriori algorithm for candidate genera-
tion [2]. The key characteristic of the breadth-first bottom-
up approach is that it works levelwise, whereas each level k
contains only LHS candidates for FDs with a cardinality of &
attributes. The results of each level are used to generate the
left-hand side candidates of size k 4+ 1. Such breadth-first
approaches work well on datasets that contain FDs on lower
levels, where all minimal FDs can be detected early and all
of their supersets can be pruned (see Def. 1.3). However,
if some minimal FDs have high cardinalities, i.e., involve
many LHS attributes, the algorithm has to check the can-
didates of all levels until the highest level with a minimal
FD is reached. Furthermore, if some columns are never part
of a minimal FD, the algorithms might need to generate all
supersets until an FD is discovered. While we use some tech-
niques that have already been proposed by Tane, we present
a new traversal approach that avoids the verification of un-
necessary column combinations by flexibly traversing both
bottom-up and top-down in a depth-first manner.

Tane, FDMine, and FUN all rely on quite similar con-
cepts. DepMiner follows a different approach than the classi-
cal breadth-first approaches: It calculates covers of so-called
agree sets to determine minimal dependencies in the un-
derlying dataset. DepMiner generates the candidates in a
breadth-first levelwise manner, which still leads to an ex-
ponential runtime behavior depending on the number of
columns. Furthermore, the calculation of agree sets has a
quadratic time complexity depending on the number of tu-
ples in the dataset. Despite the improved strategies to gen-
erate the agree sets by Lopes et al. [13], this preprocessing
step still has a significant impact on the runtime, because
nowadays datasets with millions of tuples are common. Our
approach uses the partition refinement approach proposed
in [11], which scales linearly in the number of tuples.
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The second group of approaches are algorithms that search
the powerset lattice of the attributes in a depth-first manner.
For a given RHS column, they start with an individual col-
umn as LHS and append more columns until an FD for the
selected RHS holds. Depth-first traversal algorithms have
the advantage that they can identify the first dependency
within n steps for n attributes. Although this approach suf-
fers from the fact that the identified FD is not necessarily
minimal, it has the advantage that for any discovered non-
FD Lus on the path to the discovered FD all of its subsets can
be pruned, because they also constitute non-FD LHss. This
category is represented by FastFDs [18], a tuple-oriented al-
gorithm. It features many similarities with DepMiner [13].
Candidates for LHss are selected based on difference sets,
which are similar to the agree sets of DepMiner. A differ-
ence set of two tuples contains all attributes of the rela-
tional schema in which the values of the tuples are distinct.
Therefore, difference sets are the complements of agree sets.
Similar to DepMiner [13] the computational complexity of
this preprocessing step is quadratic in the number of tuples.
Additionally, the number of possible covers grows exponen-
tially with the number of attributes in the difference sets.
Therefore, also the determination of minimal covers can be
a costly processing step.

Flach et al. propose FDep, which uses machine learning
techniques to infer functional dependencies based on the tu-
ples of the underlying dataset [8]. Besides a naive brute-force
approach, the authors provide a top-down, bottom-up, and
a bi-directional version of FDep. However, Wyss et al. have
shown that FDep only performs well on small datasets [18].
FDep has the same drawbacks as FastFDs [18] and Dep-
Miner [13], because it is based on pairwise tuple comparison.

In Section 4, we present a detailed evaluation that shows
the effective pruning strategy of our algorithm DFD in a
comparative study with the most popular approaches Tane
and FastFDs. After 2002 there were no papers that further
improved the performance of FD discovery. Instead, the re-
search focus shifted from functional dependencies to approx-
imate [9,12] and conditional functional dependencies [3,6].

3. THE DFD ALGORITHM

DFD is a novel algorithm for the Discovery of Functional
Dependencies. It recombines components from known ap-
proaches for the discovery of FDs and the discovery of unique
column combinations. First, we describe our search strat-
egy for efficient identification of relevant column combina-
tions and then we describe data structures that ensure fast
pruning and fast verification of FD candidates.

3.1 Leveraging Unique Column Combinations

For each relation, a powerset lattice can be constructed
that represents all column combinations, as shown in Fig-
ure 1. To identify all existing FDs one has to traverse that
lattice, pruning as many combinations as possible. Tane,
for example, does this verification levelwise, which means
for each k = 2,3,..,|R| it checks all combinations of size
k at the same time beginning with £ = 2. For each col-
umn combination it checks which k — 1 subsets functionally
determine the remaining column. Whenever an FD is dis-
covered, Tane ignores all possible FDs with a LHS superset
of the current FD. For large k the generation of all possible
candidates is a bottleneck. Especially for datasets where a
small number of minimal FDs exist at relatively high levels



Figure 1: Powerset lattice for R=(A,B,C,D)

of the lattice, the breadth-first traversal of Tane results in a
significant overhead for candidate generation.

We radically change the traversal of the lattice based on
insights from the discovery of unique column combinations.
Although, the problem of discovering all minimal unique
column combinations is easier to solve than the problem of
FD discovery, we show that some advances in that field can
greatly contribute to the FD discovery problem. In particu-
lar, our approach is inspired by the algorithms [10] and [17].

In general both concepts, unique column combinations
and FDs, are strongly related: functional dependencies can
be seen as a generalization of the key concept for a relation.
A unique column combination K C R does not contain any
duplicate tuples [1]. Minimal unique column combinations
are valid LHSs of minimal FDs that functionally determine
values in all remaining columns R\ K. Thus, there are at
least as many minimal FDs in a dataset as there are mini-
mal unique column combinations. In fact, unique discovery
is a subproblem of determining all FDs of a dataset. One
major difference between unique column combinations and
FDs is that for discovering uniques we need to consider only
column combinations as a whole. In contrast, FDs consist
of LHS and a RHS column combination. Current algorithms
manage this issue by considering all possible LHSs and RHSs
when checking a column combination. For breadth-first ap-
proaches like Tane this is straight forward, because in any
case only LHSs of a certain size are considered at each level.
However, traversing the lattice in a depth-first manner re-
quires to identify decidable paths. If one node provides mul-
tiple dependencies to check, the decision for the next traver-
sal step might not be intuitively clear and result in multiple
stacks of paths that have to be traced later.

To disentangle this situation, we decompose the lattice of
all column combinations into multiple lattices, where each
corresponds to one possible RHS of the relation. Having a
relation R = (A, B,C, D) for example, we create for the
RHS A the lattice that contains the subsets of the powerset
of {B, C, D} to identify all LHSs that functionally determine
the column A. For our example R we create four lattices for
the four possible RHss. In each lattice we can apply pruning
for supersets of valid FD LHuss and subsets of non-FD LHss.
Iterating one by one over the RHS attributes, DFD is not
only easier to understand, it also allows us to discard any
redundant pruning data structures after each iteration step,
as we show in the following.

3.2 Algorithm Workflow

Algorithm 1 illustrates the main loop of DFD. Its input
is the set of columns and their partitions. We describe the
structure of these partitions in Section 3.7. They directly
represent the data of the single columns of the underlying
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dataset. In lines 1 to 4, DFD checks each attribute partition
for uniqueness. Finding a unique attribute enables DFD to
infer a set of minimal FDs without traversing the lattice.
Each remaining attribute is then considered as a possible
Rus and findLHSs is called to create the corresponding pow-
erset lattice and identify possible LHSs.

Algorithm 1: The main loop of DFD.

Data: All attributes A € R, relational instance r
Result: the set of minimal non-trivial functional
dependencies F,
foreach A € R do
if A is unique then
R+ R\ {4}
L add (A — R) to Fr;

B W N =

foreach RHS € R do
L Fr+ FrU{K - RHSY|K € findLHSs(RHS,r)}

return F,.

[«

~

Algorithm 2 shows how DFD determines all minimal FDs
for the current RHS attribute by classifying all possible LHSs.
In line 1, DFD picks randomly a seed as an initial LHS
candidate. Initially the individual columns except the cur-
rent RHS candidate constitute the seeds. Subsequently, DFD
starts to traverse the search space beginning with the chosen
Lus and classifies each visited combination/node according
to the following categories:

dependency

minimal dependency
candidate minimal dependency
non-dependency

maximal non-dependency

candidate maximal non-dependency

Dependency and non-dependency represent LHS nodes that
are neither minimal nor maximal, respectively. A candidate
minimal dependency/maximal non-dependency is a column
combination that still can be the LHS of a minimal FD or
maximal non-FD. In case the current column combination
was already traversed at an earlier stage of the process, DFD
examines only those column combinations again that are
classified as candidates (line 6). In lines 8 and 11, DFD
checks whether the category of a candidate can be changed
or not. It could be that after revisiting a candidate mini-
mal dependency all of the subsets of that node have been
classified as non-dependency, making the candidate a min-
imal dependency. That is why DFD maintains the visited
candidate nodes in a stack trace. The trace allows DFD to
backtrack its way through the lattice, revisiting nodes that
can be eventually classified at a later stage.

In case the node was not yet visited, DFD examines if the
node is a proper superset/subset of a previously discovered
dependency /non-dependency and updates its category ac-
cordingly. Otherwise, it has to perform the costly partition
calculation in order to identify which kind of candidate the
combination represents (line 17). If the partition calculation
results into a dependency, the node is classified as a candi-
date minimal dependency, otherwise as a candidate maximal
non-dependency.

After categorizing the current node, DFD chooses the next
node that is visited during the lattice traversal in line 18.



Algorithm 2: findLHSs()

Algorithm 3: pickNextNode()

Data: RHS attribute A, relational instance r
Result: the set of minimal non-trivial LHSs

1 seeds + R\ {A};

2 while /isEmpty(seeds) do

3 node <— pickSeed();

4 repeat

5 if visited(node) then

6 if isCandidate(node) then

7 if isDependency(node) then

8 if isMinimal(node) then

9 | add (node) to minDeps;
10 else
11 if isMazimal(node) then
12 L | add (node) to mazNonDeps;
13 update Dependency Type(node);
14 else

15 inferCategory(node);

16 if category(node) is null then

17 L computePartitions(node, A);
18 node < pickNextNode(node);

19 until node is null ;
20 seeds < generateNextSeeds();

21 return minDeps

The general idea of choosing the next node is to move down-
wards in the lattice if the current column combination rep-
resents a dependency LHS and upwards otherwise. The de-
tailed process determining the next node is shown in Sec-
tion 3.3. When all reachable nodes from the current trace
have been visited, DFD picks the next seed from the list of
seeds that were initially calculated. Whenever the list of
seeds is empty, the algorithm calls generateNextSeeds() to
generate possibly remaining candidates.

3.3 Traversal Step

Algorithm 3 shows how DFD picks the next node based
on its stack-trace and the currently considered column com-
bination. The first important step is to determine if the
current combination is a candidate for a minimal depen-
dency or maximal non-dependency. If not, the algorithm
instantly backtracks by choosing the latest available node
on the trace.

If the current node is still a candidate for a minimal de-
pendency, DFD needs to determine if it is actually minimal.
Therefore, in line 2 DFD retrieves all unchecked subsets of
the current node and removes all subsets that can be pruned
according to Def. 1.3. If the set of unchecked subsets is
empty, then the current node is a LHS for a valid minimal
FD (lines 5 and 6). This is because there are no subsets left
that still can be a LHS for a valid FD with fewer attributes
than the current node.

However, if the set of unchecked subsets is not empty, DFD
picks an unchecked subset as the next node in line 8, and
adds the previous node to the trace.

In case of the current node being a candidate for a max-
imal non-dependency, DFD retrieves the set of unchecked
supersets and removes the prunable supersets according to
Def. 1.4. Those nodes are potential LHSs for maximal non-
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Data: node
Result: nextNode
if isCandidateMinimalDep(node) then
S < uncheckedSubsets(node);
P+ prunedSets(node);
S+« S\ P;
if S is empty then
‘ add node to minDeps;
else
nextNode < random(S);
push node to trace;
10 return nextNode;

11 else if isCandidateMazimalNonDep(node) then
12 S < uncheckedSupersets(node);

13 P + prunedSupersets(node);

14 S+ S\ P

15 if S is empty then

© 0O Gk WN -

16 ‘ add node to maxNonDeps;
17 else

18 nextNode < random(S);
19 push node to trace;

20 return nextNode;

21 else

22 ‘ return nextNode from trace;
23

dependencies that contain more attributes than the current
node.

ExamMPLE 3.1. Given the schema R = {A,B,C,D, E},
assume the current right-hand side attribute is E and the
current ezamined node is {A,C}. DFD categorized {A,C}
as a candidate for a mazximal non-dependency. To determine
whether the left-hand side is actually a valid mazimal non-
dependency for the current right-hand side, DFD needs to
make sure that there are no supersets of { A, C} that are also
non-dependencies. The unchecked supersets of the current
node are {A, B,C} and {A,C, D}.

Assume {C,D} — FE is a valid functional dependency
that was already found by D¥D. In this case, the right-hand
side {A,C, D} can be excluded from the set of potential next
nodes, because it already can be classified as a dependency.

3.4 Identifying unclassified nodes

The lattice traversal terminates whenever there is no reach-
able column combination left. As previously mentioned, the
aggressive pruning approach can lead to unreachable but not
finally categorized candidate nodes. To cope with that prob-
lem, we again make use of insights from unique discovery al-
gorithms. This time we leverage the complement operation
that was introduced for the Gordian algorithm [17]. Sisma-
nis et al. show that having the set of all maximal non-unique
column combinations, it is possible to generate all minimal
unique column combinations through a complementation ap-
proach. Heise et al. prove the reversibility of that operation
and its feature to identify missing combinations if one of
the sets is not complete [10]. Thus, to prove the correctness
of DFD we need to show that the correctness proof given by
Heise et al. can be generalized to FDs. The only characteris-
tics relevant for the proof are the minimality of uniques and
maximality of non-uniques. For a RHS column A, the set of



Algorithm 4: generateNextSeeds()
Data: minimal dependencies for the current RHS

minDeps
maximal non-dependencies for the current RHS
maxNonDeps
Result: new seeds
1 seeds + {}
2 newSeeds + {}
3 foreach maxNonDep € maxNonDeps do
4 mazNonDep' + complement of mazNonDep;
5 if seeds is empty then
6 emptyColumns <— Bitset(| mazNonDep |);
7 foreach setBitIndex € mazNonDep' do
8 add emptyColumns.setCopy(setBitInder) to
| seeds;
9 else
10 foreach dep € seeds do
11 foreach setBitIndex € maxNonDep' do
12 L add dep.setCopy(setBitIndex) to
newSeeds;
13 minimizedNewDeps < minimize newSeeds;
14 seeds < {};
15 foreach newSeed € minimizedNewDeps do
16 L add newSeed to seeds;
17 newSeeds < {};
18 seeds < seeds \ minDeps;

19 return seeds;

all LHsSs for minimal FDs that determine A and the set of
all maximal column combinations that constitute a non-FD
for A have the same characteristics as the set of all mini-
mal unique and maximal non-unique column combinations,
respectively.

Algorithm 4 describes how to identify the untouched nodes
of the LHS lattice graph. Whenever the lattice traversal
for the current right-hand side column terminates in Algo-
rithm 2, DFD has to determine whether all minimal func-
tional dependencies for the current RHS have been found.
Algorithm 4 is able to detect missing LHSs for the current
RHs. Furthermore, it provides new seeds that enable DFD
to classify missing nodes.

Algorithm 4 allocates two data structures, seeds and new-
Seeds that maintain found seeds and the new set of seeds for
the current iteration. In line 3, DFD iterates over the whole
set of maximal non-dependencies. For each of those non-FD
LHS combinations, DFD determines the complement. Be-
cause we use bitsets to store the set of columns in a column
combination, this is a very cheap operation.

In the first iteration of the outer loop, seeds in line 5 is
still empty. In that case, DFD creates a column combination
bitset called emptyColumns, which has the same size as the
number of columns provided by the underlying dataset with-
out the RHS column. All of its bits have been set to zero,
which means that the combination contains no columns yet.

Subsequently, DFD adds a new potential LHS to the set of
seeds for each set bit in the complement of the current max-
imal non-dependency combination. DFD finally removes the
already determined LHS of minimal FD from the set of new
seeds in newSeeds. The remaining set contains unclassified
seed nodes that can be used for the next traversal itera-
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tion. In general those nodes are very close to the actual LHS
of minimal FDs and maximal non-dependencies so that the
remaining search space is effectively narrowed down.

Example 3.2 illustrates why the approach of Sismanis et
al. [17] for detecting missing keys from maximal non-keys,
also works for minimal dependencies and maximal non-depen-
dencies.

EXAMPLE 3.2. Given the schema R = {A,B,C,D, E, F},
assume the current right-hand side is F' and the lattice traver-
sal terminated. DFD was not able to determine any minimal
dependency, but it identified {A, B,C} /4 F as a mazimal
non-dependency.

Using that result, lines 5 to 9 of Algorithm 4 generate the
seeds D and E based on {A,B,C} = {{D},{E}} as can-
didates for dependencies. This is because both of those at-
tributes are not part of the maximal non-dependency, which
implies that they have to be part of a minimal dependency:
if they were not a component of a minimal dependency,
they would have to be a part of the present mazximal non-
dependency LHSs. However, in that case {A,B,C} /A F
would not be a maximal non-dependency anymore. There-
fore, D and E can be used as seeds for the missing minimal
dependency.

If we now extend the example with a second maximal non-
dependency {A,C,D} 4 F, we can explain what happens
in lines 9 to 17 of Algorithm 4. We know already that
seeds = {D,E} from the previous step. DFD now sim-
ply merges the dependencies of the first step with the com-
plements of the remaining maximal non-dependency in the
same manner as in the first part of the algorithm. Be-
cause {A,C,D} = {B, E}, DFD generates all cross combi-
nations {{B,D},{D,E},{B,E},{E}} as new dependency
candidates. After the minimization step in line 13, only
{{B, D},{E}} remain as seeds for LHSs.

3.5 Managing LHS of dependencies and non-
dependencies

The pruning of supersets of dependency LHS and subsets
of non-dependency LHS are a crucial factor for the efficiency
of DFD, because it enables DFD to classify column combi-
nations without calculating their partition, based only on
the available dependencies and non-dependencies. There-
fore, we need to provide a data structure that enables us to
quickly identify classified supersets and subsets.

Similar to [10], we use two hashmaps to manage sub-
set/ superset relationships. For the case of dependency
LHss, we use a hash map whose keys are represented by the
individual column indices. Those columns map to sets of de-
pendency LHSs that contain the respective column. When-
ever DFD discovers a dependency with a LHs K, that de-
pendency is added to the value sets of all columns that are
contained in K. Since it is redundant to store supersets
of LHS of valid FDs, we minimize the sets of dependencies
afterwards by removing previously stored supersets of K.
The same is valid for non-FDs, albeit it is necessary to re-
move redundant subsets of non-FD LHS after adding a new
combination.

However, as shown in [14], the search space of the com-
plete set of minimal FDs and consequently for maximal non-
FDs is exponential, and the set of stored dependencies and
non-dependencies increases very fast during the traversal of
the powerset lattice. That is why we rebalance those data



structures after adding new combinations by creating sub-
lists for column pairs. The threshold for rebalancing the
dependency and non-dependency sets can be adapted specif-
ically to certain data sources. In general, the minimization
of dependency sets or respectively the maximization of non-
dependency sets in combination with the rebalancing allows
DFD to reduce the lookup times. Whenever D¥FD performs a
check whether a column combination can be pruned, it only
needs to compare the current column combination to the as-
sociated combinations that have been stored for the columns
of the current combination in the respective hashmap. In our
experiments, we chose to set the maximum value set size to
100,000, which triggers the rebalancing process for some of
the tested datasets.

3.6 Dependency validation and partition cal-
culation

Similar to Tane, we use stripped partitions for DFD to
validate dependencies [11]. Stripped partitions have also
been referred to as position list indices [10].

DEFINITION 3.1. Partition of an attribute set. Given
a relational database schema R = {C1,...Cy} with a database
instance r C dom(Cy) x -+ x dom(Cy), let X C R. Then
the partition 7 associated with X is defined as 7x = {[a]x |
a€r}.

A stripped partition 7x for a column combination X con-
tains a list of equivalence classes where each class contains
the row/position ids of one specific value projection in X
and all classes with only one element have been removed.
Furthermore, ||7x|| is the total number of duplicate value
combinations and |7Tx| the number of equivalence classes.

DEerFINITION 3.2. Validity check of FDs. Given a re-
lational database schema R = {Ch,...C\,} with a database
instance r C dom(C1) x -+ x dom(Ch), let X, Y C R and
let || be the number of equivalence classes in 7.

Then X - Y < |7Tx| = |7rXU{Y}’~

The calculation of mxy(y} from mx and 7y is called parti-
tion intersection. This means, in order to determine whether
a LHS X is valid for a right-hand side C% in the form of
X — Ck, DFD needs to calculate not only the stripped par-
tition of the LHS, but also the respective partition of the
LHS intersected with the partitions of the RHS.

Computing the intersection of two stripped partitions scales
linearly in the number of tuples of a relation. We use probe
tables to intersect partitions of two attribute sets 7x and
Ty, as also applied for Tane and Ducc. A probe table is a
data structure that maps each tuple index ¢t € r of the first
input partition to its corresponding equivalence class index
c € Tx. In a second path on the tuples in 7y, a second map
is created that maps pairs of class indexes to sets of tuple
ids. Each tuple id from 7y is probed against the previously
created map. Whenever the lookup succeeds a map-entry is
created with the classes ¢ € 7x and ¢’ € Tx as the key and
the tuple id that matched both classes as value. If the key
(c,c') already exists the new tuple is just appended to the
list of values of (c,c’). In a final step, we strip the second
map from all class pairs that map only to one tuple id.

Because we use the same concept as Tane for determining
the validness of FDs, DFD can easily be modified to discover
approximate FDs. Approximate or also called partial FDs
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are dependencies where some tuples violate the dependency.
For example data corruption might be a reason why specific
column combinations are not discovered as dependencies.
Therefore it might be reasonable to consider a dependency
also as valid, when it holds only for 99.99% of tuples.

3.7 Partition removal

In general, when calculating composed partitions, most of
the time DFD re-uses previously computed partitions over
and over again. Nevertheless, the number of partitions might
still grow exponentially and result in high memory consump-
tion.

Therefore, we provide a method to deallocate partitions
that are not needed any longer. Since we cannot be ab-
solutely sure which partitions are not necessary anymore,
we keep track of the recently used partitions and the us-
age counts. Whenever the number of partitions exceeds a
certain threshold we determine the median usage count of
the currently allocated partitions. We then delete all non-
atomic partitions that have a usage count below the median
value, giving least recently used partitions an advantage.

The difficulty is to determine the threshold for the start of
that process. The reason is that the structure of datasets,
such as the distinctiveness count of the columns, the col-
umn and the row count itself, and the number of Fbs lead
to a different number of partitions that we need to calculate.
One possibility is to trigger the partition removal operation
whenever a static threshold is exceeded. However, that is
not suitable since the number of partitions between different
datasets for a constant number of rows and columns differs
by orders of magnitude. It can be more practical to con-
nect the partition removal process to the currently allocated
memory by the partitions. In our experimental section, we
show the effect of static partition removal on some dataset.
We label the DFD version with partition removal as DFD-
Mem.

4. EXPERIMENTS

To show the effective pruning and overall efficiency of our
approach we performed multiple experiments. We analyzed
the effect of different parameters, such as number of columns
and number of rows, on the runtime behavior of DFD. We
provide a detailed comparison of DFD with the most popular
FD mining algorithms Tane and FastFDs, which represent
different lines of FD discovery strategy.

4.1 Experimental Setup
For the experiments we used a Dell PowerEdge R620 server:

e 4 x Intel Xeon Processor E5-2650 @ 2.00GHz, 20MB
Cache (32 CPU cores)

e 128GB DDR3-RAM with 1600 MHz
e CentOS 6.4, OpenJDK 64-Bit Server VM — 1.7.025

If not stated otherwise, all tests are under a maximum heap
size of 64GB and a maximal running time of 3 hours.

Name | Type #Columns #Rows
Uniprot | real-world 223 539,165
NCVoter | real-world 94 7,503,575
lineitem synthetic 16 6,001,215

Table 1: Datasets



Table 1 shows our datasets, selected based on the type, the
column, and row count. The Uniprot dataset is the public
Universal Protein Resource database(UniProt, www.uniprot.
org) that contains protein sequences and functional infor-
mation. NCVoter is a collection of North Carolina’s Voter
Registration statistics!. Lineitem is one relation of the TPC-
H database benchmark, emulating the common structure of
a table of shopping transactions. For different experiments
we created modified versions of the real-world datasets by
truncating them after the first 20 columns or the respective
number of rows.

4.2 DFD versus Tane and FastFDs

In this section we analyze the effectiveness of the pruning
strategies used by Tane, FastFDs, and DFD. We investigate
the impact of the number of columns, the number of rows.
Subsequently, we inspect the memory requirements of each
approach.

4.2.1 Impact of number of columns

As mentioned in Section 3.5, functional dependency dis-
covery is a problem with an exponential time complexity
depending on the number of columns. The complete search
space for a dataset with n columns has a cardinality of 2" —1.
Adding one column to a dataset doubles the number of nodes
to examine. Therefore, a brute force approach that does not
use pruning strategies is infeasible.

Figure 2 shows the scaling for the number of columns on
the NCVoter and Uniprot datasets. We had to restrict the
number of rows in order to have at least some datapoints
for FastFDs and Tane. On both datasets, DFD outperforms
existing work significantly. While being up to three orders
of magnitude faster than FastFDs, DFD was also able to
process 10 more columns than FastFDs. Because of the cal-
culation of the difference sets, FastFDs has high initial costs
even for only two columns. Although Tane initially was only
slightly slower than DFD it ran into memory problems from
the 23rd column on, hitting the 64 GB memory restriction.
We can observe a similar behavior for the NCVoter dataset.
However, this time FastFDs was able to process two columns
more than DFD, because DFD hit the memory limit from the
32nd column on. In general we can observe a plain corre-
lation of DFD’s runtime and the result size, (number of de-
pendencies) illustrated via the grey bars. This supports our
claim that DFD significantly prunes the search space through
the random walk strategy. To further clarify our point we
compared the number of generated partitions through DrD
and Tane in Figure 3. Here we see clearly that DFD performs
by magnitudes fewer FD verifications than Tane.

Figure 4 shows the development of the memory require-
ments of Tane, FastFDs, and DFD depending on the number
of columns in the dataset. On both datasets, Tane is the first
algorithm that exceeds the default heap size of the Java Vir-
tual Machine. In both cases, Tane’s memory requirement
increases dramatically with the number of columns. DFD
manages to process eight more columns than Tane on the
NCVoter and 11 more on the Uniprot dataset. Unlike Tane,
DFD did not fail because of the memory limit on the second
benchmark.

Since FastFDs is a tuple oriented approach, its memory re-
quirement is strongly dependent on the value distributions of

"http://www.ncsbe.gov/ncsbe/data-statistics.
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the dataset. For Uniprot, the distribution favored FastFDs,
which managed to process two columns more than DFD.
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Figure 4: Memory requirements depending on the col-
umn count for Tane, FastFDs, and DFD on NCVoter and
Uniprot. (f - Time Limit $ - Memory Limit)

Since the goal for the design of DFD was a scalable algo-
rithm for the discovery of Fbs, we also compared the run-
times of Tane, FastF'Ds, and DFD on the complete datasets.
Figure 5 shows how Tane, FastFDs, and DFD performed on
the whole datasets of NCVoter and Uniprot. As expected,
FastFDs was not able to process the datasets and already
failed at the calculation of the difference sets.

On the NCVoter dataset, Tane and DFD perform equally
fast for up to 11 columns. However, because of the memory
limit, D¥D is able to process two columns more than Tane.
DFD fails at a column count of 14, because of the given time
constraint. A similar result can be observed regarding the
Uniprot dataset. Up to 12 columns, Tane and DFD have a
similar runtime. Afterwards, Tane’s runtime increases faster
than DFD and hits the memory limit early for 22 columns.
DFD manages to determine the set of minimal FDs for up to
31 columns.

4.2.2  Impact of number of rows

Mannila et al. state that Tane’s time complexity is only
linearly dependent on the number of rows [11]. This intu-
ition holds for the partition verifications of Tane and DFD.
However, FastFD’s preprocessing step, the generation of all
difference sets has a quadratic time complexity [18].

Figure 6a shows that for a very small amount of rows,
all approaches are suitable. FastFDs is not able to process
the dataset for 250,000 rows. Note that we also had to re-
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strict the number of columns on both datasets to the first 20
columns, in order to produce any numbers. Here, the limit-
ing factor was not the timeout as seen in the measurements
in Section 4.2.1, but the heap space. Profiling showed that
the generation of the search tree for the calculation of the
difference set’s minimal covers is responsible for the memory
consumption.

Although DFD is only a slightly faster than Tane for up to
100,000 rows, it is able to process 250,000 rows within the
given memory limits, which Tane cannot. Even the maximal
dataset of 500,000 rows is not an issue for DFD. As expected,
D¥D scales linearly on the number of rows.

The results of the Uniprot dataset in Figure 6b show a
similar behavior for all approaches. Again, FastFDs fails to
process 250,000 rows, because it exceeds the memory limit

when calculating the minimal covers.

DFD is by multiple

factors faster than Tane for 250,000 rows and nearly an order
of magnitude faster for 500,000 rows.
Tane needs to calculate more than 11 times the number of
partitions compared to DFD.
Figure 7 displays the growth of the memory requirement
dependent on the number of rows in the dataset. We used
the same datasets as in Section 4.2.2.
Unlike in the previous experiment where we tested the
memory growth depending on the number of columns, FastFDs
performs worse than both Tane and DFD. The reason is the
preprocessing step, which calculates the difference sets based
on the tuples of the dataset. Since the number of possible

The reason is that
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difference sets increases quadratically with the number of
rows, the number of difference sets that need to be covered
in the later stage of FastFDs increases in the same manner.
However, this forces FastFDs to cover a much larger num-
ber of paths in the search tree that determines the minimal
covers that eventually result in the minimal dependencies.
Profiling of FastFDs showed that storing that search tree led
to the violation of the given memory limit.
Tane performed slightly better than FastFDs for the NCVoter

dataset. However, both algorithms failed when processing
250,000 rows. On the Uniprot dataset Tane was able to
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calculate the complete result for the largest dataset, albeit
almost exhausting the given memory pool.

In contrast, DFD easily processes both datasets, regard-
less of the number of rows. DFD requires around 30% of
the memory that Tane needs in order to process NCVoter
with 100,000 rows. The advantage is even more noticeable
for 500,000 tuples on Uniprot. DFD solely requires 5% of
Tane’s memory pool. That is because of DFD’s aggressive
pruning strategy, which significantly reduces the partition
computation.

Table 2 shows a comparison of the runtimes on the lineitem
dataset. We generated the lineitem datasets with different
scale factors (SF): 0.1, 0.3, and 1.0.

FastFDs was only able to calculate a results in the given
memory and time constraints for 2 and 3 columns in the
dataset with a scale factor of 0.1. Even for those two data
points, DFD was two orders of magnitude faster. This shows
that FastFDs scales exceptionally poor with an increasing
number of rows. Profiling showed that it was not even able
to reach the minimal cover calculation step, because it was
still occupied with computing the difference sets. DFD and
Tane perform much better. Both algorithms are able to
determine the complete result for the whole 0.1 dataset. For
a scale factor of 0.3, Tane has to terminate early, because of
the memory limit for column counts beyond 13. In contrast,
DFD processes the dataset for the whole range of columns.
At a scale-factor of 1.0 Tane already fails because of memory
issues at a column count of 11. DFD is able to process the
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dataset for up to 14 columns. However, unlike Tane, it fails
later due to the time limit.

For some data points, especially for SF' = 0.1, Tane per-
forms better than DFD. The reason is that for the lineitem
dataset, Tane actually often calculates fewer partitions than
DFD, e.g., only 9,417 partitions for the complete 0.1 dataset
while DFD created 19,224 partitions. As lineitem is a gen-
erated dataset, the cardinality of the vast amount of the
dependencies is very similar and small, being at maximum
size 5 and equally distributed on only a few levels of the
powerset lattice. In such a scenario a level-wise breadth-
first approach is more efficient than a depth-first approach
if the dataset is small enough.

4.3 Partition Removal

In Section 3.7, we introduced a partition removal concept
that enables DFD to remove partitions from the heap if a
certain amount of created partitions is exceeded. Figure 2b
shows results where DFD performed worse than FastFDs be-
cause the memory limit was already exceeded for 32 columns.
Since D¥D stored 40,732 partitions to calculate the complete
set of minimal FDs for 31 columns, we set the maximum par-
tition threshold to 10,000 for our experiment.
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Figure 8: Execution time for Tane, FastFDs, DFD, and
DFD-Mem on the first 100,000 rows of the NCVoter dataset.
(f - Time Limit { - Memory Limit)

Figure 8 shows how the memory aware DFD, DFD-Mem
performs compared to the other three algorithms. The thresh-
old of 10,000 partitions is exceeded the first time for a col-
umn count of 26. Up to 30 columns DFD and DrD-Mem
are equally as fast. However, at 31 columns the negative
impact of the memory limit is noticeable for the runtime of
DFD. That is because DFD spends a lot of time garbage
collecting whereas DFD-Mem does not exceed the memory
limit at all. As expected, DFD-Mem actually performs only
slightly worse than DFD. Considering that we reduced the
amount of stored partitions to less than 25%, the partition
removal heuristic seems to be promising. Table 3 illustrates
that the heuristic for choosing which partitions can be re-
moved, works quite well. In fact, DFD-Mem rarely needs to
recalculate partitions.

S. CONCLUSION

In this paper, we presented DFD — a new algorithm for
discovering functional dependencies. DFD benefits from ag-
gressive pruning through a random-walk depth-first traver-



600,122 rows (SF=0.1) 1,800,366 rows (SF=0.3) 6,001,215 rows (SF=1.0)
#Columns Tane FastFDs DFD Tane FastFDs DFD Tane FastFDs DFD
2 1.3 612.2 1.7 3.6 TL 4.6 11.9 TL 15.1
3 2.9 667.9 2.8 7.4 TL 8.2 25.8 TL 33.2
4 4.7 TL 5.0 13.8 TL 18.8 51.4 TL 59.3
5 8.1 TL 6.6 26.1 TL 23.4 84.2 TL 80.0
6 13.3 TL 12.0 46.8 TL 44.2 156.3 TL 141.9
7 25.1 TL 17.9 86.0 TL 63.8 266.3 TL 215.4
8 42.6 TL 28.8 138.3 TL 85.2 437.7 TL 290.1
9 88.2 TL 47.0 218.4 TL 132.3 948.8 TL 416.3
10 144.5 TL 64.8 385.7 TL 194.2 | 2054.0 TL 682.9
11 165.3 TL 114.6 532.1 TL 322.5 ML TL 1059.8
12 216.0 TL 262.4 800.7 TL 749.9 ML TL 2693.9
13 341.1 TL 479.8 | 1041.6 TL 1390.2 ML TL 4584.8
14 549.7 TL 869.8 ML TL 2635.5 ML TL 7868.0
15 848.4 TL 1412.0 ML TL 4218.3 ML TL TL
16 969.6 TL 1894.1 ML TL 5672.4 ML TL TL

Table 2: Execution time (seconds) for Tane, FastFDs, and DFD on three different lineitem datasets

#columns | 25 26 27 28 29 30 31
#DFD 8,994 13,967 16,166 21,787 31,163 35,071 40,732
#DFD-Mem | 8,994 14,066 16,211 22,082 31,825 35,882 41,390
F##recalculated 0 99 45 295 662 811 658

Table 3: Calculated partitions of DFD and DFD-Mem for the first 100,000 rows of the NCVoter dataset.

sal and an efficient result verification that enables it to ignore
many false positives. We presented extensive experiments
that illustrate the superiority of DFD over the popular al-
gorithms Tane and FastFDs on large real world datasets,
outperforming them most of the time by orders of magni-
tude. In general, a random walk approach for choosing LHS
candidates works well. However, we can imagine that incor-
porating some heuristics might further improve the runtime,
despite considering the number of distinct values of a column
combination as a heuristic had no influence.
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