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ABSTRACT
The discovery of all inclusion dependencies (INDs) in a dataset
is an important part of any data profiling effort. Apart from the
detection of foreign key relationships, INDs can help to perform
data integration, query optimization, integrity checking, or schema
(re-)design. However, the detection of INDs gets harder as datasets
become larger in terms of number of tuples as well as attributes.

To this end, we propose Binder, an IND detection system that
is capable of detecting both unary and n-ary INDs. It is based on
a divide & conquer approach, which allows to handle very large
datasets – an important property on the face of the ever increasing
size of today’s data. In contrast to most related works, we do not
rely on existing database functionality nor assume that inspected
datasets fit into main memory. This renders Binder an efficient
and scalable competitor. Our exhaustive experimental evaluation
shows the high superiority of Binder over the state-of-the-art in
both unary (Spider) and n-ary (Mind) IND discovery. Binder is up
to 26x faster than Spider and more than 2500x faster than Mind.

1. INTRODUCTION
Current applications produce large amounts of data at fast rates.

Understanding such datasets before querying them is crucial for
both high quality results and query performance. In this regard,
data profiling aims at discovering and understanding relevant ba-
sic properties of datasets, such as column statistics and dependen-
cies between attributes [15]. In practice, data profiling is needed
whenever the metadata of a dataset is (or became) unknown. This
happens frequently due to today’s ever increasing amounts of data.

Inclusion dependencies (INDs) are one of the most important
properties of relational datasets [4]. An IND states that all tuples
of some attribute-combination in one relation are also contained in
some other attribute-combination in the same or (usually) a differ-
ent relation [12]. This makes INDs important for many tasks, such
as data integration [14], query optimization [6], integrity check-
ing [5], or schema (re-)design [9]. In particular, INDs are useful to
discover foreign-primary key relationships, which are a necessity
for suggesting join paths, data linkage, and data normalization [17].
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However, INDs are unspecified for most real-world datasets, as
typically there is simply no schema information of the datasets –
or if there is, foreign keys are very often not given. Furthermore,
datasets produced by current applications are constantly changing
(with data being modified or added) over time so that metadata be-
come quickly out-of-date. Thus, there is a high demand for efficient
and automatic IND discovery techniques. The research community
has paid relatively little attention to this problem, possibly because
of its complexity: finding all unary INDs (i.e., INDs between in-
dividual attributes) is quadratic and finding all n-ary INDs (INDs
between lists of attributes) requires exponential time in the number
of attributes [10]. Besides this complexity, efficiently discovering
INDs is also challenging because each IND candidate check poten-
tially needs to read input datasets. This indeed incurs a high I/O
cost, which in turn significantly decreases performance.

Existing approaches addressing the IND detection problem al-
ready provided some first contributions. For example, Bell and
Brockhausen make use of SQL join-statements to check the va-
lidity of IND candidates [3]; DeMarchi et al. propose the use of
inverted indexes to speed up the IND discovery process by sim-
ply intersecting such inverted indexes [12]; and Bauckmann et al.
present Spider, which basically finds INDs with an adapted sort-
merge join approach [2]. Nevertheless, none of these approaches
scale with the size of the input dataset and they only solve the IND
discovery problem for either unary or n-ary INDs.

We present Binder, a novel IND discovery system that efficiently
detects both unary and n-ary INDs. Unlike all previous systems,
Binder’s scalability is not bounded to any technical restrictions,
such as main memory size or file handle limits. It uses a divide
& conquer approach to apply additional pruning concepts and to
process datasets of any size. In particular, we make the following
major contributions:

(1) We propose an approach to efficiently divide datasets into
smaller partitions that fit in main memory, lazily refining too large
partitions. This lazy refinement strategy piggybacks on the actual
IND validation process, saving many expensive I/O operations.

(2) We propose a fast IND validation strategy that is based on two
different indexes (inverted and dense) instead of a single index or
sorting. Additionally, our IND validation strategy applies two new
non-statistics-based pruning techniques to speed up the process.

(3) We present a robust IND candidate generation technique that
allows Binder to apply the same strategy to discover both all unary
and all n-ary INDs. This makes Binder easy to maintain.

(4) We present an exhaustive validation of Binder on many real-
world datasets as well as on two synthetic datasets. We experimen-
tally compare it with two other state-of-the-art approaches: Spi-
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Figure 1: Overview of Binder and its components.

der [2] and Mind [12]. The results show the high superiority of
Binder. It is up to more than one order of magnitude (26 times)
faster than Spider and up to more than three orders of magnitude
(more than 2500 times) faster than Mind.

Next, we give an overview of Binder in Section 2. We then
present the three major components of Binder: the Bucketizer
(Section 3), the Validator (Section 4), and the Candidate-
Generator (Section 5). We present our experimental results in
Section 6. We finally discuss related work in Section 7 and con-
clude with Section 8.

2. BINDER OVERVIEW
We begin this section by formally defining inclusion depen-

dencies (INDs). We then give an overview on Binder (short for
Bucketing INclusion Dependency ExtractoR).
Preliminaries. We define an IND between two lists of attributes X
and Y over a relational schema with relations Ri as R j[X] ⊆ Rk[Y]
(X ⊆ Y for short). In other words, an IND expresses that within a
database instance each record r in R j[X] is also contained in Rk[Y].
We refer to the left-hand side X of an IND as dependent attribute(s)
and the right-hand side as referenced attribute(s). Both of these
attribute sequences must be of the same size n = |X| = |Y |. An IND
is said to be unary if n = 1, otherwise it is n-ary. Notice that we do
not consider any semantics for null values as they do not contribute
to INDs: we simply ignore them.
Binder. Our Binder system efficiently discovers all INDs in large
datasets. The algorithm, which has been developed in the context
of the Metanome data profiling project (www.metanome.de), uses
the divide & conquer paradigm in order to discover INDs even in
very large datasets. The main idea is to partition an input dataset
into smaller buckets that can better be mapped into main memory
and, then, check these buckets successively for INDs.

Figure 1 depicts the architecture of Binder, which consists of
three major components: Bucketizer, Validator, and Candi-
dateGenerator. The additional Preprocessor is required by
Binder to find some structural properties needed for the IND dis-
covery, such as table identifiers, attribute identifiers, and attribute
types. Note that every IND detection system requires such a pre-
processing phase for unknown datasets [2, 3, 12]. Like all these
works, Binder uses standard techniques for the extraction of struc-
tural properties. It is also worth noting that, in terms of perfor-
mance, the preprocessing step is negligible. Therefore, we do not
consider it as a major component of Binder. Below, we briefly dis-
cuss each of Binder’s three major components. For clarity, we use
the dataset in Figure 2, which is an instance of a relational table
with four attributes and a universe of six String values.
(1) Bucketizer. Given an input dataset, Binder starts by splitting
the datasets into several smaller parts (buckets) that allow for effi-
cient IND discovery. A bucket is a (potentially deduplicated) subset
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Figure 2: An example dataset that contains one relational table.

of values from a certain single attribute. The Bucketizer splits
a dataset using hash-partitioning on the attributes values. More
precisely, it sequentially reads an input dataset and places each
value into a specific bucket according to a given hash-function.
The Bucketizer uses hash-partitioning instead of a range- or list-
partitioning, because it satisfies two important criteria: it puts the
values that are equal in the same bucket and, by choosing a good
hash-function, it can evenly distribute the values across all buckets.
At the end of this process, it writes the generated buckets to disk.

Let us illustrate this process with our example dataset from Fig-
ure 2. Figure 3 shows an output produced by the Bucketizer for
this dataset. Each box of attribute values represents one bucket.
We denote a bucket using the tuple (a, n), where a is the attribute
of the bucket and n is the bucket hash-number. For instance, the
bucket (A, 2) is the second bucket of attribute A. Then, a parti-
tion is the collection of all buckets with the same hash-number,
pi = {(a, n) | n = i}. Each row in Figure 3 represents a different
partition. Note that in the following validation process, an entire
partition needs to fit in main memory. If this is not the case, Binder
again calls the Bucketizer to dynamically refine a partition into
smaller sub-partitions that each fit in main memory. Section 3 ex-
plains the Bucketizer in more detail.
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Figure 3: The example dataset bucketized into 12 buckets.

(2) Validator. Having divided the input dataset into a set of
buckets, Binder starts to successively validate all possible unary
IND candidates against this set. The Validator component,
which is illustrated in Figure 4, is in charge of this validation pro-
cess and proceeds partition-wise: First, it loads the current parti-
tion (i.e., all buckets with the same hash-number) into main mem-
ory. If too few partitions have been created so that a partition
does not fit into main memory entirely, the Validator instructs
the Bucketizer to refine that partition; then, the Validator con-
tinues with the sub-partitions.

Once a partition or sub-partition has been loaded, the Vali-
dator creates two indexes per partition: an inverted index and a
dense index. The inverted index allows the efficient checking of
candidates, whereas the dense index is used to prune irrelevant can-
didate checks for a current partition. When moving to the next par-
tition, the Validator also prunes entire attributes as inactive if all
their IND candidates have been falsified (gray buckets in Figure 4).
In this way, subsequent partitions become smaller during the vali-
dation process, which can reduce the number of lazily executed par-
tition refinements. The Validator returns all valid INDs, which
are the candidates that “survived” all checks. In Figure 4, this is the
IND F ⊆ A. We further discuss the Validator in Section 4.
(3) CandidateGenerator. This is the driver component that
defines the set of IND candidates and calls the Bucketizer and
Validator components. Initially, it generates all unary IND can-
didates from the dataset’s metadata and sends them into the IND
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Figure 4: Illustration of the bucketing and validation processes.

discovery process. If only unary INDs shall be detected, the
component stops the detection process when it retrieves the valid
unary INDs. Otherwise, it uses them to generate and process all
binary IND candidates, then ternary IND candidates, etc. The
CandidateGenerator keeps generating and processing (n+1)-ary
IND candidates from discovered n-ary INDs until no more can-
didates can be generated. We present the CandidateGenerator
component in detail in Section 5.

3. EFFICIENTLY DIVIDING DATASETS
As discussed in the previous section, Binder first uses the

Bucketizer component to split an input dataset into a fixed num-
ber of partitions, which are ideally of equal size. Each partition
contains one bucket per attribute. A bucket is an unordered collec-
tion of attribute values whose hashes lie within the same range.

Algorithm 1 depicts the bucketing process. The Bucketizer
takes three input parameters: the attributes that should be bucke-
tized, the tables that point to the actual data, and the number of par-
titions into which the dataset should be split. As Section 6.5 shows,
Binder’s performance is not sensitive to the parameter nPartitions,
so it is set to 10 by default. We call the partitions seed partitions,
because Bindermight lazily refine them into smaller sub-partitions
later on, in case they became too large to fit in main memory.

Overall, the bucketing process consists of three parts: (i) value
partitioning (ll.), which reads the data and splits it into buckets,
(ii) dynamic memory handling (ll. 15-21), which spills buckets to
disk if main memory is exhausted, and (iii) bucket management
(ll. 22-30), which writes the buckets to disk while piggybacking
some additional statistics. We describe each of these parts in the
following three subsections. In the fourth, we discuss the lazy par-
tition refinement algorithm.

3.1 Value partitioning
The Bucketizer partitions the attribute values of an input

dataset by iterating the dataset table-wise in order to keep possi-
bly all buckets for one table at a time in main memory (l. 3). For
each table, the Bucketizer reads the values in a tuple-wise man-
ner (l. 6). It then fetches all those values from each tuple that be-
long to the attributes that it has to bucketize (ll. 7 & 8). For each
non-null value, it calculates the partition number, partitionNr, via
hash-partitioning (l. 11): The partition number for the current value
is its hash-code modulo the number of partitions. Thus, same at-
tribute values are placed into the same partitions, which preserves
valid INDs across different partitions. By using a good, data-type
specific hash function, the values are also distributed evenly on the
partitions. Then, if the current value is new, i.e., it does not yet exist
in its bucket, the Bucketizer simply stores it (ll. 12 & 13). At the
same time, the algorithm piggybacks a value counter for each at-
tribute, nValsPerAttr, that it increases with every new value (l. 14).

Algorithm 1: Bucketing
Data: attributes, tables, nPartitions
Result: attrSizes, checkOrder

array attrSizes size | attributes | as Long;1
array emptyBuckets size nPartitions as Integer;2
foreach table ∈ tables do3

array buckets size | table.attr | × nPartitions as Bucket;4
array nValsPerAttr size | table.attr | as Integer;5
foreach tuple ∈ read(table) do6

foreach attr ∈ table.attr do7
if attr < attributes then continue;8
value← line[attr];9
if value = NULL then continue;10
partitionNr← hashCode(value) % nPartitions;11
if value < buckets[attr][partitionNr] then12

buckets[attr][partitionNr]← ∪ value;13
nValsPerAttr[attr]← + 1;14

if memoryExhausted() then15
lAttr← max(nValsPerAttr);16
foreach bucket ∈ buckets[lAttr] do17

attrSizes[lAttr]← + sizeOf (bucket);18
writeToDisk(bucket);19
bucket← ∅;20

nValsPerAttr[lAttr]← 0;21

foreach attr ∈ table.attr do22
foreach bucket ∈ buckets[attr] do23

if bucket = ∅ then24
emptyBuckets[attr]← emptyBuckets[attr] + 1;25

else26
attrSizes[attr]← + sizeOf (bucket);27
writeToDisk(bucket);28

checkOrder← orderBy(emptyBuckets);29
return checkOrder, attrSizes;30

nValsPerAttr is an array that Binder uses later, to decide which
buckets should be spilled to disk if main memory is exhausted.

3.2 Dynamic memory handling
Every time the Bucketizer partitions a tuple, it checks mem-

ory consumption. If the main memory is exhausted (e.g., if less
than 10% of the memory is free), it spills the buckets of the largest
attribute, i.e., with the largest number of attribute values, nValsPer-
Attr, to disk (ll. 15 & 16). Spilling only the largest buckets has two
major benefits: First, spilling small buckets introduces the same
file handling overhead as for large buckets, but the gain in terms of
freed memory is negligible. Second, spilling to disk might cause
duplicate values within a bucket, because the values on disk can-
not be checked again in the remainder of the bucketing process for
efficiency reasons; large buckets contain many different values any-
way and are, hence, less likely to receive same values over and over
again, which causes them to generate fewer duplicate values when
being spilled to disk. The buckets of a table’s primary key attribute,
for instance, contain no duplicates. To find the largest attribute
lAttr (and hence the largest buckets), the max() function queries an
index that keeps track of the maximum value in the nValsPerAttr
array (l. 16). Then, the Bucketizer iterates the largest buckets
and writes them to disk (ll. 17-19). Afterwards, it clears the spilled
buckets to free main memory and resets the spilled attribute in the
nValsPerAttr-field (ll. 20 & 21).



3.3 Bucket management
Once the Bucketizer has partitioned a table, it writes all cur-

rent buckets to disk from where the Validator can read them later
on (ll. 23-28). In this way, it can reuse the entire main memory for
bucketing the next table. While writing buckets to disk, the compo-
nent also piggybacks the collection of two statistics: attrSizes and
emptyBuckets (ll. 25 & 27). We describe each of these below:
(1) The attribute sizes array, attrSizes, stores the in-memory size
of each bucketized attribute, and it is used by Binder to identify
partitions that do not fit in main memory in the validation process1.
The Bucketizer computes the byte-size of a bucket as follows:

size(bucket) =
∑

string∈bucket

8 + 8 ·
⌈

64 + 2 · |string|
8

⌉
This calculation assumes an implementation in Java and a 64 bit
system, on which strings need 64 byte for pointers, headers, and
length and 2 bytes for each character. After normalizing to a multi-
ple of 8 byte, which is the smallest addressable unit, we add another
8 byte for index-structures needed in the validation phase. In our
running example (see Figure 3), the size of bucket (A,1) is hence
160 byte, because it contains two values of length one.

(2) The empty buckets array, emptyBuckets, counts the number of
empty buckets in each partition to later determine the most promis-
ing checking order, checkOrder, for the Validator. The intuition
is to prioritize the partitions with the smallest number of empty
buckets, because the Validator cannot use empty buckets to in-
validate IND candidates. So, the Validator aims at identifying
and discarding inactive attributes early on by checking those at-
tributes with the lowest number of empty buckets first. For in-
stance, the emptyBuckets array for our example in Figure 3 is
[1,1,1], because each partition contains one empty bucket; unfortu-
nately, this does not indicate an optimal checking order. Note that
empty buckets mainly arise from attributes containing only a few
distinct values, such as gender-attributes, which typically contain
only two unique values.

3.4 Lazy partition refinement
Once the Bucketizer has finished splitting an input dataset into

buckets, the Validator successively uploads seed partitions into
main memory in order to validate IND candidates. However, some-
times seed partitions are larger than the main memory capacity.
Thus, the Bucketizer needs to refine such seed partitions, which
means that it splits a partition into smaller sub-partitions that fit
into main memory. Refining a seed partition is, however, a costly
operation as one has to read and write again most values. Indeed,
one could collect some statistics about the input data, such as size
or length of the data, to estimate the right number of seed partitions
and avoid refining them. Unfortunately, collecting such statistics
would introduce a significant overhead to the preprocessing step.
Furthermore, the initial bucketing can become very fine-grained
for large datasets, which causes the creation of numerous super-
fluous bucket-files on disk. Too many file operations (create, open,
and close), in turn, dominate the execution time of the bucketing
process and with it the execution time of the entire IND discovery.

For these reasons, the Bucketizer lazily refines the partitions
whenever necessary. The main idea is to split large seed partitions
into smaller sub-partitions while validating INDs. Assume, for in-
stance, that Binder needs to check p1 of Figure 3 and that only
two values fit into main memory; Binder then lazily refines p1 into
[{a},{ },{a},{ }] and [{b},{b},{ },{ }]. This lazy refinement also allows

1Determining file-sizes instead is less accurate and more expensive.

Algorithm 2: Refinement
Data: activeAttr, attrSizes, partitionNr
Result: attrSizes, checkOrder

availMem← getAvailableMemory();1
partSize← 0;2
foreach attr ∈ activeAttr do3

partSize← + attrSizes[attr]/nPartitions;4

nSubPartitions← dpartSize/availMeme;5
tables← getTablesFromFiles(activeAttr, partitionNr);6
if nPartitions > 1 then7

checkOrder, attrSizes← bucketize(activeAttr, tables,8
nSubPartitions);9

return checkOrder;10

else11
return {partitionNr};12

Binder to dynamically reduce the number of sub-partitions when
the number of active attributes decreases from one seed partition
to the next one. For instance, if all IND candidates of an attribute
are invalidated in some partition, Binder does not need to refine the
attribute’s buckets in all subsequent partitions, saving much I/O. In
contrast to estimating the number of seed partitions, lazy refine-
ment creates much fewer files and hence much less overhead for
three reasons: (i) the number of required sub-partitions can more
precisely be determined in the validation process, (ii) the number of
files decreases with every invalidated attribute, and (iii) some small
attributes can even stay in memory after refinement.

Algorithm 2 details the lazy refinement process. To refine a par-
tition, the Bucketizer requires three inputs: attrSizes (size of the
attributes’ buckets in byte), partitionNr (identifier of the partition
to be refined), and activeAttr (attributes to consider for refinement).
Overall, the refinement process consists of two parts: (i) the sub-
partition number calculation (ll. 1-5), which calculates the num-
ber of sub-partitions in which a seed partition has to be split, and
(ii) the value re-bucketing (ll. 6-9), which splits a large partition
into smaller sub-partitions. We explain these two parts below.

(1) Sub-partition number calculation. To decide if a split is neces-
sary, the Bucketizer needs to know the in-memory size of each at-
tribute in a partition. The component can get this information from
the attrSizes array, which it collected during the bucketing process
(see Section 3.3). Let availMem be the available main memory and
attr one attribute. As the hash function created seed partitions of
equal size, the Bucketizer can now calculate the size of an at-
tributes’s bucket independently of the actual bucket number as:

size(attr) = attrSizes[attr]/nPartitions

The Bucketizer then calculates the size of a partition partitionNr
as the sum of the sizes of all its active attributes:

partSize =
∑

attr∈activeAttr

size(attr)

Thus, given a seed partition, the Bucketizer simply returns the
seed partition number without refinement if availMem > partS ize.
Otherwise, it needs to split the seed partition into nPartitions sub-
partitions as follows:

nSubPartitions = dpartSize/availMeme

(2) Value re-bucketing. If refinement is needed, Binder re-applies
the bucketing process depicted in Algorithm 1 on the bucket files.



To run the bucketing process, the Bucketizer first calls the func-
tion getTablesFromFiles() that interprets each bucket as a table
containing only one attribute (l. 6). Then, it successively reads the
buckets of the current partition, re-hashes their values, and writes
the new buckets back to disk (l. 8).

It is worth noting that distributing values from a bucket into differ-
ent sub-partitions in an efficient manner is challenging for two rea-
sons: (i) the values in each bucket are already similar with respect
to their hash-values and thus redistributing them becomes harder,
and (ii) refining seed partitions requires two additional I/O opera-
tions (for reading from and writing back to disk) for each value of
an active attribute in a seed partition. Binder addresses these two
aspects as follows:

(i) To redistribute the values in a bucket, the Bucketizer re-
partitions the values into nSubPartitions as follows:

x =
hash(value) % (nPartitions · nSubPartitions) − partitionNr

nPartitions

Here, x is the sub-bucket number with x ∈ [0, nSubPartitions − 1]
denoting the sub-bucket for the given value. Taking the hashes
of the values modulo the number of seed partitions nPartitions
multiplied by the number of required sub-partitions nSubPartitions
leaves us with nSubPartitions different numbers. For instance, if
nPartitions = 10, partitionNr = 8, and nSubPartitions = 2, we ob-
tain numbers in {8, 18}, because the hash-values modulo nPartitions
always give us the same number, which is partitionNr. By sub-
tracting the current partition number partitionNr from the mod-
ulo and, then, dividing by nPartitions, we get an integer x in
[0, nSubPartitions−1] assigning the current value to its sub-bucket.

(ii) Concerning the additional I/O operations, we consider that each
attribute can allocate at most m = availMem/ |activeAttr| memory
for each of its buckets. However, in practice, most buckets are
much smaller than m. Thus, our Bucketizer saves many I/O op-
erations by not writing and reading again the sub-buckets of such
small buckets back to disk, i.e., whenever m < sizeattr.

4. FAST IND DISCOVERY
Given a set of IND candidates, the Validator component suc-

cessively checks them against the bucketized dataset. Algorithm 3
shows the validation process in detail. While the Validator reads
the bucketized dataset directly from disk, it requires three addi-
tional inputs: the IND candidates that should be checked, the
checkOrder defining the checking order of the partitions, and the
attrSizes indicating the in-memory size of each bucket. See Sec-
tion 3.3 for details about the checkOrder and attrSizes structures.
The candidates input is a map that points each possible dependent
attribute (i.e., included attribute) to all those attributes that it might
reference (i.e., that it might be included in).

During the validation process, the Validator removes all in-
valid INDs from the candidates map so that only the valid INDs
survive until the end of the process. Overall, the validation pro-
cess consists of two parts: (i) the partition traversal (ll. 1-6), which
iterates the partitions and maintains the attributes, and (ii) the can-
didate validation (ll. 7-22), which checks the candidates against a
current partition. We explain both parts in the following two sec-
tions. Afterwards, we take a closer look at the candidate pruning
capabilities of Binder and discuss our design decisions.

4.1 Partition traversal
As its first step, the Validator collects all active attributes

activeAttr, which are all attributes that participate in at least one

Algorithm 3: Validation
Data: candidates, checkOrder, attrSizes
Result: candidates

activeAttr← getKeysAndValues(candidates);1
foreach partitionNr ∈ checkOrder do2

subPrtNrs← refine(activeAttr, attrSizes, partitionNr);3
foreach subPartitionNr ∈ subPrtNrs do4

activeAttr← getKeysAndValues(candidates);5
if activeAttr = ∅ then break all;6
map attr2value as Integer to {};7
map value2attr as String to {};8
foreach attr ∈ activeAttr do9

bucket← readFromDisk(attr, subPartitionNr);10
attr2value.get(attr)← bucket;11
foreach value ∈ bucket do12

value2attr.get(value)← ∪ attr;13

foreach attr ∈ activeAttr do14
foreach value ∈ attr2value.get(attr) do15

if candidates.get(attr) = ∅ then break;16
if value < value2attr.keys then continue;17
attrGrp← value2attr.get(value);18
foreach dep ∈ attrGrp do19

candidates.get(dep)← \ attrGrp;20

value2attr.remove(value);21

return candidates;22

IND candidate (l. 1). The Validator uses activeAttr to prune inac-
tive attributes during the validation (l. 6): if an attribute is removed
from all IND candidates, it is also removed from this set and ig-
nored for the rest of the validation process. The Validator checks
IND candidates against the bucketized dataset in the checking or-
der, checkOrder, previously defined by the Bucketizer (l. 2). Be-
fore validation, the Validator calls the Bucketizer to refine
the current seed partition into smaller sub-partitions if necessary
(l. 3), i.e., if the partition does not fit in main memory (see Sec-
tion 3.4). Notice that the current seed partition is the only sub-
partition if no refinement was needed. After the refinement process,
the Validator iterates the sub-partitions to check the candidates
against them (l. 4). As the Validator might invalidate candidates
on the current sub-partition in each iteration, it first updates the
activeAttr set before starting the validation of the current iteration
(l. 5). If no active attributes are left, which means that all IND can-
didates became invalid, the Validator stops the partition traversal
(l. 6); otherwise, it proceeds to validate the IND candidates.

4.2 Candidate validation
The Validator first loads the current sub-partition into main

memory and then checks the IND candidates on this sub-partition.
To support fast checking, the Validator now builds two indexes
upon the partition’s values: the dense index attr2values and the
inverted index values2attr. For the following illustration, assume
that our running example dataset shown in Figure 2 has been buck-
etized into only one partition. Figure 5 then shows the two index
structures that the Validatorwould create for this single partition.

(1) Dense Index. The index attr2values maps each attribute to
the set of values contained in this attribute. The Validator con-
structs the index when loading a partition into main memory in a
bucket-wise manner. As each bucket represents the values of one
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Figure 5: Dense index attr2value and inverted index value2attr for
our example attributes {A,B,C,D} and values {a,b,c,d,e,f}.

attribute, the Validator can easily build this index with a negligi-
ble overhead. When validating a current partition, the Validator
uses attr2values to discard attributes that become independent of
all other attributes, i.e., that are not included in any other attribute.

(2) Inverted Index. The inverted index values2attr maps each
value to all those attributes that contain this value. Similar to De-
Marchi’s algorithm [12] and Bauckmann’s Spider algorithm [2],
the Validator uses the sets of attributes containing a common
value to efficiently validate IND candidates via set intersection.

Index initialization. The Validator initializes the two indexes
in an attribute-wise manner (ll. 11-13). For each active attribute, it
reads the corresponding bucket from disk. Then, it points the ac-
tive attribute to the read values in the attr2values index (left side
of Figure 5). To initialize the values2attr index, the Validator in-
verts the key-value pairs and points each value to all those attributes
where it occurs in (right side of Figure 5).
IND validation. Having initialized the two indexes with the cur-
rent sub-partition, the Validator uses them to efficiently remove
non-inclusions from the set of IND candidates. For this purpose,
it again iterates all active attributes and, for each active attribute,
all the attribute’s values (ll. 14 & 15). If the current attribute does
not depend on any other attribute anymore, i.e., its candidate entry
is empty, the Validator does not check any other values of this
attribute and it can proceed with the next active attribute (l. 16).
Sometimes, the current value has already been handled with a dif-
ferent attribute and the inverted index does not contain the value
anymore. Then, the Validator proceeds with the next value of the
same attribute (l. 17). Otherwise, it retrieves the group of attributes
attrGrp containing the current value and intersects the set of ref-
erenced attributes of each of the group’s members with this group
(ll. 18-20). The intuition behind this intersection is that none of the
attrGrp attributes can be included in an attribute that is not part of
this group, because it would not contain the value of this particular
attribute group. When the intersections are done, the Validator
removes the current value from the inverted index values2attr in
order to avoid checking the same attribute group again for different
members of the group (l. 21).
Example. Let us walk through the validation process once again
with the example indexes shown in Figure 5. We use Table 1 to
list the intermediate results of the validation process. Each col-
umn in the table represents a dependent attribute and the cells list
the attributes that are referenced by the respective dependent at-
tribute. When reading the table from top to bottom, the initial IND
candidates assume that each attribute is included in all three other
attributes. Then, the Validator starts to check these candidates by
looking up attribute A in the attr2values index and its first value a
in the values2attr index. There, the Validator finds the attribute
group {A,C}. Then, it intersects the referenced attribute sets of A
and C with this set. Thereby, we retrieve {C} for attribute A and {A}
for attribute C. Next, the Validator continues with the second
value of attribute A, which is b, and finds the attribute group {A, B}.
After intersecting attribute A’s set of referenced attributes with this

Table 1: Checking process over the example indexes of Figure 5
A B C D

look up B,C,D A,C,D A,B,D A,B,C
A→ a→ A,C C A,C,D A A,B,C
A→ b→ A,B - A A A,B,C
B→ c→ A,B,D - A A A,B
B→ e→ A,B,C - A A A,B
D→ d→ D - A A -

attribute group, attribute A’s set is empty. Thus, the Validator
stops the checking of attribute A and continues with attribute B.

For attribute B, the Validator cannot find its first value b
in the inverted index anymore, because it has already been han-
dled. Therefore, it continues with value c and handles the corre-
sponding attribute group {A, B,D}. The same follows for e. As
the Validator has checked all values of B now, it moves to at-
tribute C. Because all of attribute C’s values have also been han-
dled, it continues checking attribute D. Here, it finds the value d
unchecked, which disassociates attribute D from A and B. Finally,
the Validator terminates yielding the two inclusion dependencies
B ⊆ A and C ⊆ A.

4.3 Candidate pruning
A common practice to prune IND candidates is to collect some

statistics about the buckets, such as min and max values, in or-
der to prune some attributes before even reading their first buckets.
However, in early evaluations, we found that collecting such statis-
tics is more expensive than their pruning effect: We observed that
the bucketing process dominates the entire IND discovery process
by taking up 95% of the execution time; hence, additional costs
for statistic collection in this step dominate any possible pruning-
gain. Therefore, the Validator relies on two non-statistics-based
pruning techniques to significantly speed up the validation process:
intra-partition and inter-partition pruning.
Intra-partition pruning. During the validation of a partition,
some attributes become independent of all other attributes, such as
attribute A in our example. This means that they no longer appear
as a dependent attribute in any IND candidate. In these cases, the
Validator directly prunes the rest of the attribute’s values from
the validation process by skipping to the next active attribute in
the attr2values index. The value f in our example, for instance, is
never checked. In real-world datasets, many of such f -values ex-
ist, because attributes containing a large number of different values
have an especially high chance of not being included in any other
attribute.
Inter-partition pruning. After validating a partition, attributes be-
come inactive if they neither depend on other attributes nor get
referenced. Thus, by frequently updating the activeAttr set, the
Validator can prune entire attributes from further validation pro-
cesses. In consequence, the partitions become smaller and smaller,
which continuously reduces the time needed for partition refine-
ment, bucket loading, and index creation. Fewer attributes also
reduce the average size of attribute groups in the values2attr index,
which in turn makes the intersections faster.

In summary, the Validator does not need to read and check
all attributes entirely due to the two indexes and its lazy bucketing
and refinement techniques (if not all attributes participate in any
inclusion dependency). All candidates that “survive” the validation
on all partitions are valid inclusion dependencies.

5. IND CANDIDATE GENERATION
The CandidateGenerator is the driver component of the entire

IND discovery process. It generates the IND candidates, instructs



Algorithm 4: Candidate Generation
Data: attributes, tables, dataTypes, nPartitions
Result: dep2refs

map dep2refs as Integer to {};1
map candidates as Integer to {};2

// Unary IND detection

checkOrder, attrSizes← bucketize(attributes, tables,3
nPartitions);4

emptyAttr← {a ∈ attributes | attrSizes[a] = 0};5
foreach cand ∈ attributes × attributes do6

if cand[0] = cand[1] then7
continue;8

if dataTypes[cand[0]] , dataTypes[cand[1]] then9
continue;10

if cand[0] ∈ emptyAttr then11
dep2refs.get(cand[0])← ∪ cand[1];12

else13
candidates.get(cand[0])← ∪ cand[1];14

dep2refs← ∪ validate(candidates, checkOrder, attrSizes);15

// N-ary IND detection

lastDep2ref ← dep2refs;16
while lastDep2ref , ∅ do17

candidates← generateNext(tables, lastDep2ref );18
if candidates = ∅ then break;19
attrCombinations← getKeysAndValues(candidates);20
checkOrder, attrSizes← bucketize(attrCombinations,21

tables, nPartitions);22
lastDep2ref ← validate(candidates, checkOrder,23

attrSizes);24
dep2refs← ∪ lastDep2ref25

return dep2refs;26

the Bucketizer to partition the data accordingly and then calls the
Validator to check the candidates on the bucketized dataset. It is
worth noting that Binder uses the same algorithms (the bucketing,
validation, and candidate generation processes) to discover both all
unary and all n-ary INDs. To the best of our knowledge Binder is
the first approach to achieve this.

Algorithm 4 shows the candidate generation process in detail.
It takes four parameters: the three arrays attributes, tables, and
dataTypes, which store metadata about the dataset, and the nParti-
tions variable, which defines the number of seed partitions. The
CandidateGenerator detects both unary and n-ary INDs. At
first, the component generates all unary IND candidates and runs
them through the bucketing and validation processes (ll. 1-15).
Then, if n-ary INDs should be detected as well, the Candidate-
Generator starts a level-wise generation and validation process
for n-ary IND candidates (ll. 16-26). Each level represents the INDs
of size i. The iterative process uses the already discovered INDs of
size i to generate IND candidates of size i + 1. While this traversal
strategy is already known from previous works [1, 12], our can-
didate validation techniques contribute a significant improvement
and simplification to the checking of n-ary IND candidates.

5.1 Unary IND detection
The CandidateGenerator starts by defining the dep2refs map,

in which we store all valid INDs, and the candidates map, in which
we store the IND candidates that still need to be checked (ll. 1 & 2).
Both data structures map dependent attributes to lists of referenced

attributes. The algorithm then calls the Bucketizer to partition the
dataset for the unary IND detection (l. 3). The Bucketizer splits
all attributes of all tables into nPartitions buckets as explained in
Section 3. Next, the CandidateGenerator collects all empty at-
tributes in the emptyAttr set using the previously measured attribute
sizes (l. 5). An empty attribute is an attribute that contains no val-
ues. Using the attributes, their data types, and the set of empty at-
tributes, the CandidateGenerator iterates the set of all possible
unary IND candidates, which is the cross product of all attributes
(l. 6). Each candidate cand is a pair of one dependent attribute
cand[0] and one referenced attribute cand[1]. If both are the same,
the IND is trivial and is discarded (ll. 7 & 8).

Like the state-of-the-art [2, 12], the CandidateGenerator also
discards candidates containing differently typed attributes (ll. 9
& 10). However, if INDs between differently typed attributes
are of interest, e.g., if numeric columns can be included in
string columns, this type-filter can be omitted. Furthermore, the
CandidateGenerator excludes empty attributes, which are con-
tained in all other attributes by definition, from the validation pro-
cess. After discarding some first candidates, the remaining can-
didates are either valid per definition, i.e., the dependent attribute
is empty, or they need to be checked against the data (l. 14). The
CandidateGenerator calls the Validator to check the IND can-
didates (see Secion 4) and places the valid INDs into the dep2refs
map (l. 15). If only unary INDs are required, the algorithm stops
here; otherwise, it continues with the discovery of n-ary INDs.

5.2 N-ary IND detection
For the discovery of n-ary INDs, the CandidateGenerator

incrementally generates and checks ever larger candidates. The
generation is based on the apriori-gen-algorithm [1], which tra-
verses the lattice of attribute combinations level-wise. In detail, the
CandidateGenerator first copies the already discovered unary
INDs into the lastDep2ref map (l. 16), which stores all discovered
INDs of the last finished validation, i.e., of the last iteration. While
the lastDep2ref map is not empty, i.e., the last validation found
at least one new inclusion dependency, the CandidateGenerator
keeps generating and checking ever larger INDs (ll. 17-25).
Candidate generation. To generate the n-ary IND candidates
nAryCandidates of size i + 1 from the valid INDs lastDep2ref of
size i, the CandidateGenerator uses the generateNext() function
(l. 18). Basically, for each IND R j[X] ⊆ Rk[Y] with |X| = |Y | = i,
this function finds all IND candidates R j[XA] ⊆ Rk[YB] so that:

(1) R j[X] ⊆ Rk[Y] and R j[A] ⊆ Rk[B]

(2) ∀Xi ∈ X : Xi < A

(3) A < X, B < Y , and R j[A] , ∅

where X and Y are attribute lists and A and B are individual at-
tributes. In other words, both sequences and single attributes are
pair-wise INDs (1). As INDs are permutable, e.g., if R j[AB] ⊆
Rk[CD] is an IND then R j[BA] ⊆ Rk[DC] is an IND as well, the
CandidateGenerator checks only one such permutation. There-
fore, it orders the dependent attributes lexicographically and gen-
erates only those candidates whose attributes follow this order (2).
The CandidateGenerator also does not generate trivial left or
right hand sides that contain an attribute twice or that contain an
empty attribute (3).
Re-bucketing. Having generated the next nAryCandidates, the
CandidateGenerator needs to bucketize again the dataset ac-
cording to these new candidates. It cannot reuse the bucketized



dataset from the previous run, because the information about co-
occurring values of different attributes gets lost when the val-
ues are bucketized. For instance, if the CandidateGenerator
has to check the candidate R j[AB] ⊆ Rk[CD], then it checks if
∀r ∈ R j[AB] : r ∈ Rk[CD]. As record r cannot be reconstructed
from previous bucketings, the CandidateGenerator has to re-
execute the bucketing algorithm with one small difference: Instead
of single attribute values, Algorithm 1 bucketizes records from at-
tribute combinations attrCombinations that either occur as a de-
pendent or referenced attribute combination in any IND candidate.
Technically, the Bucketizer can simply combine the values of
such records with a dedicated separator character to then bucke-
tize the combined values. For instance, consider that we need to
check the IND candidate R j[AB] ⊆ Rk[CD]. Now, assume that the
Bucketizer reads the record ( f , b, e, c) from our example schema
R1[A, B,C,D]. Then, it partitions the value ′ f #b′ for R1[AB] and
′e#c′ for R1[CD].

It is worth emphasizing that the resulting buckets can become
much larger than the buckets created for the unary IND checking:
First, the combined values for n-ary IND candidates of size i are i-
times larger on average than the single values, without counting the
separator character. Second, the number of non-duplicate values
increases exponentially with the size of the IND candidates so that
more values are to be stored. Binder can still handle this space
complexity through its dynamic memory handling (Section 3.2)
and the lazy partition refinement (Section 3.4) techniques.
Validation. After the bucketing, the CandidateGenerator calls
the Validator with the current set of n-ary IND candidates. Here,
the validation of n-ary candidates is the same as the validation of
unary candidates. The Validator has just to consider that the
buckets refer to attribute combinations, e.g., to R[AB]. After val-
idating the n-ary IND candidates of size i + 1, the Candidate-
Generator then supplements the final result dep2ref with the set
of newly discovered INDs. In case that no new INDs are found,
the CandidateGenerator stops the level-wise search, because all
unary and n-ary INDs have already been discovered. As a result,
Binder reports the dep2ref map that now contains all valid INDs.

6. EVALUATION
We evaluate and compare the performance of Binder with two

state-of-the-art systems for IND discovery. In particular, we car-
ried out this evaluation with five questions in mind: How good
does Binder perform when both (i) varying the number of rows
(Section 6.2) and (ii) varying the number of columns (Section 6.3)?
How well does Binder behave when processing (iii) different
datasets (Section 6.4)? What is the performance impact regard-
ing the (iv) internal techniques of Binder (Section 6.5) and how
does Binder perform for (v) discovering n-ary INDs (Section 6.6)?

6.1 Experimental setup
Hardware. All experiments were run on a Dell PowerEdge R620
with two Intel Xeon E5-2650 2.00 GHz CPUs and 128 GB DDR3
RAM. The server runs CentOS 6.4 as operating system. For some
experiments, we reduce the server’s memory to 8 GB in order to
evaluate the algorithm’s performance on limited memory resources.
Systems. We compare against two other systems, namely Spi-
der [2], which to date is the fastest algorithm for unary INDs dis-
covery, and Mind [12], which we believe is the most popular sys-
tem for n-ary IND discovery. For Binder we set the input param-
eter nPartitions to 10 for all experiments and show in Section 6.5
why this is a good default value. We implemented all three algo-
rithms within our Metanome data profiling tool using Java 7. The

Table 2: Datasets and their characteristics
Name File Size Attr. Unaries N-aries nmax
COMA 20 KB 4 0 0 1
SCOP 16 MB 22 43 40 4
CENSUS 112 MB 48 73 147 6
WIKIPEDIA 540 MB 14 2 0 1
BIOSQL 560 MB 148 12463 22 2
WIKIRANK 697 MB 35 321 339 7
LOD 830 MB 41 298 1361005 8
ENSEMBL 836 MB 448 142510 100 4
CATH 908 MB 115 62 81 3
TESMA 1,1 GB 128 1780 0 1
PDB 44 GB 2790 800651 unknown
PLISTA 61 GB 140 4877 unknown
TPC-H 100 GB 61 90 6 2

Metanome framework standardizes the configuration of different
profiling algorithms and their input and output handling2. Hence,
it makes them easier to compare. Binder and the other systems’
binaries are publicly available for experimental reproducibility3.
Data storage. Our experiments consider both a database and raw
files as data storage, because this choice influences the system’s
runtimes. Spider, for instance, uses SQL order-by statements on
database inputs for its sorting phase and external memory sort-
ing on files. Mind uses SQL for all inclusion checks and, hence,
only runs on databases. Binder reads the dataset only once and
then maintains the data itself, which is why the algorithm executes
equally on both storage types. For our experiments, we use CSV-
formatted files and the IBM DB2 9.7 database in its default setup.
Datasets. Our experiments build upon both synthetic and real-
world datasets. The real-world datasets we use are: COMA,
WIKIPEDIA, and WIKIRANK, which are small datasets contain-
ing image descriptions, page statistics, and link information, re-
spectively, that we crawled from the Wikipedia knowledge base;
SCOP, BIOSQL, ENSEMBLE, CATH, and PDB, which are all ex-
cerpts from biological databases on proteins, dna, and genomes;
CENSUS, which contains data about peoples’ life circumstances,
education, and income; LOD, which is an excerpt of linked open
data on famous persons and stores many RDF-triples in relational
format; and PLISTA [7], which contains anonymized web-log
data provided by the advertisement company Plista; The last two
datasets TESMA and TPC-H are synthetic datasets, which we gen-
erated with the db-tesma tool for person data and the dbgen tool for
business data, respectively. Table 2 lists these datasets with their
file size on disk, number of attributes, number of all unary INDs,
number of all n-ary INDs with n > 1, and the INDs’ maximum
arity nmax. Usually, most n-ary INDs are of size n = 2, but in the
LOD dataset most n-ary INDs are of size n = 4. A link collection
to these datasets and the data generation tools is available online3.

6.2 Varying the number of rows
We start evaluating Binder with regard to the length of the

dataset, i.e., the number of rows. For this experiment we generated
five TPC-H datasets with different scale factors from 1 to 70. The
two left-side charts in Figure 6 show the result of the experiment
for 128 GB (top) and 8 GB (bottom) of main memory.

We observe that with 128 GB of main memory, Binder is up
to 6.2 times faster on file inputs and up to 1.6 times faster on a
database than Spider. Binder outperforms Spider for three main
reasons: First, building indexes for the IND validation is faster than

2http://www.metanome.de
3http://hpi.de/en/naumann/projects/repeatability/data-profiling/ind
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Spider’s sorting. Second, the indexes are not constructed for all
attribute values, because some inactive attributes can be discarded
early on. Third, Binder reads the data once, whereas Spider queries
the data multiple times in order to sort the different attributes. The
results also show that Binder performs worse on database inputs
than on file inputs although the algorithm is exactly the same. In
fact, its execution time almost doubles. The reason is the database
overhead of query parsing, record formatting, and, in particular,
inter-process data transfer. Spider, on the other hand, profits from
a database: it uses the built-in sorting algorithms, which are highly
optimized for the given data. Additionally, by directly eliminating
duplicate values, the database also reduces the amount of data that
it sends to the validation process. Despite these advantages, Binder
still clearly outperforms Spider even on database inputs.

We also observe that with 8 GB of main memory, both algo-
rithms become slower, as expected. The runtimes of Binder in-
creased by 8-9% and the runtimes of Spider by 10%. This is be-
cause both need their external memory techniques, which is spilling
and refinement in Binder and external memory sorting in Spider.
However, we observe that the runtime of Spider on the database
significantly increased, because the database sorting algorithm is
apparently less performant on insufficient main memory. As a re-
sult, Binder is now up to 3.5 times faster than Spider. When using
raw files as input, Binder is up to 5.1 times faster than Spider. This
is a bit less than when having 128 GB of RAM, because the refine-
ment strategy of Binder requires slightly more spills to disk.

In summary, Binder significantly outperforms Spider on both
database and file inputs. It scales linearly with an increasing num-
ber of rows, because the bucketing process scales linearly and dom-
inates the overall runtime of Binderwith 92-95%; in fact, the scala-
bility is slightly super-linear, because the relative runtime costs for
the validation process decreased with the length of the data from
8 to 5% due to our pruning techniques.

6.3 Varying the number of columns
We now evaluate Binder with regard to the width of the dataset,

i.e., the number of attributes. In these experiments we used the
PDB dataset, which comprises 2,790 attributes in total. We start
with a subset of 411 attributes and continuously add tables from
the PDB dataset to its subset. Note that we had to increase the open
files limit in the operating system from 1,024 to 4,096 for Spider,
to avoid the “Too many open files” exception.

The two right-side charts in Figure 6 show the result of the ex-
periment for 128 GB (top) and 8 GB (bottom). We additionally
plot the number of discovered INDs (red line in the charts) in these
charts as they increase with the number of attributes. Similar to the
row scalability experiment, Binder significantly outperforms Spi-
der: (i) it is up to 1.8 times faster on a database and up to 10.7 times
faster on raw files with 128 GB of main memory; and (ii) it is up
to 3.1 times faster on a database and up to 9.9 times faster on raw
files with 8 GB of main memory. We see that these improvement
factors stay constant when adding more attributes, because the two
IND validation strategies have the same complexity with respect to
the number of attributes. However, it is worth noting that although
the number of INDs increases rapidly, the runtimes of both algo-
rithms only increase slightly. This is because the bucketing (for
Binder) and sorting (for Spider) processes dominate the runtimes
with 95% and 99% respectively.

6.4 Varying the datasets
The previous sections have shown that Binder’s performance

does not depend on the number of rows or columns in the dataset.
As the following experiments on several real-world and two syn-
thetic datasets will show, it instead depends on four other charac-
teristics of the input datasets: (i) the dataset size, (ii) the number of
duplicate values per attribute, (iii) the average number of attributes
per table, and (iv) the number of prunable attributes, i.e., attributes
not being part of any IND. Thus, to better evaluate Binder under
the influence of these characteristics, we evaluated it on different
datasets and compare its performance to that of Spider.

Figure 7 shows the results of these experiments. We again exe-
cuted all experiments with 128 GB (top) and 8 GB (bottom) main
memory. Notice that only the runtimes for the large datasets differ
across the two memory settings. Overall, we observe that Binder
outperforms Spider on all datasets, expect COMA and SCOP. We
examine these results with respect to the four characteristics men-
tioned above:

(1) Dataset size. As we observe in the scalability experiments
in Sections 6.2 and 6.3, the improvement of Binder over Spider
does not depend on the number of rows or columns if the datasets
are sufficiently large. However, we observe in these results that
Binder is slower than Spider if the datasets are very small, such the
COMA dataset with only 20 KB. This is because the file creation
costs on disk dominates the runtimes of Binder: Binder creates ten
files per attribute4 whereas Spider only creates one file per attribute.
For large datasets, however, the file creation costs are negligible in
Binder. Therefore, Binder could simply keep its buckets in main
memory to handle with small datasets.

(2) Number of duplicate values per attribute. Spider has an ad-
vantage over Binder if the input dataset contains many duplicate
values and the IND detection is executed on a database. This is be-
cause Spider uses database functionality to remove such duplicates.
The results for the CENSUS, BIOSSQL, and ENSEMBL datasets,
which contain many duplicate values, show that Spider on a data-
base can compete against Binder on a database. This also shows the
efficiency of Binder to eliminate duplicate values in the bucketing
process. In contrast to these results, when running on top of raw
datasets, Binder again significantly outperforms Spider. We also
observe that Binder is much better than Spider for the generated
TESMA dataset, which contains only few duplicate values.

(3) Average number of attributes per table. The experiments in
Section 6.3 have shown that the overall number of attributes does

4In contrast to Spider, Binder only opens one of these files at a time
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Figure 7: Runtime comparison on different datasets
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Figure 8: Active attributes per partition for the different datasets

not influence the performance difference between Binder and Spi-
der. However, we particularly observed that if the average number
of attributes per table is high, Binder’s performance is not affected
as much as the performance of Spider: Spider needs to access a
large table once for reading each of its attributes, which introduces
a large overhead especially if the dataset needs to be read from
files. Binder, on the other hand, needs to spill buckets more often
to disk, but this introduces only a small overhead as the buckets are
written to disk anyway. The results for the TESMA and PLISTA
dataset show this aspect best: Having 32 and 35 attributes per table
on average, respectively, Binder significantly outperforms Spider.

(4) Number of prunable attributes. In contrast to Spider, which
cannot prune inactive attributes before or during sorting values,
Binder fully profits from attributes that are not part of any IND
thanks to the inter-partition pruning (Section 4.3). For the SCOP
dataset, for instance, Binder performs as good as Spider even if
this dataset is still very small (16 MB). This is because Binder al-
ready prunes all attributes that are not part of any IND while pro-
cessing the first partition. In this way, Binder saves significant in-
dexing time whereas Spider cannot save sorting time for prunable
attributes. Figure 8 shows the pruning power in more detail: it lists
the percentage of active attributes for the different partitions show-
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Figure 9: The nPartitions parameter on TPC-H 70 using 8 GB RAM

ing how many attributes Binder pruned in the different partitions.
Notice that all attributes that survive as active attributes until Parti-
tion 10 are part of at least one valid IND. For instance, 50% of the
attributes finally appear in at least one IND for the TPC-H dataset.
In these results, we observe that Binder achieves the best pruning
on the COMA, TESMA, WIKIPEDIA, and SCOP datasets. It can
prune almost all unimportant attributes in the first partitions. This
means that the values of these attributes are not read, indexed, or
compared in the following partitions. Nonetheless, we see that the
pruning capabilities of Binder have no effect for the LOD and PDB
datasets, because all of their attributes either depend on another at-
tribute or reference another attribute.

6.5 BINDER in-depth
So far, we have shown the high superiority of Binder over Spi-
der. We now evaluate Binder in detail studying the impact of:
(i) the nPartitions parameter; (ii) the data structures we use in the
validation process; and (iii) the index-based candidate checking.
(1) Number of seed buckets. Recall that the nPartitions param-
eter specifies the number of seed buckets that Binder should use.
Although one could use any value for this parameter – thanks to the
lazy refinement used by Binder –, the number of seed buckets in-
fluences the performance of Binder as shown in Figure 9. It shows
both the runtime of Binder for different nPartitions values and the
percentage of refined partitions for each number of seed buckets
on the TPC-H 70 dataset. As expected, on the one hand, we ob-
serve that taking a small number of seed partitions (two to three)
decreases the performance of Binder, because it needs many costly
bucket refinements. On the other hand, we observe that choosing
a large number of seed partitions, e.g., 50, also reduces the perfor-
mance of Binder, because the file overhead increases as well. In
between very small and very large values, we see that Binder is
not sensitive to the nPartitions parameter, showing its robustness
to this parameter. It is worth noting that Spider takes 7.4 hours to
compute the same dataset, which is still more than 4 times slower
than the worst choice of nPartitions in Binder. Notice that we ob-
served identical results for the PLISTA and PDB dataests and very
similar results for the other datasets.

(2) Lists vs. BitSets. In the validation process, Binder checks the
generated IND candidates against the bucketized dataset by inter-
secting the candidates referenced attribute sets with those sets of at-
tributes that all contain a same value. Technically, we can maintain
the attribute sets as Lists or BitSets. BitSets have two advantages
over Lists if most bits are set: they offer a smaller memory footprint
and their intersection is faster. Thus, we implemented and tested
both data structures. In our experiments, we did not observe a clear
performance difference between the two data structures. This is be-
cause the attribute sets are typically very small and the intersection
costs become almost constant costs [12]. However, we observed
a higher memory consumption for BitSets on datasets with many
attributes, e.g., 41% higher on the PDB dataset, because they are
very sparsely populated. Furthermore, the number of candidates
increases quadratically with the number of attributes but while the
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Figure 10: Runtimes of Binder and Mind scaling columns for PDB

candidate number shrinks over time using Lists, they stay large us-
ing BitSets. For these reasons, Binder uses Lists.

(3) Indexing vs. sorting. Recall that the Validator component
checks the IND candidates using two indexes, but it could also use
Spider’s sort-merge join approach instead. One can imagine that
the sort-based approach might be faster than using indexes, be-
cause it does not need an external memory sorting algorithm due
to Binder’s bucketing phase. Thus, this approach would be clearly
faster than the original Spider algorithm. However, we observed
in our experiments that this sort-based approach is still 2.6 times
slower than the indexing approach on average.

6.6 N-ary IND discovery
We now evaluate the performance of Binder when discovering

all n-ary INDs of a dataset. Due to Binder’s dynamic memory
management and lazy partition refinement techniques, it can find n-
ary INDs using the same, efficient discovery methods as for unary
INDs. As other related works do not achieve this, we compare
Binder with the Mind algorithm, which is designed specifically for
n-ary IND discovery. Notice that we had to conduct these experi-
ments on database inputs only, because Mind uses SQL queries.

Our first experiment measures Binder’s and Mind’s runtime
while scaling the number of attributes on the PDB dataset. We
report the results in the left chart of Figure 10. We also show in the
right chart of Figure 10 the increase of n-ary candidates and n-ary
INDs in this experiment. We observe that Mind is very sensitive
to the number of IND candidates and becomes inapplicable (run-
time longer than two days) already when the number of candidate
checks is in the order of hundreds. Binder, however, scales well
with the number of candidates and in particular with the number of
discovered INDs, because it efficiently reuses bucketized attributes
for multiple validations. We observe that while MIND runs in 2.4
days for 150 attributes, Binder runs under 20 minutes for up to 350
attributes and under 30 minutes for 600 attributes. In contrast to
Mind, we also observe that Binder is not considerably influenced
by the IND’s arity (max level line in the right chart of Figure 10),
because it reuses data buckets whenever possible while Mind com-
bines data values again with every SQL validation.

To see how Binder’s discovery techniques perform in general,
we evaluated the two algorithms on different datasets. Figure 11
depicts the measured runtimes. The experiment shows that, over-
all, the runtimes of Binder and Mind correlate with the size of the
dataset and the number of n-ary INDs. In detail, we observe that
if no (or only few) INDs are to be discovered, as in the COMA,
WIKIPEDIA, and TESMA datasets, Binder’s bucketing process
does not pay off and single SQL queries may perform better. How-
ever, if a dataset contains n-ary INDs, which is the default in prac-
tice, Binder is orders of magnitude faster than Mind. We measured
improvements by up to more than three orders of magnitude in
comparison to Mind (e.g., for CENSUS). This is because Mind, on
the one hand, checks each IND candidate separately, which makes
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Figure 11: Comparing Binder and Mind in n-ary IND detection

it access attributes and values multiple times; Binder, on the other
hand, re-uses the powerful unary candidate validation for the n-
ary candidates, which lets it validate many candidates simultane-
ously. Considering that data access is the most expensive operation,
Binder complexity in terms of I/O is O(n) whereas Mind complex-
ity is O(2n), where n is the number of attributes. Thus, even though
Mind also uses pruning techniques for the IND checks, i.e., it stops
matching the values of two attributes if one value is already miss-
ing, the single checks are already much too costly.

As Figure 11 shows, we had to terminate Mind after seven days
for six datasets. Binder could process four of these datasets in less
than a day, but also exceeds seven days for PDB and PLISTA. This
is because both datasets contain an extremely high number of n-
ary INDs. In PDB, we found a set of almost duplicate tables and
PLISTA contains two tables, statistics and requests, with
same schemata. At some point, this causes the generation of an
exponential number of IND candidates. As Binder scales with the
size of the result, its execution time also increases exponentially.

With the TPC-H dataset, the experiment proves that even though
the number of INDs (and IND candidates) is low, Binder can still
outperform Mind. This is because the SQL checks become unpro-
portionally expensive on high numbers of attribute values. Note
that we tried different validation queries based on LEFT OUTER
JOIN, NOT IN, and EXCEPT statements (limited on the first not join-
able tuple) for Mind all showing the same limitation. Especially
when the tables or the IND candidates’ left and right hand sides
become larger, the SQL-queries become clearly slower.

In summary, our experiments showed that only if tables are small
and their number of n-ary IND candidates is low, Mind can compete
with Binder. But as most real world datasets are large and contain
many n-ary INDs, Binder is by far the most efficient algorithm for
exact and complete n-ary IND discovery.

7. RELATED WORK
Unary INDs. Bell and Brockhausen introduced an algorithm that
first derives all unary IND candidates from previously collected
data statistics, such as data types and min-max values. It then val-
idates IND candidates using SQL join-statements [3]. Validated
IND candidate are used to prune yet untested candidates. However,
SQL-based validation is very costly, because it accesses the data
for each IND candidate.

De Marchi et al. proposed an algorithm that transforms the data
into an inverted index pointing each value to the set of all attributes
containing the value [12]. One can then retrieve valid INDs from
the attribute sets by intersecting them. Despite this efficient tech-
nique, the algorithm yields poor performance, because it applies the



attribute set intersections for all values, without being able to dis-
card attributes that have already been removed from all their IND
candidates. Furthermore, building such an inverted index for large
datasets (i.e., not fitting in main memory) is very costly as it in-
volves many I/O operations. Binder solves both of these issues.

Bauckmann et al. proposed Spider [2], which is an adapted sort-
merge-join approach. First, it individually sorts the values of each
attribute, removes duplicate values, and writes these sorted lists to
disk. Then it applies an adapted (for early termination) sort-merge
join approach to validate IND candidates. Spider also prunes those
attributes from the validation process that have been removed from
all their IND candidates. This technique makes Spider the most
efficient algorithm for unary IND detection in related work. How-
ever, Spider still comes with a large sorting overhead that cannot be
reduced by its attribute pruning. And if a column does not fit into
main memory, external sorting is required. Furthermore, Spider’s
scalability in the number of attributes is technically limited by most
operating systems, because they limit the number of simultaneously
open file handlers and Spider requires one per attribute.
N-ary INDs. De Marchi et al. introduced the bottom-up level-
wise algorithm Mind, which uses an apriori-gen-based approach [1]
for IND candidate generation [12]. Since Mind uses costly SQL-
statements and validates all n-ary IND candidates individually,
Binder outperforms this algorithm applying a much more efficient
validation strategy based on data partitioning.

Koeller and Rundensteiner proposed an efficient algorithm for
the discovery of high-dimensional n-ary INDs [8]. The algorithm’s
basic assumption is that most n-ary INDs are very large and, hence,
occur on high lattice levels. In practice we observed, however, that
most INDs in real-world datasets are small. With their Zigzag al-
gorithm [13], De Marchi and Petit also developed a technique to
identify large n-ary INDs. This approach combines a pessimistic
bottom-up with an optimistic depth-first search. Nevertheless,
these approaches also test the IND candidates using costly SQL-
statements, which does not scale well with the number of INDs.
The Clim approach [11] discusses an idea to avoid these single
SQL checks by applying closed item set mining techniques on a
new kind of index structure. However, the feasibility of such an
algorithm is not proven.

In contrast to state-of-the-art, Binder is the only system that uti-
lizes the same efficient validation techniques for both unary and
n-ary IND detection. Binder’s partitioning process allows it to han-
dle the increasing value sizes with the same index-based checking
method. This makes Binder not only more efficient but also easier
to implement and maintain than other approaches.
Foreign Key Discovery. The primary use case for INDs is the
discovery of foreign keys. In general, this is an orthogonal task
that uses the IND discovery as a preprocessing step. For instance,
Rostin et al. proposed rule-based discovery techniques based on
machine learning to derive foreign keys from INDs [16]. Zhang
et al., in contrast, integrated the IND detection in the foreign key
discovery by using approximation techniques [17]. Their special-
ization on foreign key discovery makes their approach inapplicable
to other IND use cases, such as query optimization [6], integrity
checking [5], or schema matching [9], which demand complete and
not approximate results.

8. CONCLUSION & FUTURE WORK
We presented Binder, the currently most effective system for ex-

act and complete unary and n-ary IND discovery. It uses a divide
& conquer approach, which allows it to handle very large datasets.
Binder divides a dataset into smaller partitions and applies pruning

techniques to perform fast IND-checking at the partition-level. This
makes our approach highly efficient. In particular, Binder does not
rely on existing database functionality nor does it assume that the
dataset fits into main memory, in contrast to most related work. Our
experimental results show its superiority: it is more than one order
of magnitude (26 times) faster than Spider and up to more than
three orders of magnitude (more than 2500 times) faster than Mind.
The results also show that Binder scales to much larger datasets
than this state-of-the-art.

As Binder’s performance is I/O bound, we started working in a
distributed version of Binder in order to parallelize I/O operations.
As future work, we aim at devising efficient techniques for the pro-
cessing of discovered INDs, because the result sizes can grow ex-
ponentially with the number of attributes. These techniques must,
however, be use case specific, because different use cases require
different subsets of the complete result that Binder provides.
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