
Online Temporal Summarization of News Events

Tobias Schubotz
Hasso Plattner Institute

Potsdam, Germany
Email: tobias.schubotz@student.hpi.de

Ralf Krestel
Hasso Plattner Institute

Potsdam, Germany
Email: ralf.krestel@hpi.de

Abstract—Nowadays, an ever increasing number of news
articles is published on a daily basis. Especially after notable
national and international events or disasters, news coverage
rises tremendously. Temporal summarization is an approach to
automatically summarize such information in a timely manner.
Summaries are created incrementally with progressing time, as
soon as new information is available. Given a user-defined query,
we designed a temporal summarizer based on probabilistic lan-
guage models and entity recognition. First, all relevant documents
and sentences are extracted from a stream of news documents
using BM25 scoring. Second, a general query language model is
created which is used to detect typical sentences respective to the
query with Kullback-Leibler divergence. Based on the retrieval
result, this query model is extended over time by terms appearing
frequently during the particular event. Our system is evaluated
with a document corpus including test data provided by the Text
Retrieval Conference (TREC).

I. INTRODUCTION

A great amount of news articles is produced every day
which makes it harder and harder for interested readers to
stay up to date with all information available and to filter
articles for novel and relevant content. Additionally, users do
not want to read the same information over and over again.
Therefore, summarization of information containing all novel
and relevant event updates is crucial. Usually it is the task
of newspapers to summarize all recent and relevant content.
As time proceeds, often an overview or a timeline over past
updates is given. The main shortcoming of this approach is
that tremendous effort is required by journalists to read and
consume all available and relevant news before a manual
news timeline can be created. Hence, there will always be a
significant time delay between occurrence of news and timeline
publication, even when publishing on the Internet. The process
of creating summaries with an emphasis on the temporal order
of events is called temporal summarization.

Li et al. [1] explore the problem of generating storylines
from microblog data for user-defined queries. The system they
developed is only applicable to retrospective data analysis.
Shou et al. [2]. propose a system that uses stream clustering
techniques for continuous summarization of Twitter streams.
Yan et al. [3]. propose a framework called Evolutionary
Timeline Summarization (ETS). Given a user-defined query, a
timeline created by the system needs to score high concerning
four metrics:relevancy, coverage, coherence, and diversity. By
optimizing based on these measures, ETS selects the best sen-
tences for the summary. In contrast to our work, ETS is mainly
built for offline applications, meaning that the optimization
for a given time frame is dependent on the knowledge of
all past and future data in advance. Tran et al. [4] built a

system that exploits the headline of news articles to build
timelines automatically. Event Registry is a system developed
by Leban et al. [5] for the temporal summarization of news
events. By using data from a newsfeed, core information such
as time, location and who is involved are extracted automati-
cally by named entity recognition. Leban et al. apply stream
clustering algorithms in order to identify all articles that refer
to the same event. Event Registry contains no efforts to reduce
redundancy within resulting data. Beside clustering, there is no
further summarization involved. That is why we consider it to
be merely a system for temporal event exploration instead of
real temporal summarization.

A problem with all kinds of summaries is that some
information that was left out due to relevance or brevity
might be relevant for some readers. Temporal summarization
cannot overcome this issue. However, temporal summarization
of events, as they evolve and news get published, is superior
in showing what was considered important at the time of
the update. Existing approaches are mainly intended to be
applied after some time has passed in order to decide later
on what is important instead of making a live decision.
Rarely, evolutionary characteristics of news are considered.
Online temporal summarization [6] tries to overcome these
issues. It aims at providing summarization techniques that
are temporally as close as possible to the occurrence time
of information and articles. That means, it should be decided
whether they contain relevant and new information as early as
possible, preferably at the time new articles become available.
Systems have to make decisions based on information available
up until now.

Several related approaches have already been developed
in this context [7]. Liu et al. [8] propose a relatively simple
method where only the titles of news articles are compared
against user-specified query terms. Zhang et al. [9] apply query
expansion and use latent Dirichlet allocation to detect potential
topics according to a given query.

II. AN ONLINE TEMPORAL SUMMARIZER

Conceptionally, three main steps are performed for tem-
poral summarization. (1) The input query and incoming doc-
uments need to be processed. If applicable, query expansion
and any further preprocessing of data takes place. (2) From
all available documents, the relevant sentences have to be
extracted. (3) Finally, from the set of relevant sentences,
novel ones need to be chosen that conatin both relevant and
novel information. Figure 1 depicts our implementation of this
processing chain.



Query

Stream of
News Articles

1 - Preprocessing
2 - Retrieve

Relevant
Sentences

3 - Retrieve
Novel

Sentences

Document
Models

Query
Model

Relevant
Sentences

Novel &
Relevant

Sentences

Fig. 1. Overview of our processing steps for temporal summarization.

Inputs to the system are a stream of news articles and a
query (together with a broad category such as “accident” or
“earthquake”) defined by a user. The preprocessed articles
are converted to document bag-of-words models. Moreover, a
query model is created from either the raw query or the result
of a preprocessing step (e.g. query expansion). Both models are
used to retrieve relevant sentences from the stream of articles.
The directed edge back to the query model indicates, that our
system uses information about relevant sentences in order to
refine the query model incrementally. Finally, based on the
set of relevant sentences, novel sentences are detected. We
describe the steps in more detail in the following using the
user-supplied query: “buenos aires train crash” (accident) as
our running example.

III. RELEVANT UPDATE RETRIEVAL

The goal of the following is to retrieve relevant documents
and sentences. We decided to combine document and sen-
tence level retrieval and developed a system that first filters
on document-level, before typical sentences are retrieved in
a second filtering step. For both steps, we regard queries,
documents, and sentences as single bag-of-words models.

A. Detecting Relevant Documents

We use BM25 to score each incoming document with
respect to the given query terms. For the IDF -component
of BM25 we rely on a background document corpus from
the past. This background corpus contains only documents
published before the current event start date and allows to
distinguish general from specific keywords. For our example
query we want to retrieve relevant documents about the train
crash in Buenos Aires. We will most likely also include
documents about other events in Buenos Aires or train crashes
that occurred somewhere else.

B. Detecting Typical Sentences

After identifying relevant documents for the user-supplied
query in the stream of news articles, we are now faced with
the challenge of extracting relevant sentences. For query Q1
there could be documents about other events in Buenos Aires
that scored high because the city’s name occurred in them
several times. We need to filter out such sentences. Therefore,
we aim at detecting the underlying general topic of the query
in order to extract only appropriate sentences that represent
good candidates for novel event updates. Our main idea for

this step is to create a language model representing the topic
of the query. To automatically build such a language model
we make use of the category information of each query. The
category for “buenos aires train crash” is “accident”. We
can combine each individual query term and the category in
order to determine the topic of the event by checking how
many article titles in Wikipedia matched for each combination
(query term, query category). For our example “train accident”
has the most matches and we can use this combination to
build a topical language model using Wikipedia. Just the
category information “accident” would have been too broad
and would not have given us train accident specific Wikipedia
pages containing terms such as “platform”, “locomotive”, or
“conductor”. Instead, we retrieve the top 100 articles from
Wikipedia scored by BM25 using the topical query “train
accident”. We aggregate all terms of these 100 articles to get a
query language model LMQ. Finally, we compute Kullback-
Leibler divergence (KLD) between this language model LMQ

and each sentence language model LMS of all sentences S
found in relevant documents.

C. Refining the Query Language Model

Up to this point, the language model LMQ used to retrieve
typical sentences by KLD-score is determined once at the
query start time and does not change over time. This yields two
shortcomings that could impair retrieval performance. First, if
the original LMQ constitutes not a good fit for the original
query, our approach is not able to detect this and adjust
accordingly. Besides that, as time progresses, knowledge about
retrieved sentences is accumulated, but never utilized to refine
LMQ. Therefore, we store frequencies of all terms in the set
of relevant sentences R in order to create a language model
LMR for all sentences judged relevant. LMR is used to update
LMQ in periodic time intervals. In our experiments, an update
interval of one hour showed the best retrieval performance. At
the end of every hour, we extract the 50 most frequent terms
from LMR and extend the original LMQ.

IV. NOVEL UPDATE RETRIEVAL

After retrieving relevant sentences the system now needs
to filter out the novel ones. There are two basic strategies:
We can assume all sentences to be novel and only discard
the ones that are duplicates, i.e. that are too similar to an
earlier sentence. Or we can assume no sentence is novel by
default and only explicitly select the ones that contain novel
information. We decided for the latter approach since it allows
us to model new information more directly. To ensure we
only get significant and novel information we require new
information to be mentioned by more than just one source
before we accept it as reliable (significant), novel information.

A. Novel Updates by Number Occurrence

We assume that new updates often contain numbers. Num-
bers in articles could represent important facts like the number
of casualties, maximum sustained winds of hurricanes, or the
magnitude of earthquakes. As time progresses, these numbers
get updated. We introduce a threshold tnum that a particular
number needs to occur before it is considered a significant
novel number. Numbers usually do not stand alone. Instead,
the context is important in order to determine whether the



number represents injuries, deaths, speeds, etc. We refer to
these words before and after a number as context words.
Instead of just looking at plain numbers, we think that this
context can lead to more valuable updates. For example, in
reports on train crashes, the speed of the train is very important.
Consequently, all numbers in front of “mph” or “kph” (miles or
kilometers per hour) are particularly important. Given a query,
we already extracted the top 100 matching Wikipedia articles.
After processing these articles with a POS tagger, we extract
all words that occur before and after numbers and which are
not numbers by themselves. The result is a set of number
context words. Vice versa, a number that occurs before or after
such a word is called context number. We only use the top 50
context words that occurred most frequently. For query Q1,
the top words are “injuries”, “deaths”, and “passengers” For a
relevant sentence we can now extract all context numbers. We
consider the number to be significant enough if it occurred at
least tcontext num times. At the point in time where we decide
that a number is significant and novel, it occurred at least tnum
or tcontext num times before, respectively.

B. Novel Updates by Term Frequency

Besides numbers also other terms can indicate novel infor-
mation. Therefore we incrementally build a language model
LMR, as mentioned before, based on the sentences judged to
be relevant and novel so far. We monitor the inverse document
frequencies (IDFs) of all terms and compare them with the
respective IDFs in the background corpus. In order to be
regarded as significant and novel, a term has to fulfill the
following three criteria: (1) The IDF of the term during the
time frame of the temporal summary so far (IDFTS) needs
to be less then its IDF within the background corpus (IDFB):
IDFTS ≤ p · IDFB , with p ∈ [0, 1] (we used p = 0.25). (2)
The term has to occur at least tterm times during the period
of the temporal summary so far. (3) The term has not been
selected to be significant and novel before.

C. Completing the Temporal Summary

Finally, relevant sentences that satisfy at least one of the
criteria described in the past two sections are selected as novel
update: Such sentences need to contain either a novel and
significant number, a context number, or a novel, relevant term.
By introducing the thresholds tnum, tcontext num, and tterm
we are also introducing latency into the temporal summary.
That means, when a relevant update is retrieved there is a
time gap before our system decides if the update contains
novel information. Since we deal with global events where
lots of news sources are available (and lots of noise as well)
this strategy is a good trade-off between latency and irrelevant
or false updates.

V. EVALUATION

The TREC temporal summarization track1 offers guide-
lines, test data and metrics to evaluate online temporal sum-
marization systems. By using this framework we can also
compare our performance not just with a baseline but with
other participants of the track.

1http://www.trec-ts.org/

A. TREC Corpus, Test Data, and Metrics

We used the dataset from the 2013 TREC temporal sum-
marization track. The corpus contains documents of various
sources between October 2011 and April 2013. Since the entire
corpus contains over one billion documents, we filtered out
parts of it. First, we only included time frames that were
relevant to the test queries. Afterwards, documents created in
any language other than English were discarded. This resulted
in a corpus containing approximately 85 million documents.
Document sources occurring the most were weblogs, news
and social media. There were two main challenges we faced
when processing this corpus: boilerplate code removal and
sentence splitting were performed poorly by TREC. But we
did not correct these mistakes to be able to compare our
results with the participating systems. Alongside the corpus,
TREC defined a set of ten queries that are used for evaluation
of temporal summaries. Each query contains query terms, a
time frame of ten days, and a category. On average, there
are approximately 8 million documents per query time frame
corresponding to 581 documents per minute. Human assessors
created a silver standard by matching outputs of participants’
systems to a list of predefined information pieces (nuggets).
Based on this matching, performance of a system is assessed
and compared by metrics proposed by TREC2. We report
results on verbosity normalized latency-discounted expected
gain EV [GL] and latency comprehensiveness CL. The first
one can be seen as a measure for precision whereas the
latter one describes rather the recall of a system. Temporal
summarizers are usually optimized for either expected gain or
comprehensiveness. Optimizing for both is rather challenging.
This makes it hard to compare systems with opposing opti-
mization goals. Therefore, we adapt the F1 score traditionally
used in information retrieval to evaluate trade-offs between
precision and recall, and apply it to expected gain and com-
prehensiveness: F1 = 2 · EV [GL]·CL

EV [GL]+CL

B. Experimental Setup

We will perform three evaluation runs. The name in
boldface represents the run identifier used in the following
sections. The middle part indicates the approach used for
finding relevant sentences, the third part indicates the approach
used to filter novel information.

HPI-BL-BL: This run employs baseline approaches for re-
trieving relevant as well as novel updates. We use a boolean
AND search to find documents that contain all query terms
and then mark the sentences in these documents relevant
that conatain at least one query term. A sentence was then
considered novel if it contains a novel number or a novel entity
mention.
HPI-LMe-BL: This run uses the described methods including
query model refinement for finding relevant sentences and
applies a baseline novel update retrieval approach based on
novel numbers and entities.
HPI-LMe-TempSum: Finally, this run implements our entire
approach for online temporal summarization. After retrieving
relevant sentences by using BM25 and KL scoring, novel up-
dates are retrieved that contain novel and significant numbers,
context numbers, or terms.

2http://www.trec-ts.org/metrics-10242013.pdf

http://www.trec-ts.org/
http://www.trec-ts.org/metrics-10242013.pdf


C. Results & Discussion

Table I depicts latency-discounted expected gain and com-
prehensiveness scores for the two best TREC 2013 runs, the
average for all TREC 2013 runs, as well as our 3 runs.
Furthermore, F1 scores as well as the average number of
sentence updates per query each system has outputed. Boldface
values represent the best result per column. The TREC results
were calculated based on a set of matches created by TREC
assessors. We extended this original set of matches in order to
be able to calculate all metrics for our runs as well. All values
in Table I were determined by using the official evaluation
script provided by TREC. The absolute number of updates
per query is important with respect to the assumed scenario: a
journalist who uses a temporal summary for research purposes
is probably willing to read through more sentence updates than
a casual reader.

TABLE I. RESULTS OF OUR RUNS (PREFIXED WITH HPI) IN
COMPARISON TO THE RESULTS OF BEST TREC 2013 SYSTEMS AND TREC

2013 AVERAGE RESULTS.

Run ID F1 EV[GL] CL
#Updates
per Query

ICTNET-run2 0.133 0.127 0.251 55
PRIS-cl5 0.119 0.136 0.126 22

AVG TREC 2013 0.089 0.058 0.288 146

HPI-LMe-TempSum 0.162 0.129 0.545 280
HPI-BL-BL 0.102 0.075 0.344 2,428
HPI-LMe-BL 0.096 0.068 0.287 171

As shown, our proposed temporal summarization system
provides well above average performance considering expected
gain and comprehensiveness. However, when inspecting the re-
sults there are still opportunities for improvement of precision
and recall. From the retrieved updates just over 10% contain
relevant and novel information. Furthermore, the system was
not able to detect at least half of all existing nuggets. We
identified mainly two reasons for that: our baseline as well as
our actual approach extracted previously unseen numbers in
order to detect novel content. While the baseline run output
contained a lot of numbers that were not relevant, most num-
bers found by our actual approach proved to be indeed relevant
and novel. However, only some of them were represented in
the set of nuggets. For instance, when a fictitious numbers
of casualties rose from 50 to 100 according to nuggets, our
system also found intermediate number in between. Of course,
this is not true for all our updates, but the precision would have
been better with more fine-grained nuggets. While this is an
explanation for imperfect precision, the reason for imperfect
recall is different. The quality of the nuggets varies accross
queries. Good, short nuggets are, e.g. , “hundreds injured” or
“dozens killed”. In contrast to that, there are nuggets such
as “tropical storm (TS) watch: Jamaica, Bahamas, the Florida
Keys” which do not carry concise information. These issues
are part of the reasons why the recall for all approaches never
gets close to 100%.

We see two scenarios our system could support. First, our
temporal summarizer could act as a system that integrates
other sources for professional readers like journalists. The main
objective for them is the completeness of information. We
think that our system is able to support this scenario, since our

summaries sometimes contain even more detailed information
than the set of nuggets. The second scenario corresponds
to a casual reader who explores past events with temporal
summaries in order to understand the evolution of the event.
We think that our system supports this scenario better than the
first one, since completeness is not the main objective for such
users. It is more important that the summary is brief enough.
This is satisfied by our system with an average of 280 updates
during a time period of ten days.

VI. CONCLUSIONS

In this paper, we developed a system for online temporal
summarization of news articles. Temporal summarization is
typically performed in two steps: At first, relevant updates
are extracted from a stream of documents, before the novel
ones are emitted as novel event updates. Given a user-defined
event query, we determined which documents are important by
means of BM25 scoring. In order to extract relevant sentences,
we automatically created a language model respective to the
query based on a background corpus of Wikipedia articles.
This model represents the underlying topic of the query. By
employing a scoring based on KL divergence we are able to
retrieve a set of relevant sentences. The query language model
is extended regularly by the most frequent terms from this set.

We observed that novel updates often contain numbers that
are updated regularly. Depending on the type of an event,
numbers could be for instance casualties or wind speeds.
Hence, we filtered for the occurrence of numbers in query-
specific contexts. We also introduced the notion of signifi-
cancy, which means that new information needs to be backed
by several updates in order to be emitted as novel update.
Furthermore, another incremental language model based on
upcoming relevant sentences has been created. By using this
language model and a background corpus, novel terms were
detected that usually do not occur that often. Consequently,
they are important concerning the query and used as indicators
to detect novel updates.

REFERENCES

[1] C. Lin, C. Lin, J. Li, D. Wang, Y. Chen, and T. Li, “Generating Event
Storylines from Microblogs,” in Proceedings of CIKM. ACM, 2012,
pp. 175–184.

[2] L. Shou, Z. Wang, K. Chen, and G. Chen, “Sumblr: Continuous Summa-
rization of Evolving Tweet Streams,” in Proceedings of SIGIR. ACM,
2013, pp. 533–542.

[3] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang, “Evo-
lutionary Timeline Summarization: a Balanced Optimization Framework
via Iterative Substitution,” in Proceedings of SIGIR. ACM, 2011, pp.
745–754.

[4] G. B. Tran, M. Alrifai, and E. Herder, “Timeline summarization from
relevant headlines,” in ECIR. Springer, 2015, pp. 245–256.

[5] G. Leban, B. Fortuna, J. Brank, and M. Grobelnik, “Event Registry —
Learning About World Events From News,” in Proceedings of WWW,
2014, pp. 107–110.

[6] Q. Guo, F. Diaz, and E. Yom-Tov, “Updating Users About Time Critical
Events,” in Proceedings of ECIR. Springer, 2013, pp. 483–494.

[7] J. Aslam, F. Diaz, M. Ekstrand-Abueg, V. Pavlu, and T. Sakai, “TREC
2013 Temporal Summarization,” in Proceedings of TREC. NIST, 2013.

[8] Q. Liu, Y. Liu, and D. Wu, “ICTNET at Temporal Summarization Track
TREC 2013,” in Proceedings of TREC. NIST, 2013.

[9] C. Zhang, W. Xu, F. Meng, H. Li, T. Wu, and L. Xu, “The Information
Extraction systems of PRIS at Temporal Summarization Track,” in
Proceedings of TREC. NIST, 2013.


	Introduction
	An Online Temporal Summarizer
	Relevant Update Retrieval
	Detecting Relevant Documents
	Detecting Typical Sentences
	Refining the Query Language Model

	Novel Update Retrieval
	Novel Updates by Number Occurrence
	Novel Updates by Term Frequency
	Completing the Temporal Summary

	Evaluation
	TREC Corpus, Test Data, and Metrics
	Experimental Setup
	Results & Discussion

	Conclusions
	References

