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Abstract

Pre-training language representations on
large text corpora, for example, with BERT,
has recently shown to achieve impressive
performance at a variety of downstream
NLP tasks. So far, applying BERT to offen-
sive language identification for German-
language texts failed due to the lack of
pre-trained, German-language models. In
this paper, we fine-tune a BERT model that
was pre-trained on 12 GB of German texts
to the task of offensive language identifi-
cation. This model significantly outper-
forms our baselines and achieves a macro
F1 score of 76% on coarse-grained, 51% on
fine-grained, and 73% on implicit/explicit
classification. We analyze the strengths
and weaknesses of the model and derive
promising directions for future work.

1 Offensive Language in Online Media

Social media, micro-blogging, and comparable
participatory platforms can offer freely accessible
discussion spaces and the possibility of commu-
nicative integration of different social and interest
groups. For this reason, they represent an impor-
tant cornerstone of modern democracies. In reality,
however, online discussions are often the scene of
violence, abuse, and incivility (Coe et al., 2014).
Studies have shown that offensive and abusive com-
munication makes participants withdraw from on-
line discussions (Springer et al., 2015). Addition-
ally, offensive language can promote aggressive
cognitions and negative emotions (Rösner et al.,
2016), and reinforce negative prejudices against
social groups (Hsueh et al., 2015). The automated
detection of offensive language and related con-
cepts, such as incivility, hate speech, or toxicity
could help to counter such effects by supporting
moderators in effectively identifying and respond-
ing to offensive content in online discussions.

This paper presents an approach of detecting dif-
ferent forms of offensive language including pro-
fanity, insult, and abuse, and explicit and implicit
offensive language in German-language tweets us-
ing BERT (Bidirectional Encoder Representations
from Transformers). In the GermEval Shared Task
2 (2019), our best systems achieve macro F1 scores
of 76.4% on coarse-grained, 51.2% on fine-grained,
and 73.1% on implicit/explicit classification.

2 Related Work

Offensive language identification and related tasks,
such as the detection of toxicity and hate speech,
have recently gained popularity within the Natural
Language Processing (NLP) community. These
tasks are particularly challenging from an NLP per-
spective, since hate speech, toxicity, or offensive
language are often not explicitly communicated
through the use of unique offensive words. Fur-
ther, many words are used with different mean-
ings in different contexts. Traditional lexical and
bag-of-words (BoW) approaches often struggle in
identifying implicit and context-related forms of
offensive language. Davidson et al. (2017) found
that only five percent of tweets that contain words
of the hate speech lexicon Hatebase.org were
flagged as hate speech by human annotators. In
their study on anti-black racism on Twitter, Kwok
and Wang (2013) show that tweets are classified as
abusive based on words such as “black” or “white”,
which bear no racist undertones of their own.

Deep Learning (DL) methods marked a signifi-
cant step forward in the detection of several forms
of offensive or abusive language. They enable
the use of word vectors, e.g., Word2Vec (Mikolov
et al., 2013), Glove (Pennington et al., 2014), or
ELMo (Peters et al., 2018) instead of bag-of-words
representations. Further, DL models such as Long
Short Term Memory (LSTM) networks or Convolu-
tion Neural Networks (CNN) achieved significantly
better results in several NLP tasks than less com-



plex classifiers, such as Support Vector Machines,
Logistic Regression or Decision Tree Models. Bad-
jatiya et al. (2017) experimented with multiple DL
architectures and text representations to detect hate
speech on a dataset of 16,000 annotated English-
language tweets. They demonstrated that DL ap-
proaches, in sum, outperform models based on char
and word n-gram representations.

However, such models need extensive amounts
of (manually labeled) training data and are often
bound to the training data structure and the spe-
cific task they are trained for. As a consequence,
it is problematic to apply these models to other
tasks, such as detecting the outcome of the model
in other languages. In our study, we applied BERT
language models (Devlin et al., 2018) to detect
different forms of offensive language in German
tweets. BERT is not developed to solve a specific
problem but constitutes a general language model.
That means, BERT does not learn, e.g., what words
occur in offensive tweets, but learns how words of
a language (e.g. English) are generally organized
and combined (Devlin et al., 2018). BERT uses an
approach called “masked language model” (MLM),
that allows bidirectional learning, meaning learning
context both to the right and to the left of words,
which previous models were not designed to do.
English-language BERT models have been used in
other shared tasks, such as SemEval-2019 Task 6:
“Identifying and Categorizing Offensive Language
in Social Media” (Zampieri et al., 2019). However,
to the best of our knowledge there are no publica-
tions about German-language BERT models.

3 Dataset and Tasks

We trained our models on a dataset of German-
language tweets provided in context of the Germ-
Eval Shared Task 2 (2019) on the identification
of offensive language. The tasks consists of three
classification subtasks: subtask I is a binary classifi-
cation whether a tweet contains offensive language
or not (coarse-grained); subtask II requires distin-
guishing between three subcategories of offensive
language (fine-grained); and the goal of subtask III
is to decide whether offensive tweets are implicit or
explicit offensive. Figure 1 shows example tweets
from the training data for each category.

3.1 Coarse-Grained Binary Classification

Subtask I is to decide whether a tweet includes
some form of offensive language or not. For this

@RoemeltA Du bist jetzt geblockt, denn
rassistische Kackscheisze höre ich mir nicht
an, ich lese sie nicht und noch viel weniger
diskutiere ich darüber. Punkt. OFFENSIVE

@MiKeyyy328 schon ok ich verstehe das
OTHER
(a) Training samples for coarse-grained classification.

@Sternenrot @ schwarzeKatze aber das ist
halt einfach kein topf wtf PROFANITY

@Dr Dicht Selber SCHULD, wenn Sie
hässliche NAPFSÜLZE auch damit aufhören!
INSULT

@Hallaschka HH Antisemitismus gehört zur
DNA von Luthers Kirche. ABUSE

(b) Training samples for fine-grained classification.

@krippmarie Ich kenne noch einige Namen
unter den SPDler die ebenfalls zu Grabe getra-
gen müssten-sollten-werden.... IMPLICIT

@diMGiulia1 Araber haben schon ekelhafte
Fressen....! EXPLICIT
(c) Training samples for implicit/explicit classification.

Figure 1: Example tweets and their class labels.

task, 1,282 tweets labeled as OFFENSIVE and
2,698 tweets labeled as OTHER were used. Fig-
ure 1a shows examples of both categories.1

3.2 Fine-Grained Multi-Class Classification

The goal of subtask II is to detect the subcategories
of offensive language, namely PROFANITY, IN-
SULT, and ABUSE. PROFANITY is simply the us-
age of profane words in non-insulting contexts. IN-
SULT, unlike profanity, requires an intention to
offend an individual or a group. A tweet is labeled
as ABUSE if it not only insults a person but also
includes the stronger form of abusive language. In
the dataset for subtask II, 152 tweets are labeled as
PROFANITY, 624 are labeled as INSULT and 506
as ABUSE. Figure 1b shows examples of all three
categories.

1Disclaimer: The examples may be considered profane,
vulgar, or offensive. They do not reflect the views of the
authors and exclusively serve to explain linguistic patterns.



3.3 Implicit/Explicit Classification

Subtask III aims at classifying tweets as either im-
plicit or explicit offensive. 257 tweets are labeled
as implicit and 1,664 tweets are labeled as explicit
offensive language. Figure 1c shows examples of
both categories.

4 Fine-Tuning BERT for German Tweets

In this section, we describe our German-language
BERT model and we present our simple, yet effec-
tive, ensembling strategy. Further, we detail our
submitted runs.

4.1 BERT

The core of our approach is a case-sensitive
German-language BERT model. It is pre-trained
on 12 GB of raw text from the German-language
Wikipedia dump, OpenLegalData dump, and news
articles.2 The model is of the same size as the
English-language “BERT-Base” model (12-layers,
768-hidden, 12-heads) and comprises 110 million
parameters. We use the framework FARM3 and
make our implementation available online.4

Tweets are padded/clipped to a maximum length
of 150 tokens each. The average length in the train-
ing dataset is 41 words and less than 0.2 percent
of the tweets are clipped. For fine-tuning BERT,
we use a batch size of 32. Smaller training batches
would most likely not contain samples from all
classes. We use the Adam optimizer with an initial
learning rate of 2e-5 and warmup the learning rate
on 10 percent of the training data — compared to 1
percent of the data in the original BERT paper (De-
vlin et al., 2018). Other parameters, such as a 10
percent embedding dropout rate, are the same as in
the original paper. A weighted cross-entropy loss
takes into account the unbalanced class distribu-
tion in the training data. For example, regarding
the fine-grained classification subtask, the class
weights are 1.96 (ABUSE), 6.57 (PROFANITY),
1.56 (INSULT), and 0.37 (OTHER). The training
runs for one to four epochs, depending on the exact
submission described in Section 4.3.

We optionally apply two preprocessing meth-
ods. First, we replace all user mentions, such as
@Pe ter, with the token Name. This normaliza-
tion helps to reduce the variety of different user

2https://deepset.ai/german-bert
3https://github.com/deepset-ai/FARM
4https://hpi.de/naumann/projects/

repeatability/text-mining.html

names without losing information about the entity
type. Second, for the implicit/explicit classifica-
tion task, both training and test set provide the true
fine-grained class labels for each tweet. We append
these class labels as additional text tokens at the
end of each tweet to incorporate this information
into our model.

BERT uses tokenized parts of words instead of
tokenized words. We give two examples of this
tokenization.

text: @RobertHabeck Ihr verunglücktes
Videostatement hat doch rein gar nichts
mit Twitter zu tun. Sie hätten dies ja auch
in irgendeine Kamera eines TV-Teams
hineinsprechen können.

tokens: [’Name’, ’Ihr’, ’ver’,
’##unglück’, ’##tes’, ’Videos’, ’##tat’,
’##ement’, ’hat’, ’doch’, ’rein’, ’gar’,
’nichts’, ’mit’, ’Twitter’, ’zu’, ’tun’,
’.’, ’Sie’, ’hätten’, ’dies’, ’ja’, ’auch’,
’in’, ’irgend’, ’##eine’, ’Kamera’,
’eines’, ’TV’, ’-’, ’Teams’, ’hinein’,
’##sprechen’, ’können’, ’.’]

Note that the tokenization correctly separates
hineinsprechen into hinein and sprechen, irgen-
deine into irgend and eine, and verunglücktes into
ver, unglück and tes.

text: @Dr Dicht Selber SCHULD, wenn
Sie hässliche NAPFSÜLZE auch damit
aufhören!

tokens: [’Name’, ’Sel’, ’##ber’, ’SC’,
’##H’, ’##U’, ’##L’, ’##D’, ’,’, ’wenn’,
’Sie’, ’hä’, ’##ss’, ’##liche’, ’NA’,
’##P’, ’##FS’, ’##Ü’, ’##L’, ’##Z’,
’##E’, ’auch’, ’damit’, ’auf’, ’##hören’,
’[UNK]’]

Note that the exclamation mark at the end of the
tweet is treated as an unknown symbol because the
pre-trained language model discards all punctua-
tion marks as a preprocessing step. As a conse-
quence, our classifier does not distinguish question
marks and exclamation marks and treats both as un-
known symbols. Further, the tokenization does not
correctly deal with words written with all capitals,
such as SCHULD. In general, we find that upper-
case letters followed by another uppercase letter
are interpreted as a single token. Exceptions are
abbreviations that the tokenizer learned and that are



written with all capitals, such as SC for Sportclub.
We assume that this abbreviation is learned because
it frequently occurs in the pre-training data for the
German BERT model, such as news articles.

4.2 Ensembling Strategy
Fine-tuning BERT is about tailoring the language
model to a particular downstream task, such as
sequence classification or question answering. An
additional output layer, called prediction head, is
appended to the model and trained on labeled data.
The predictions of our BERT model vary when
using different random weight initializations for the
prediction head. Therefore, we create an ensemble
of the predictions of multiple models. To this end,
we use soft majority voting:

ŷ = argmax
j

n

∑
i=1

pi, j

where pi, j is the probability for class label j pre-
dicted by the i-th classifier (out of n classifiers).
We ensemble five runs for the binary classification
tasks (coarse-grained and implicit/explicit) and ten
runs for the multi-class classification task (fine-
grained).

4.3 Submitted Runs
For each of the three tasks, we submitted three runs
as described here. For the coarse-grained classifi-
cation:

• hpiDEDIS coarse 1 one training epoch

• hpiDEDIS coarse 2 two training epochs

• hpiDEDIS coarse 3 four training epochs

For the fine-grained classification:

• hpiDEDIS fine 1 one training epoch

• hpiDEDIS fine 2 two training epochs

• hpiDEDIS fine 3 four training epochs

For the implicit/explicit classification:

• hpiDEDIS implicit 1
two training epochs, normalized user names

• hpiDEDIS implicit 2
four training epochs

• hpiDEDIS implicit 3
four training epochs, normalized user names

Table 1: Macro-average F1 scores on test data.

Ensemble Single Model
Run Coarse Fine Imp. Coarse Fine Imp.

1 75.3 42.0 70.8 74.4 41.0 70.5
2 76.4 47.1 73.1 75.5 45.7 72.1
3 76.1 51.2 73.1 75.4 49.1 72.4

Base - - - 50.0 34.3 62.0

5 Results

We present the results for the identification of of-
fensive language using BERT German-language
models. We further describe our baseline approach
to compare the results for each of the subtasks.
Table 1 lists the macro-average F1 scores of the
BERT models and the baseline approach on the
test dataset for each of the three tasks. It further
compares the results of the ensemble models to
the single models. It can be seen that the ensem-
ble models always outperform the corresponding
single models. For example, for the fine-grained
classification task, the best single model achieves
a score of 49.1 compared to a score of 51.2 with
the best ensemble model (4 percent improvement).
All BERT based models clearly outperform the
baseline models by up to 26 percentage points.

5.1 Baseline Approach
As a baseline approach, we applied a Logistic Re-
gression model on a tf-idf weighted bag-of-words
(BoW) feature representation of unigrams, bigrams
and trigrams (Risch et al., 2018). For preprocess-
ing, the tweets have been tokenized applying the
NLTK TweetTokenizer 5, which we also used to re-
move Twitter handles and to normalize word tokens
such as duuuummmm and duuuuuuummmmmm to a
common word token duuumm. We further removed
stopwords, using the Stopwords ISO 6 word list for
German. For subtask III (implicit/explicit offensive
language classification) we added the information
if a tweet was abusive, profane, or insulting as a
feature, which shows whether one of these forms is
more likely to be expressed implicitly or explicitly.

5.2 Coarse-Grained
The coarse-grained classification task is the sim-
plest of the three subtasks and our ensemble BERT

5https://www.nltk.org/api/nltk.
tokenize.html

6https://github.com/stopwords-iso
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Figure 2: Normalized confusion matrix for the
coarse-grained classification subtask.

model achieves a macro-average F1 score of 76.40
percent after two training epochs. Training for one
epoch (75.26 percent) or four epochs (76.06 per-
cent) yields similar performances. Figure 2 shows
the normalized confusion matrix for the task. The
row-based normalization discards the influence of
the imbalanced class distribution so that all classes
are considered to be equally important. It shows
that the model is more reliable when identifying
the OTHER class than the OFFENSE class. 81
percent of the non-offensive and 73 percent of the
offensive tweets have been retrieved by the model.
The baseline model, on the other hand, retrieved
60 percent of the offensive and 46 percent of the
non-offensive tweets.

5.3 Fine-Grained

Figure 3 shows two confusion matrices for the fine-
grained classification task. The upper subfigure
uses the absolute number of samples, while the
lower subfigure uses normalized numbers. The con-
fusion matrix reveals that OTHER is identified most
reliably by far. INSULT and ABUSE are equally
well identified (recall 0.49 and 0.48). However, in
percentage terms, INSULT is more frequently mis-
takenly confused with OTHER than with ABUSE.
PROFANITY is most challenging to identify and is
most frequently confused with OTHER and least
frequently confused with ABUSE. This confusion
matches the similarity of the classes. The base-
line model struggles with the distinction of the four
subcategories of offensive language and receives
only 16 percent recall for PROFANITY, which was
highly underrepresented in the training data. Re-
call for INSULT is 0.28, for ABUSE 0.26 and for
OTHER 0.67.
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Figure 3: Confusion matrices for the fine-grained
classification subtask.

5.4 Implicit/Explicit

Figure 4 shows the normalized confusion matrix
for subtask III on implicit and explicit offensive lan-
guage classification. Implicit offensive language
is way harder to identify than explicit offensive
language. Most of the explicit offensive tweets are
identified by the model (recall 0.92), but only about
half of the implicit offensive tweets. The model
makes most of the mistakes by misclassifying im-
plicit tweets as explicit (recall 0.54). The baseline
BoW-classifier for this task makes similar mistakes
but performs worse on the detection of implicit
offensive language. Its recall for explicit is 0.91
and 0.31 for implicit offensive language. Again,
the implicit offensive language category was highly
underrepresented, which probably made the model
choose the explicit class when in doubt.

6 Conclusions and Future Work

We studied the problem of offensive language iden-
tification in the context of the GermEval task 2019.
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Figure 4: Normalized confusion matrix for the im-
plicit/explicit classification subtask.

Our approach builds on a BERT model pre-trained
on a large German-language corpus. To this end,
we fine-tuned the model on the labeled task-specific
training datasets and refrained from any feature en-
gineering or sophisticated pre-processing. The eval-
uation results on the test data match the results on
our validation data and the achieved macro-average
F1 score beats the baseline by up to 26 percentage
points. We showed that language models, such as
BERT, can be successfully fine-tuned for offensive
language detection for the German language.

One direction for future work on German BERT
models is to find a better way for tokenization of
words written in capitals. While capitalization
certainly needs to be dealt with in German lan-
guage models, our current model fails in recogniz-
ing words written in capitals. Another direction is
the ensembling of multiple BERT models. We find
that the predictions of models with differently ini-
tialized weights but trained on the same data varies.
While ensembling these different models increases
overall classification performance, it is unclear how
this method can be leveraged best and where its
limits are.
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