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Abstract—Machine-based clustering yields fuzzy results. For
example, when detecting duplicates in a dataset, different tools
might end up with different clusterings. Eventually, a decision
needs to be made, defining which records are in the same
cluster, i. e., are duplicates. Such a definitive result is called
a Consensus Clustering and can be created by evaluating the
clustering attempts against each other and only resolving the
disagreements by human experts.

Yet, there can be different consensus clusterings, depending
on the choice of disagreements presented to the human expert.
In particular, they may require a different number of manual
inspections. We present a set of strategies to select the smallest
set of manual inspections to arrive at a consensus clustering
and evaluate their efficiency on a set of real-world and synthetic
datasets.

I. HANDLING CONTRADICTORY CLUSTERINGS

Clustering a dataset into partitions is a fundamental prob-
lem in computer science. It has applications in diverse areas,
such as network analysis, business intelligence, or duplicate
detection. There is also a plethora of different clustering
algorithms that can be tweaked and tuned in different ways.
Consequently, different clusterings may arise for the same
dataset, created by different parties.

For example, a company might want to launch an adver-
tisement campaign and needs to separate their customers into
groups of different revenue. The different enterprise divisions
(sales, marketing, claims, research) have different ideas of how
to cluster the set of customers. They do not necessarily need
to apply computer-based clustering techniques and may use
personal experience, instead. Another example could be an
information retrieval challenge run by student teams, which
competitively try to cluster a given dataset using their preferred
algorithms. For further processing, the different clustering
results have to be aligned in a way that further decisions (which
advertisement campaign to run/whether or not the students’
joint clustering quality was better than last year’s) can be
made. Such an alignment of multiple clustering results is called
consensus clustering [1].

A third example is the area of duplicate detection, and is
the driver of our research: With a vast number of possible
algorithms to efficiently and effectively detect multiple, dif-
ferent representations of same real-world entities, it is easily
possible to execute multiple duplicate detection runs, each with
different similarity measures and other parameter settings. A
consensus clustering can merge the different results, and, if
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Fig. 1. Different clusterings on the same dataset

done effectively, minimize the manual effort to resolve the
conflicts among the different results. We follow a similar goal
by merging multiple results to create a near-gold standard [2].

Figure 1 shows an example for these different individual
clusterings. All four clusterers agree that A is in a cluster
of its own (called singleton), but have some disagreement
on everything else. While B and C are separated by most
clusterers, C and D are clustered together by most clusterers.
To achieve a consensus clustering, the transitive closure could
be applied, ending up in a large cluster {B,C,D,E, F}.
Other automatic clustering approaches might, for example,
consider the confidences of the individual clusters and propose
{A}, {B}, {C,D,E}, and {F} as consensus clustering, when
the pair (B, C) has low confidence and (C, D) has high
confidence.

We follow a semi-supervised approach to use human
experts to decide about the clusters, based on the results
of automatic clusterers. In this way, individual clustering
decisions are manually reviewed and the resulting consensus
clustering has a higher quality than automatic approaches.
Because human effort is expensive, we strive for finding
strategies that primarily minimize the number of questions to
the human expert when creating a consensus clustering. As a
secondary goal, we like to have a consensus clustering that
resembles the truth as much as possible.

The typical workflow for semi-supervised consensus clus-
tering is depicted in Fig. 2. The set of clusterings C is collected
from the different clusterers. All disagreed pairs of elements,
stored in S, are candidates for a manual inspection. A pair
selection component chooses one pair for manual inspection
and presents it to the human expert. His/her verdict is then
sent to a change propagation component, which in turn updates
the clusterings themselves, including inferred changes due to
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Fig. 3. Different consensus clusterings for the same input

transitivity. This loop is repeated until S is empty and thus a
consensus clustering is found: the final result.

The selection of pairs for manual inspection and the
selection order is crucial for the number of performed manual
inspections until a consensus clustering is reached and for the
resulting consensus clustering itself. Figure 3 shows an initial
set of four clusterings C (a) and four consensus clusterings (b)
to (e) which mutually differ in the clusters they contain.
To come to a consensus clustering, manual inspections are
performed, i. e., a human expert is asked for a verdict on
the correctness of the queried pair. The expert’s verdicts are
consistent to a (hidden) gold standard (top left).

There are one or several different sequences of verdicts,
leading to each consensus clustering, illustrated with the
dashed arrows. The arrow labels are examples of verdict
sequences and their lengths. The sequences can differ in both,
their lengths and/or the consensus clustering they create. In
this example, the following four cases occur.

• It is possible to reach the same consensus cluster-
ing (b) using different verdict sequences that cause
the same effort.

• The two different consensus clusterings (b) and (e) are
the result of same-length sequences representing the
same effort.

• The same consensus clustering (e) can be reached with
different effort using sequences of 4 or 5 verdicts.

• Finally, different consensus clusterings can be reached
with different effort, for example, by the minimal
verdict sequence leading to consensus clustering (c)
compared to the much longer sequences leading to
consensus clustering (e).

For settings with four clusterings and four elements, clustering
configurations can be found that lead to up to seven different
consensus clusterings.

In this paper, as the clustering task, we focus on the du-
plicate detection problem, i. e., identifying multiple represen-
tations of same real-world entities (which belong to the same
cluster). Each pair of records can either be duplicate or non-
duplicate. The notion of duplicity is a reflexive, symmetric,
and transitive relation. All elements in a cluster are mutually
duplicates, elements in different clusters are non-duplicates.
The results of this paper are applicable on other clustering tasks
as well, as long as they create flat and disjoint clusterings. In
summary, we make the following assumptions:

• The input to consensus clustering is a set of cluster-
ings. We treat those clusterings as black boxes. We do
not know how they were created.

• Our approach for consensus clustering does not re-
quire similarities of the elements nor their attribute
values, because we directly start with a set of cluster-
ings.

• The number of clusters is a natural consequence of
the algorithm, rather than an a-priori parameter.

Our contributions are in particular:

• A formalization of semi-supervised consensus cluster-
ing

• Four different strategies to choose clusters to be exam-
ined by a human expert, while minimizing the manual
effort

• An extensive evaluation on – and the provisioning
of – several artificial and three real-world datasets,
clustering results and gold standards.

In Sec. II we show related work concerning consensus clus-
tering. Section III defines Semi-Supervised Consensus Clus-
tering formally and Sec. IV presents four strategies for pair
selection. For the implementation, several optimizations were
developed which are described in Sec. V. The experimental
evaluation is presented in Sec. VI. Finally, Sec. VII concludes
the paper and discusses future work.

II. RELATED WORK

There is much related work which is presented in the
following. Semi-supervised consensus clustering shares char-
acteristics with fuzzy clustering (uncertainty about whether
two records belong to the same cluster), with semi-supervised
clustering (relying on human judgements to verify or falsify
data), graph cutting (a sparse graph structure where some
connections are to be refined), and ensemble clustering (create
agreed clusterings using (semi-)autonomous means).

Clustering. Aggarwal defines clustering as follows: “Given
a set of data points, partition them into a set of groups which
are as similar as possible.” [3] There is a large variety of
clustering methods, flat or hierarchical, distance-based or prob-
abilistic, continuously-spaced or discrete-spaced, unsupervised
or semi-supervised, hard or soft. In our case, we already have a
set of clusterings and want to solve a meta-clustering problem.



Joint entity resolution [4] by Whang and Garcia-Molina
is a duplicate detection approach with the specialty that not
one dataset (relation) but several related (via foreign keys)
datasets due to a normalization of the relational schema are
deduplicated. This brings the possibility to look for duplicates
in the different relations in a random access manner. Duplicate
decisions might influence the comparison result of records
pairs in other relations. To this end, Whang and Garcia-Molina
propose a scheduler that creates an execution plan. This is
related to the problem of consensus clustering, because human
expert verdicts might influence other pairs as well, due to
transitivity. However, we do not need to make use of any
similarities between the records.

Fuzzyness in clustering. Fuzzy C-means is an exten-
sion of the traditional K-means clustering algorithm where
an additional membership coefficient is introduced [5]. This
coefficient describes how much each element is part of each
cluster and thus influences the objective function when re-
calculating the centroid positions. Akin to K-means, fuzzy C-
means relies on the initialization of centroids and the choice
of the number of clusters C. In contrast, we do not to know
C and the centroids.

Kaymak and Setner [6] extend fuzzy C-means with an
agglomerative approach. They bypass choosing a good value
for C by over-estimating the number of clusters and then
merging them. Nevertheless, the centroid selection problem
remains and it is still not applicable to our problem, because
of the lack of pairwise similarities.

(Semi-)supervised clustering. The user can be used to
support a clustering process. He can help at various steps, e. g.,
when selecting an appropriate number of clusters or finding
good initial centroids (seeding [7]). Apart from this point-
wise supervision, pairwise supervision is performed when
individual possible cluster members are compared. Supervising
users can merge/split pairs [8] or define must-link/cannot-link
constraints [9] on them. Cohn et al. [10] employ user feedback
on some pairs to “steer” an already complete clustering into
a new direction. Users are invited to criticize arbitrary, self-
chosen, suspicious-seeming clustering decisions with a fixed
set of statements and these constraints are respected in the
next iteration of the clustering. Unfortunately, this approach
assumes that re-clustering can be done. Furthermore, our
strategies choose which pairs to present to the human expert,
rather than the expert himself.

Graph cutting. Another approach on clustering based on
a graph is cutting. A cut is a set of removed edges between
nodes in a graph such that the resulting graph is separated
into k disjoint subgraphs, i. e., clusters. The goal is to find
the cut that minimizes the weights of the removed edges. To
circumvent trivial, unwanted solutions (separating one node
from the remaining nodes), normalized versions are used, the
normalized cut [11] or the ratio cut [12]. Shi and Malik propose
an adaption for k > 2, that relies on k-means and thus, the
problem of finding a good k arises, again. Von Luxburg [13]
describes several heuristics for coming up with a good k in
her section on practical details. In our approach, the number
of clusters is a natural consequence of the input data.

Ensemble/Consensus Clustering. Combining a set (en-
semble) of clusterings to a joint clustering, all clusterers to

some degree agree on, is called Consensus Clustering. There
are unsupervised [14] and also semi-supervised approaches, for
example, using voting or training a clusterer to perform better
upon re-clustering. Stehl and Ghosh [15] use hypergraphs.

However, our approach does not rely on any training,
because the clusterings are final and need not to be re-created
with improved clusterers. We also do not rely on voting, but
instead use a human expert that gives consistent answers. This
also means that a single vote is sufficient per pair, reducing
the overall manual effort.

III. FORMALISM FOR CONSENSUS CLUSTERING

We formally define consensus clustering and the required
terms. These formalisms are used in the next section to
describe the pair selection strategies which reduce the number
of verdicts.

Dataset and set of pairs. A dataset D is a set of n records
{r1, . . . , rn}. We define the set of pairs PD ⊂ D ×D as all
pairs of records in D where PD = {pij := 〈ri, rj〉 | ri, rj ∈
D, i < j}. |PD| = |D|·(|D|−1)

2 .

Clusterer, clustering, and clusters. A clusterer is a function
that partitions D into disjoint subsets, the clusters c1, . . . , ck.
We call such a set of clusters a clustering C = {c1, . . . , ck}.
Each cluster contains at least one record. In a duplicate
detection use case, many clusters will contain exactly one
record, i. e., are singleton clusters.

Since different clusterers use different features of the
records or apply different clustering strategies, different clus-
terings arise that in particular may contain different num-
bers of clusters. We denote the set of m clusterings C =
{C1, . . . , Cm}.

We further denote the set of pairs contained in a cluster c
as P c = {pij := 〈ri, rj〉 | ri, rj ∈ c, i < j}, analogously
to PD. For example, a cluster c = {ra, rb, rc} would lead
to P c = {pab, pac, pbc}. Similarly, the set of pairs PC for
a clustering C is defined as the union of the set of pairs of
its individual clusters: PC =

⋃k
r=1 P

cr . Note that in general,
|PC | � |PD|, because |PC | just contains the intra-cluster
pairs for clustering C, while PD contains all possible pairs in
the dataset.

Support. The support of a pair is the number of clusters that
contain that pair. Pairs with a support of m or 0 are called
agreed: all or none of the clusterers concordantly declare that
pair. We call all other pairs disagreed and say that they are in
the set of disagreed pairs S which are candidates for a manual
inspection.

sup(p) = |{Cw| p ∈ PCw , Cw ∈ C}|

Manual inspection and clustering modifications. A manual
inspection is the review activity by a human expert concerning
a pair p. The expert either verifies or falsifies the pair (veri-
fication/falsification). The result of a manual inspection is a
verdict v: a pair p of which we know whether it is verified
or falsified by the human expert. We denote the sequence of
all pairs that underwent manual inspection with M . Because
a manual inspection directly corresponds to a verdict and vice
versa, we use both terms interchangeably.
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Each possible verdict might lead to different modifications
of the clusterings. Figure 4 shows two possible clusters ci and
cj for a clustering Cw. In case of a verification of pab, the
two clusters ci and cj containing ra and rb, respectively, are
merged in Cw and all other clusterings in C, usually inducing
additional pairs due to transitivity.

In case of a falsification of pab, the cluster containing the
inspected pair pab is split in Cw and all other clusterings in C,
usually discarding additional pairs. Due to the split, ra and rb
are separated into two fresh clusters ci and cj , one containing
ra, the other rb. All other nodes of the original cluster are
placed individually into ci, cj , or a third cluster, see below.

Although a merge/split does place the two records from
the manual inspection into one/separate clusters, the other
records do not necessarily share those cluster(s). For example,
assume that pae in Fig. 4 has already been falsified via a
previous manual inspection. When merging ci and cj due to the
manually verified pair pab, pae must not be re-merged, because
this would contradict the previous manual inspection. Instead,
re has to go into a third cluster. The same holds analogously
for falsifications/splits.

Regardless of whether or not a clustering has been changed
due to a manual inspection, we keep track of each state of
a clustering. We denote a clustering after the s-th manual
inspection as C

(s)
w with C

(0)
w = Cw for brevity. Thus, we can

refer to the original clusterings.

Impact. When applying a verdict of a pair p to a clustering
C, this clustering might be modified. We call the modified
clustering C ′. The impact impC(v) of the verdict v of a pair
p on a single clustering C is the number of new or discarded
pairs in PC′ .

impC(v) =
∣∣∣ |PC | − |PC′ |

∣∣∣
In the example in Fig. 4 all thin edges represent the

new/discarded pairs in case of a verification/falsification, i. e.,
a merge of/split into clusters ci and cj , respectively.

In two special cases, the impact is zero and nothing
happens: If the manually inspected pair p was already “known”
to the clusterer (i = j, p ∈ PC) and the pair is verified; or
the manually inspected pair has never been declared by the
clusterer (i 6= j, p /∈ PC) and the pair is falsified.

If we want to estimate the impact for a pair, rather than
a verdict, we cannot tell the exact impact in advance, because
we do not know the expert’s verdict. Instead, we simulate the
modification of C with a positive verdict (v+) verifying p and
with a negative verdict (v−) falsifying p and define the impact
as being the average of the respective impacts.

impC(p) =
impC(v

+) + impC(v
−)

2

The overall impact impC(v) on all clusterings for a verdict
v is simply the sum of all impacts on the individual clusterings.
With the sum, we might add the same pair several times. This
is intended, because a verdict may have the same effect for
several clusterings. The overall impact for a pair is calculated
analogously.

impC(v) =

m∑
w=1

impCw
(v)

Table I shows the different impacts on a set of clusterings. For
example, let pad be selected for manual inspection. In case of
a verification (a merge), pad connects the two clusters of C1

(adding 4 pairs) and creates a triangle for C3, inducing the two
new pairs pab and pbd. C3 then resembles C2, which would
not be affected by any clustering modification. The individual
impacts are noted in the fourth column. Vice versa, in case
of a falsification (a split), C1 and C3 are not influenced and
C2 loses two pairs: pad and either of pab or pbd (assuming no
previous manual inspections). These impacts (0, 2, and 0 for
C1, C2, and C3) are shown in the fifth column. In total, the
impact impC(pad) is either 6 or 2 and averages in 4. pac and
pbc are no candidates, because all clusterers agree on them. As
the table indicates, the merge impact is usually larger than the
split impact, due to transitivity.

Agreement. While the number of pairs |PD| (agreed and
disagreed) remains constant during consensus finding, the ratio
between agreed and disagreed pairs may change with each
manual inspection. Eventually, the number of agreed pairs
reaches |PD|, a consensus clustering is found. We call the
number of agreed pairs in a set of clusterings C the agreement
agreeC.

agreeC = |{p|sup(p) ∈ {0,m}, p ∈ PD}|

The agreement of a pair can be calculated by simulating C
after a verification (C+)/falsification (C−) of that pair and
calculating the average of the agreements on the modified
clusterings.

agreeC(p) =
agreeC+ + agreeC−

2

Table II shows the average agreements for the same exam-
ple as in Tab. I. There are four records and therefore six pairs.
Initially, two pairs are agreed (pac and pbc), the other pairs are
disagreed. For example, let pab undergo a manual inspection.
In case of a verification, pab achieves a support of m (= 3)
and pac and pbc keep their support of 0, summing up to an
agreement of 3. The other three pairs stay disagreed. In case of
a falsification, pab is not disagreed anymore as well as pad. The
formerly agreed pairs pac and pbc are not changed, yielding an
agreement of 4. As a result, the average disagreement is 3.5.



Impact for
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Pair Candidate? C+
1 + C+

2 + C+
3 C−1 + C−2 + C−3 Average Impact

a b

c d

ab Candidate! 0+0+2 = 2 1+2+0 = 3 2.5
ac 4+3+1 = 8 0+0+0 = 0 4
ad Candidate! 4+0+2 = 6 0+2+0 = 2 4
bc 4+3+2 = 9 0+0+0 = 0 4.5
bd Candidate! 4+0+0 = 4 0+2+1 = 3 3.5
cd Candidate! 0+3+2 = 5 1+0+0 = 1 3

TABLE I. POSITIVE AND NEGATIVE IMPACTS FOR CLUSTERING C1 (DASHED), CLUSTERING C2 (SOLID), AND CLUSTERING C3 (DASH-DOTTED)

Agreement for
Pair Candidate? C+ C− Average agreement

a b

c d

ab Candidate! 3 4 3.5
ac 2 2 2
ad Candidate! 3 3 3
bc 3 2 2.5
bd Candidate! 1 4 2.5
cd Candidate! 1 3 2

TABLE II. AVERAGE AGREEMENTS FOR DIFFERENT PAIRS BASED ON A SET OF CLUSTERINGS WITH AN AGREEMENT OF 2

Clustering difference. We can calculate the difference be-
tween two clusterings using the Generalized Merge Distance
(GMD) [16]. The GMD is a generalization of different mea-
sures (e. g., pairwise precision, pairwise recall, and normalized
mutual information) and works similar to the string edit
distance, but on clusterings. Instead of character deletions,
replacements, and insertions, clusters can be merged and split.
The costs for merging or splitting two clusters with sizes
x = |ci| and y = |cj | are given by two customizable
functions fm(x, y) and fs(x, y). For the semi-supervised ap-
proach intended in this paper, we chose fm(x, y) = 1 and
fs(x, y) = x · y, as suggested by Menestrina et al. [16].

Consensus clustering. In the course of manipulating the indi-
vidual clusterings as a consequence of the manual inspections,
they all converge towards the same clustering which is called
consensus clustering C̃ = C

(|M |)
1 = . . . = C

(|M |)
m .

We can now define the overall goal: Given a set of cluster-
ings C, find a minimal sequence M of manual inspections to
modify the clusterings in C to achieve a consensus clustering.

Note that the achieved consensus clustering is not necessar-
ily the same clustering that would be generated when manually
inspecting all pairs in PD.

IV. PAIR SELECTION STRATEGIES

The crucial step in getting a quick converging towards the
consensus clustering is in having a good selection strategy for
the pairs that are presented to the human expert. We propose
four different pair selection strategies based on the measures
of the previous section.

They all condense to the application of different precedence
functions f that assign a precedence value to each candidate
pair in S. The pair with the highest precedence value is chosen
for the next manual inspection. In case of a tie, we chose
a candidate arbitrarily. We have tried different tie resolution
strategies, but without significant improvements. Depending
on the pair selection strategy, this precedence value is updated
after each manual inspection.

MaxSupport. The MaxSupport pair selection strategy prefers
pairs that already have a high support, hoping for a verification.
The rationale is that highly supported pairs are more likely to
be in the same cluster and they also tend to have duplicate pairs
in their neighborhood, that are in the impact of the manual

inspection and thus do not need to be manually inspected
separately. Analogously, pairs with very low support have a
good indication for falsification, but as this does not induce
pairs, we target highly supported pairs.

fMaxSupport(p) = sup(p)

MaxAverageImpact. The MaxAverageImpact pair selection
strategy prefers pairs with large average impacts, i. e., pairs
potentially merging/splitting large or many clusters. In Tab. I,
the candidate pair with the largest average impact is pad.

fMaxAverageImpact(p) = impC(p)

MaxAverageAgree. The MaxAverageAgree pair selection
strategy prefers pairs with a large average number of agree-
ments. In Tab. II, the candidate pair with the highest average
agree is pab.

This is different from MaxSupport because MaxSupport
aims for increasing the support, while max-average-agree aims
for setting the support of a maximal set of pairs to m or 0,
neglecting pairs whose support is only slightly changed and
leaving them disagreed.

fMaxAverageAgree(p) = agreeC(p)

Random. The Random pair selection strategy serves as a
baseline of the other strategies for evaluation. It randomly
selects a pair for manual inspection from the set of candidates.

V. PRUNING AND SPLITTING

For speedup, we made design decisions that we briefly want
to mention.

It is sufficient (and more efficient) to work on individual
connected components, instead of the graph as a whole. A
connected component contains all pairs between which there
is an arbitrary path, ignoring the lineage (i. e., the respective
clusterings) of the parts of such a path. With this divide and
conquer strategy, the number of candidate pairs to be sorted
is heavily reduced and the strategies have to sort much fewer
elements.

Proof: The isolation between two connected components
would be violated if a manual inspection between them re-
sulted in a positive verdict, a merge. To initiate this manual



inspection, at least one clusterer had to declare this pair. In
this case, however, the two connected components had not
been separated and would belong together: a contradiction.

Splitting the whole graph into connected components has
several advantages. First, the whole consensus finding process
can be easily parallelized based on connected components.
Second, connected components reveal the potential for purg-
ing. Usually, many clusters are singletons, especially singletons
in all clusterings. Consequently, there are also many connected
components containing just a single record. These connected
components can be discarded as well as any other connected
component that does not contain any disagreed pairs.

Cluster splitting is prone to ties. When there is a choice on
how to perform a cluster split (and no alternative contradicts
any previous verdicts), we have a tie. We try to resolve this tie
by choosing the alternative that is most frequent regarding the
other clusterings that have already been modified or that were
not affected by the verdict. Ties that still remain are resolved
arbitrarily. With that tie resolution heuristics, we promote faster
convergence towards a consensus clustering.

VI. EVALUATION

In this section we describe the evaluation metrics, the
datasets, and finally show how well the different strategies
perform. For the experiments, we created an implementation
in Java 7. The code and all datasets can be downloaded1.

A. Evaluation metrics

With the following metrics, we can quantitatively and
qualitatively rate a consensus clustering and differentiate be-
tween the different pair selection strategies concerning their
suitability for finding a consensus clustering with as few
manual inspections as possible.

The number of manual inspections |M | issued to the human
expert describes the manual effort required to find a consensus
for C.

The average GMD between the original clusterings C(0)

and consensus clustering C̃ indicates how much the clusterings
had to be changed to eventually converge. There can be
different consensus clusterings that have the same manual
effort (|M |), but caused cluster operations with a larger impact,
i. e., larger GMD. We call this measure C-GMD (for consensus
GMD).

We also measure the GMD between the consensus clus-
tering and the gold standard. This indicates the quality of the
consensus clustering. We call this measure briefly G-GMD (for
gold standard GMD).

B. Datasets

For evaluation, we need a dataset, a gold standard (as
a cheaper and faster substitute for a human expert during
evaluation), and a set of at least two clusterings. Unfortunately,
these three assets together are not available for any real-
world dataset we know. Either we have the dataset and a
gold standard, but no reasonable clusterings or we have a

1http://tinyurl.com/consensusclustering

dataset and a set of sophisticated clusterer results, but no
gold standard. Therefore, we generated the missing artifacts,
as described below.

We use a modified Chinese Restaurant Process [17] for the
generation of gold standards and clusterings, respectively. For
each record in the dataset, with a given singleton probability
sp, it is placed in a singleton cluster. With the remaining
probability (1 − sp), it is placed into an existing cluster. We
use exactly this procedure to generate a gold standard.

Where clusterings are not available, we derive them from
the (generated or available) gold standard. This is reasonable,
because decent clusterings will likely resemble the gold stan-
dard to some degree. To create such a derived clustering, we
modify the above procedure in the following way: We go over
each record in the gold standard and with a (small) cluster
change probability ccp, we extract the record from the cluster it
is currently in and continue to place it somewhere as described
above. We call the singleton probabilities for the gold standard
tsp and for the clusterings csp, respectively.

For all our datasets, the actual contents are irrelevant; just
the distributions of the records into the clusters are of interest.
In the following, we describe the scenarios (combination of
dataset, gold standard, and clusterings) that are used for the
evaluation.

Freedb. The freedb dataset contains information about
750,000 CDs (artist, title, length, year, genre, etc.). For the
clusterings, we have the results of four sophisticated, hand-
crafted duplicate detection tools declaring about 127,000 du-
plicate pairs in connected components up to size 266. The
gold standard was created by a crowd using the CrowdFlower
platform. The clusterings are sampled from a larger dataset (see
freedb-full below) and resemble each other to a high degree.

Freedb-full. The original freedb dataset contains data about
several million CD albums. We filtered out all those entries that
did not contain readable characters. 1.9 million CDs remain
and we have the full results of the duplicate detection tools also
on this dataset. They range from 200,000 to 350,000 declared
duplicates. As the gold standard, we used the same data as in
the freedb scenario above.

NCVoter. This is a voter directory of North Carolina2. Ra-
madan et al. [18] applied extensive duplicate detection tech-
niques on this dataset and provided the results as a gold
standard. There are clusters of records up to the size of 5.
We used a subset including all 5-, 4-, and some 3-clusters
and padded them with the same number of singleton records.
Finally, the dataset has a size of about 10,000 records. The
cluster change probability ccp is 0.3 and the cluster singleton
probability csp is 0.666. We have created 3 clusterings.

Generated. We use a synthetic scenario where the gold
standard as well as the clusterings were entirely gener-
ated. This generated scenario has the advantage that all
parameters can be set deliberately. We vary the respec-
tive parameters, but for the default scenario, we chose
tsp = 0.6, csp = 0.8, ccp = 0.1, a dataset size
ds of 1000 and 3 clusterings (|C|). We call this scenario
Generated-Default. For each of these five different dimensions,

2http://www.ncsbe.gov/ncsbe/data-statistics



we chose four different values: tsp ∈ {0.5, 0.6, 0.7, 0.8},
csp ∈ {0.6, 0.7, 0.8, 0.9}, ccp ∈ {0.05, 0.1, 0.15, 0.2}, ds ∈
{1, 000, 10, 000, 50, 000, 100, 000}, and |C| ∈ {2, 3, 4, 7}. We
did not explore every possible combination, but ran exper-
iments with the default values and one changed parameter
each. This changed parameter determines the scenario’s name.
Table III gives an overview on the settings for the synthetic
scenarios.

Scenario Name tsp csp ccp ds |C|
Generated-D 0.6 0.8 0.1 1,000 3
Generated-tsp-0.5 0.5 0.8 0.1 1,000 3
Generated-tsp-0.7 0.7 0.8 0.1 1,000 3
Generated-tsp-0.8 0.8 0.8 0.1 1,000 3
Generated-csp-0.6 0.6 0.6 0.1 1,000 3
Generated-csp-0.7 0.6 0.7 0.1 1,000 3
Generated-csp-0.9 0.6 0.9 0.1 1,000 3
Generated-ccp-0.05 0.6 0.8 0.05 1,000 3
Generated-ccp-0.15 0.6 0.8 0.15 1,000 3
Generated-ccp-0.2 0.6 0.8 0.2 1,000 3
Generated-ds-10,000 0.6 0.8 0.1 10,000 3
Generated-ds-50,000 0.6 0.8 0.1 50,000 3
Generated-ds-100,000 0.6 0.8 0.1 100,000 3
Generated-|C|-2 0.6 0.8 0.1 1,000 2
Generated-|C|-4 0.6 0.8 0.1 1,000 4
Generated-|C|-7 0.6 0.8 0.1 1,000 7

TABLE III. PROPERTIES OF THE DIFFERENT SYNTHETIC SCENARIOS

To overcome poor random choices when generating the
assets, we always state average values over 5 runs. However,
the freedb scenarios just had a single run, because there was
no random data generation involved.
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Fig. 5. Histogram of cluster sizes for the default scenario (first instance), cut
off at 100, first bars reach 600

For the default generated scenario, we give an overview of
the cluster size distribution. Figure 5 contains the histogram of
the cluster sizes for the first run of the default scenario (first
row in Tab. III). The first bar, printed solid, is the gold standard,
the other three bars are the clusterings. One can see that the
clusterings differ from each other but adhere quite closely to
the gold standard. As in practice, it is a long-tail distribution:
The majority of records resides in singleton clusters (in this
case about 600 of the 1,000 records) and there are only very
few large clusters. The gold standard contains a cluster of

size 23, while the clusterings’ largest clusters contain 22 or 19
records, respectively. It is highly likely that those clusters have
a high overlap, but the third clustering became more diverged
in the derived random generation process.

C. Results for the Generated Scenarios

Table IV shows the results for the consensus finding in the
generated default scenario. There are four rows, each for a
different pair selection strategy. The respective optimal value
is printed in bold face. The numbers of manual inspections
are comparable, except for the MaxAverageImpact strategy,
which stands out and uses the fewest manual inspections. C-
GMD and G-GMD are nearly equal for all strategies. The
MaxAverageAgree strategy finds consensus clusterings that
reflect both, the gold standards and the original clusterings
most. This is remarkable, because MaxAverageImpact uses less
manual inspections and still finds consensus clusterings that
differ more from each other. Therefore, the intuition leading
to the MaxAverageImpact strategy (choosing pairs that have
a high (average) impact) seems to hold: the (relatively few)
manual inspections actually have a higher impact.

Scenario Strategy |M | C-GMD G-GMD
Generated-Default MaxSupport 197.8 115.0 1.4
Generated-Default MaxAverageImpact 185.6 115.0 1.2
Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2

TABLE IV. KEY FIGURES FOR THE DEFAULT GENERATED SCENARIO

Overall, the manual effort caused by the different strategies
is quite similar. Unfortunately, the combinatorial complexity
prevents the extensive calculation of optimal (i. e., smallest)
M ’s even for small datasets. We therefore empirically deter-
mined an approximate optimum by taking the random pair
selection strategy and iterating very many times with different
random initializations for this strategy. Again, we did this on
several instances of the default scenario.

Max
Support

Max
Average
Impact

Max
Average
Agree

Random
after 1
iteration

Min(Random)
after 300,000
iterations

202 191 201 197 190
191 179 187 189 180
180 167 176 179 167
214 203 209 211 202
202 188 197 202 191

TABLE V. RESULTS FOR OPTIMUM ESTIMATION

Table V shows |M | for five different instances of the
default scenario. The first four columns describe the manual
inspection effort generated by the four strategies. Additionally,
in the fifth column, we show |M | for the most successful
random strategy among 300,000 iterations, i. e., the random
run that produced the smallest number of manual inspections.
Note that this is just an approximate minimum: In general,
other strategies might find even smaller M ’s, which is indeed
the case for the MaxAverageImpact strategy. It is regularly
far away from the other strategies and very similar to the
anticipated optimum. In other words: there is not much room
for the strategies to differ, but the MaxAverageImpact strategy
usually hits the (empirically determined) optimum.

Table VI shows the results of many variations on the default
scenario parameters. The table is divided in five groups for
the five varied parameters, each group having four different
scenarios and each scenario contains four rows for the four



Scenario Strategy |M | C-GMD G-GMD
Generated-tsp-0.5 MaxSupport 219.2 178.4 2.2
Generated-tsp-0.5 MaxAverageImpact 203.4 180.8 2.6
Generated-tsp-0.5 MaxAverageAgree 216.6 178.2 1.2
Generated-tsp-0.5 Random 216.2 181.6 1.8
Generated-Default MaxSupport 197.8 115.0 1.4
Generated-Default MaxAverageImpact 185.6 115.0 1.2
Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2
Generated-tsp-0.7 MaxSupport 172.8 81.4 1.0
Generated-tsp-0.7 MaxAverageImpact 166.6 81.4 0.8
Generated-tsp-0.7 MaxAverageAgree 170.4 81.8 1.0
Generated-tsp-0.7 Random 171.2 81.8 0.8
Generated-tsp-0.8 MaxSupport 131.4 58.2 1.2
Generated-tsp-0.8 MaxAverageImpact 126.4 58.0 0.8
Generated-tsp-0.8 MaxAverageAgree 129.2 58.0 0.8
Generated-tsp-0.8 Random 130.6 58.2 1.0
Generated-csp-0.6 MaxSupport 243.4 171.8 2.6
Generated-csp-0.6 MaxAverageImpact 235.4 173.0 2.6
Generated-csp-0.6 MaxAverageAgree 246.4 173.8 2.8
Generated-csp-0.6 Random 244.4 176.2 3.6
Generated-csp-0.7 MaxSupport 225.4 148.0 3.0
Generated-csp-0.7 MaxAverageImpact 213.8 147.4 3.6
Generated-csp-0.7 MaxAverageAgree 224.6 147.4 2.2
Generated-csp-0.7 Random 226.6 145.8 2.2
Generated-Default MaxSupport 197.8 115.0 1.4
Generated-Default MaxAverageImpact 185.6 115.0 1.2
Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2
Generated-csp-0.9 MaxSupport 181.0 90.4 0.2
Generated-csp-0.9 MaxAverageImpact 165.2 90.4 0.4
Generated-csp-0.9 MaxAverageAgree 169.6 90.2 0.2
Generated-csp-0.9 Random 177.0 93.0 0.8
Generated-ccp-0.05 MaxSupport 100.0 55.4 0.0
Generated-ccp-0.05 MaxAverageImpact 95.0 55.4 0.0
Generated-ccp-0.05 MaxAverageAgree 97.6 55.4 0.0
Generated-ccp-0.05 Random 99.0 58.0 0.2
Generated-Default MaxSupport 197.8 115.0 1.4
Generated-Default MaxAverageImpact 185.6 115.0 1.2
Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2
Generated-ccp-0.15 MaxSupport 267.4 167.4 3.0
Generated-ccp-0.15 MaxAverageImpact 250.2 166.0 3.4
Generated-ccp-0.15 MaxAverageAgree 261.4 167.4 2.4
Generated-ccp-0.15 Random 263.4 168.0 3.8
Generated-ccp-0.2 MaxSupport 342.4 216.4 11.4
Generated-ccp-0.2 MaxAverageImpact 324.4 221.8 12.4
Generated-ccp-0.2 MaxAverageAgree 338.8 219.0 9.2
Generated-ccp-0.2 Random 339.4 221.2 9.2
Generated-Default MaxSupport 197.8 115.0 1.4
Generated-Default MaxAverageImpact 185.6 115.0 1.2
Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2
Generated-ds-10000 MaxSupport 1,927.0 1,225.2 18.4
Generated-ds-10000 MaxAverageImpact 1,803.4 1,228.6 18.4
Generated-ds-10000 MaxAverageAgree 1,884.2 1,212.0 9.6
Generated-ds-10000 Random 1,908.2 1,223.0 15.4
Generated-ds-50000 MaxSupport 9,830.4 6,707.2 92.6
Generated-ds-50000 MaxAverageImpact timeout exceeded (> 6 h)
Generated-ds-50000 MaxAverageAgree timeout exceeded (> 6 h)
Generated-ds-50000 Random 9,725.6 6,788.4 75.8
Generated-ds-100000 MaxSupport 19,692.0 13,410.8 200.0
Generated-ds-100000 MaxAverageImpact timeout exceeded (> 6 h)
Generated-ds-100000 MaxAverageAgree timeout exceeded (> 6 h)
Generated-ds-100000 Random 19,504.2 13,369.8 157.0
Generated-|C|-2 MaxSupport 124.6 128.4 5.2
Generated-|C|-2 MaxAverageImpact 121.8 134.4 8.8
Generated-|C|-2 MaxAverageAgree 125.4 128.2 4.4
Generated-|C|-2 Random 124.6 123.4 5.2
Generated-Default MaxSupport 197.8 115.0 1.4
Generated-Default MaxAverageImpact 185.6 115.0 1.2
Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2
Generated-|C|-4 MaxSupport 259.4 115.8 0.2
Generated-|C|-4 MaxAverageImpact 239.6 117.4 0.6
Generated-|C|-4 MaxAverageAgree 253.4 115.8 0.0
Generated-|C|-4 Random 255.4 116.8 0.2
Generated-|C|-7 MaxSupport 396.0 115.4 0.0
Generated-|C|-7 MaxAverageImpact 353.8 115.2 0.0
Generated-|C|-7 MaxAverageAgree 386.0 115.4 0.0
Generated-|C|-7 Random 382.0 115.4 0.0

TABLE VI. KEY FIGURES FOR ALL GENERATED SCENARIOS

pair selection strategies. For each of the four strategies, the
respective minimum values are printed in bold face. Each
group contains the default scenario, aligned according to its
parameter value in the numerical order of the varied parameter.

The table allows several observations. The most relevant
insight is that the MaxAverageImpact pair selection strategy
always yields the smallest number of manual inspections |M |
(except for the experiments which timed out). The order of
the other strategies, concerning to |M |, changes from scenario
to scenario. We therefore calculated the normalized3 rankings
over all 14 different scenarios and calculated the average. This
is presented in Tab. VII.

Strategy |M | Rank C-GMD Rank G-GMD Rank
MaxSupport 3.68 2.29 2.79
MaxAverageImpact 1.00 2.54 2.82
MaxAverageAgree 2.43 1.89 1.57
Random 2.89 3.00 2.68

TABLE VII. NORMALIZED RANKS OF THE STRATEGIES FOR THE
14 DIFFERENT SCENARIOS

The MaxAverageAgree strategy has an average ranking
of 2.43 and is closely followed by the Random strategy with
an average ranking of 2.89. Finally, the MaxSupport strategy
performs worst and achieves an average ranking of 3.68. This
strategy usually results in the largest |M |. Only with very large
clusters (csp ∈ {0.6, 0.7}) or very few clusterers (C = 2), it
does not use the most manual inspections. The reason is, that
only in those settings the support has a beneficial influence
on the pair selection and consequently the number of manual
inspections is reduced.

Concerning C-GMD and G-GMD, there is no strategy
that finds consensus clusterings with minimal values for these
metrics in all scenarios. However, MaxAverageAgree most
frequently finds the smallest C-GMD (7 times) and G-GMD
(12 times). This indicates that MaxAverageAgree tends to
produce consensus clusterings of (slightly) higher quality in
contrast to MaxAverageImpact that rather finds less expensive
consensus clusterings.

We calculated Spearman’s rank correlation coefficient for
the three metrics for each scenario. |M |/C-GMD as well as
|M |/G-GMD have a coefficient of 0.09 and 0.11, respectively,
and are thus not very correlated. This confirms the findings
described above: strategies which are good regarding |M |
(MaxAverageImpact) do not necessarily perform well for C-
GMD or G-GMD and vice versa (MaxAverageAgree). Because
the correlation is small, the bare number of manual inspections
used for a consensus clustering has nearly no influence of
the GMDs, but the GMDs depend on the actually selected
candidate pairs. On the other hand, the correlation coefficient
for C-GMD/G-GMD is 0.66, again confirming the observation
described in the last paragraph.

For the different varied parameters, the effort grows or
decreases monotonously. For example, with rising singleton
probabilities, the number of (trivial) singleton clusters in-
creases, and consequently, there is less disagreement among
the clusterers and the manual effort decreases. Analogously,
with increasing cluster change probability, the clusterings
diverge more and more, which leads to larger |M |’s. Even
a small increase of this probability has a high influence on

3Ranking ties are resolved by assigning the average rank for all tied
strategies.



|M |. The increase of the dataset size has the largest impact on
|M |: the number of manual inspections increases proportional
to the increase of the dataset size. For the increase of the
number of clusterings |C|, the result is similar: when doubling
the number of clusterings, the number of manual inspections
nearly exactly doubles, although under-linearly (Generated-|C|-
2 vs. Generated-|C|-7).

The G-GMD reacts less predictably on the variations of
the parameters. In case of Generated-|C|-7, there are so many
clusterings that eventually the exact gold standard is always
reached, even in each of the five runs and for each strategy,
although the resulting effort strongly differs between the
strategies. For Generated-|C|-7, MaxSupport uses 10% more
manual inspections than MaxAverageImpact.

The MaxAverageImpact strategy and the MaxAverage-
Agree strategy are the most advanced pair selection strategies.
However, because the target is to get a cheap yet sound
consensus clustering, the MaxAverageImpact strategy should
be selected. It is both more suitable and more reliable in its
performance. The degree of differences between the strategies
is quite constant 5% between the baseline (Random pair
selection strategy) and the MaxAverageImpact strategy.

The performance differences between the strategies were
higher, if we would not count the manual inspections from
situations, where there was no choice between different pairs
to manually inspect. In these cases, all strategies necessarily
performed equally. For example, for Generated-|C|-7, the Max-
AverageImpact strategy yielded 300 manual inspections and
the Random strategy 330, a difference of 10%. Because we
show the actual count of all manual inspections (which is the
actual effort), the differences are a bit leveled out.

For both Generated-ds-50000 and Generated-ds-100000,
the MaxAverage strategies exceeded a timeout of 6 hours of
runtime. However, because |M | for the two simpler strategies
follows a linear scale, we expect the missing results to be in
the same region. For more comments on the runtime, see the
end of this section.

D. Results for Freedb

The results for the freedb scenario are shown in Tab. VIII.
In the freedb scenario, the clusterings are very similar. There-
fore, the number of manual inspections is relatively low,
compared to the results of generated scenarios of the same size.
The manually curated gold standard was created inspecting
more than 1,000 pairs manually. With our presented strategies,
a quarter of the manual inspections could have been saved.

The freedb-full scenario uses much more diverse cluster-
ings. This is why the number of manual inspections is vastly
increased. The gold standard does not have a high influence
on |M |. While it is small, it can still return verdicts for all the
selected candidate pairs (being a falsification in most cases). A
larger gold standard would have caused more verifications (and
inferred pairs), but the number of manual inspections would
not have been much smaller. In fact, the number of manual
inspections is much smaller than even the smallest clustering:
for a large amount of pairs, there were no disagreements among
the clusterings and the corresponding connected components
could just be adopted for the consensus clustering.

Scenario Strategy |M | C-GMD G-GMD
Freedb MaxSupport 783 1,614 379
Freedb MaxAverageImpact 783 1,614 379
Freedb MaxAverageAgree 783 1,614 379
Freedb Random 784 1,614 379
Freedb-full MaxSupport 125,788 159,630 7,087
Freedb-full MaxAverageImpact timeout exceeded (> 16 h)
Freedb-full MaxAverageAgree timeout exceeded (> 16 h)
Freedb-full Random 136,970 159,419 7,119

TABLE VIII. FREEDB RESULTS

E. Results for NCVoter

In the NCVoter scenario (Tab. IX), many more manual
inspections were performed, but eventually, the situation is
similar: MaxAverageImpact outperforms the other strategies,
even though the differences are not that large. Compared
to the Generated-ds-10000 scenario, the number of manual
inspection is similarly high, but the G-GMD is much higher
in the NCVoter scenario.

Scenario Strategy |M | C-GMD G-GMD
NCVoter MaxSupport 2,631.6 1,207.2 42.4
NCVoter MaxAverageImpact 2,594.8 1,206.8 37.4
NCVoter MaxAverageAgree 2,631.4 1,207.8 42.6
NCVoter Random 2,626.6 1,207.8 42.6

TABLE IX. NCVOTER RESULTS

In this scenario, a relatively high number of records is
distributed over a (larger) number of smaller clusters with a
size up to 5, which makes it different from the larger generated
scenarios. This difference has caused the consensus clusterings
to deviate more from the gold standard.

The MaxAverageImpact strategy causes the least G-GMD,
while for the Generated Scenarios, the minimal G-GMD was
usually achieved by the MaxAverageAgree strategy.

F. General Remarks

It is difficult to obtain real world data. We therefore
amended the available real world data with generated data and
also used a variety of completely synthetic scenarios. In all
performed experiments, MaxAverageImpact outperformed the
other strategies. Depending on the five described parameters,
the differences may be smaller or larger. The experiments
indicate that the MaxAverageImpact strategy is generally rec-
ommendable. We also tried to use the maximum instead of
the average for the impact and agreement strategies, but the
results were slightly worse.

We do not report on the runtime, because the dominant fac-
tor is the human expert. Asking the expert takes much longer
than virtually any computation. As shown in the workflow
(see Fig. 2), expert inquiries, calls of the pair selector, and
propagating changes back to the clusterings are alternating.

Nevertheless, there are differences in the runtimes for the
strategies. Unsurprisingly, the Random strategy is the fastest,
because it does not do any computation besides shuffling the
candidate pairs. For the default scenario, consensus finding
took 0.1 seconds with the Random strategy and 0.5 seconds
with the MaxSupport strategy. MaxAverageImpact and Max-
AverageAgree took 12.9 and 11.0 seconds, respectively (all
values are averages over the repetitions). Both MaxAverage
strategies are considerably more complex and take longer,
because for each pair, both possible verdicts have to be
simulated. MaxSupport does not need to simulate anything,



but still has to calculate the support which causes a slightly
larger duration than the Random strategy. The actual durations
depend on the parameters, but the order remains similar.

For example, for Generated-ds-10000 the average dura-
tions for consensus finding are 75.6 seconds (MaxSupport),
1,462.2 seconds (MaxAverageImpact), 1,362.8 seconds (Max-
AverageAgree), and 10.5 seconds (Random). The runtime
grows to the square of the growth of the dataset size which is
a general, rather than a strategy-specific problem. With more
and more records, the clusters get larger, there are more pairs
in the clusters, and finally more candidate pairs to check.

Because the duration grows faster than the savings of
manual effort regarding a quick and a sophisticated pair
selection strategy, there is a break-even point. Beyond that
point, choosing a simpler strategy may cause more manual
inspections but a smaller overall runtime. However, this break-
even point is hard to reach; a connected component has to be
quite large to better choose an arbitrary pair instead of waiting
for MaxAverageImpact to select a candidate pair. According
to our subjective impression, finding M for connected com-
ponents started to take a significant amount of time when the
connected component contained 50 records or more.

Additionally, the pair selection strategy can be changed in
each iteration. In particular, a timeout could be set. When it
is expired, the proposed pair of a quicker strategy (executed
in parallel) could be used as a best guess for the next manual
inspection. Moreover in a real application, this timeout could
be defined dynamically by the time the human expert is busy
with manual inspections of other connected components.

In our experiments, we did the pair selection in parallel
for separate connected components. It should be easy to also
parallelize the pair selection within a connected component,
causing a higher overall speed-up.

VII. CONCLUSION

Consensus clustering is one way to negotiate between
different, contradicting clusterings. Semi-supervised consensus
clustering promises a high quality of the resulting clustering,
but has high costs due to expensive human effort. Therefore, it
is crucial to identify those disputed candidate pairs that serve
rapid convergence. We presented four pair selection strategies
and evaluated them on different scenarios.

The MaxAverageImpact strategy regularly outperforms the
baseline (Random) strategy and saves up to 10% manual
inspections. It is close to an empirically determined optimum.
Please note that even a 10% drop in the number of manual
inspections is already saving a large amount of money in a
real-world setting.

Users might still feel the need for a good trade-off between
quality and price. Semi- or fully automated consensus pro-
cesses can create faster and cheaper consensus clusterings, but
when the application needs a high-quality consensus clustering,
human experts are indispensable. As the evaluation shows, the
consensus clusterings are close to the (latent) gold standards.

The strategies provide some room for improvement. For
example, initial clusterings are differently close to the later
consensus clustering. The closer they are, the better the clus-
tering must have been in the first place. This observation

could be utilized by continuously measuring each clustering’s
confidence. The confidence should be increased if a manual
inspection has no effect on a clustering (i. e., the clusterer was
correct) and decreased if the impact is high. Having such a
confidence score for each clustering allows a weighted support.

Another direction for future research is the restriction of
manual inspections to a fixed budget. Which pairs should be
selected first, if not necessarily all manual inspections can
be afforded? Further, more records could be presented to the
human user, be it to give the user more context or even to
obtain several verdicts at once.
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