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Abstract: System architectures for data-centric applications are commonly comprised of two tiers:
An application tier and a data tier. The fact that these tiers do not typically share a common format for
data is referred to as object-relational impedance mismatch. To mitigate this, we develop an actor
database system that enables the implementation of application logic into the data storage runtime. The
actor model also allows for easy distribution of both data and computation across multiple nodes in a
cluster. More specifically, we propose the concept of domain actors that provide a type-safe, SQL-like
interface to develop the actors of our database system and the concept of Functors to build queries
retrieving data contained in multiple actor instances. Our experiments demonstrate the feasibility of
encapsulating data into domain actors by evaluating their memory overhead and performance. We also
discuss how our proposed actor database system framework solves some of the challenges that arise
from the design of distributed databases such as data partitioning, failure handling, and concurrent
query processing.
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1 Introduction

Today’s applications need to process data at ever growing rates. Regardless of its origin
and kind, data is ever growing and needs to be stored and queried. Cluster or cloud
deployments and multi-core hardware architectures allow scaling application logic in terms
of computational power. Traditional data management systems, however, are at risk of
becoming the bottleneck in data-centric software systems, because the separation into data
and application tier costs performance, impacts code maintainability, and increases error
susceptibility.

The performance costs are due to the fact that relational database management system
(RDBMS) model their data in terms of relations while applications usually model the
data as objects. The translation of relations into objects and vise versa is known as the
object-relational impedance mismatch and requires some additional effort. The use of
object-relational mapping (ORM) tools, such as Hibernate for Java or Active Record for
Ruby on Rails, is a convenient yet expensive approach to provide a middle tier for the
translation. Some key-value stores solve the impedance mismatch more elegantly, but they
suffer from worse join and aggregation costs. Furthermore, code maintainability decreases
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when stored procedures are being used to push application logic closer to the data, i.e., into
the data tier for performance reasons, and the error susceptibility increases, because large,
monolithic RDBMSs suffer from hand-crafted, non-standardized, and inconsistent attempts
to fault-tolerance, parallelization, data encapsulation, workload distribution, and replication.
The actor programming model, on the contrary, offers an effective solution for all these
challenges.

Using the actor programming model to fuse application and data tier is a concept originally
proposed by Shah; Salles [SS17a] and tested on the Orleans actor framework. The authors
call for a new paradigm by designing a scalable data storage solution using the actor model.
The core primitive in this model are actors, which are objects comprised of state and
behavior that execute computational tasks concurrently. Individual actors communicate with
each other exclusively via asynchronous message passing. Incoming messages are stored in
a mailbox allowing for the separate and independent processing of each message. An actor’s
internal state is only available to said actor, which encourages a shared-nothing system
architecture. The self-contained nature of actors and the fact that actors provide a lock-free
concurrency model, allows for naturally scaling out applications and systems [Ve15].

We build on this idea and present an application development framework for actor-based
data-centric applications. In contrast to Shah; Salles [SS17a], our actor database system
targets the Akka actor framework that offers different mechanisms for fault tolerance and
actor lifecycles than Orleans. In detail, we make the following contributions: We introduce
domain actors (Dactors) to model application data in an Akka-based actor database system.
Similarly to the work of Shah; Salles on reactors [SS17b], Dactors encapsulate application
data and logic. Since these actors are not part of a dedicated database runtime, but are defined
using the application framework, data objects share the same representation throughout
business logic and data storage. This approach bridges the aforementioned impedance
mismatch between data and application logic tier. In contrast to reactors, Dactors are
not relational entities, but employ relational structures internally. Dactor state can be
manipulated via an SQL-like interface. To define application logic relying on data contained
within multiple Dactors, we provide the concept of Functors, which make the usage of
asynchronous and concurrent computations explicit.

To our knowledge, we present the first implementation of this concept using the Akka
framework. Comparable approaches are discussed in Sect. 2. In Sect. 3, we outline our
concept for an actor database system in more detail, before presenting the results of our
experimental evaluation using our framework in Sect. 4. We offer a concluding statement
about this and future work in Sect. 5.

2 Related Work

The actor model that we introduced in the previous section has been implemented as libraries
for various programming languages. The most popular implementations are Erlang’s in-build
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actors, the Orleans framework for .NET, and the Akka framework for Java [Ar07; Be14;
Li18a]. Although most research in the area of actor-based database systems targets the
Orleans framework, Akka is probably the most widely used actor model implementation –
not least because of the popularity of Java and the fact that it is used in frameworks such
as Apache Spark and Apache Flink. For this reason and because Akka differs in various
aspects from Orleans, we focus on this framework in our research.

Despite their popularity for building distributed applications, all current actor programming
frameworks lack database-like state management capabilities, specifically for data-centric
applications. The developer has to decide how to handle state persistence and how to
satisfy failure, replication, and consistency requirements of an application – the actor model
implementations neither provide atomicity nor consistency guarantees for state across actors.
Shah; Salles [SS17a] therefore stated the need for state management in actor systems and
proposed to integrate database functionality into the actor model. The authors postulate that
Actor Database Systems should be designed as a logical distributed runtime with own state
management guarantees. More specifically, their manifesto specifies four tenets that define
an Actor Database System [SS17a]:

Tenet 1 Modularity and encapsulation by a logical actor construct
Tenet 2 Asynchronous, nested function shipping
Tenet 3 Transaction and declarative querying functionality
Tenet 4 Security, monitoring, administration and auditability

Our actor database system (currently) covers the first two of these four tenets: For tenet 1, we
use actors to achieve a modular logical model for data encapsulation. Dactor instances are
in-memory storekeepers for application data. They satisfy the actor definition and support
high modularity. For tenet 2, Dactors provide a model for the concurrent computation of
predefined functionality that enforces locality of data accesses. All communication between
Dactors is asynchronous to leverage the advantages of increasingly parallel hardware. Our
concept of Functors allows for the definition of functionality using multiple actors’ data. To
meet tenet 3, Functors and Dactor behavior can be defined in a declarative way. Due to
their single-threaded computation model, Dactors basically enforce internal consistency
by default. In principle, Functors also enable the implementation of further transaction
protocols to ensure inter-Dactor consistency guarantees.

In contrast to the actor database system prototype introduced in [SS17a], we developed our
prototype using the Scala programming language and the Akka framework (instead of .NET
and Orleans). In contrast to Orleans and its convenient virtual actors, Akka offers more
control over an actor’s lifecycle, has a more explicit failure handling, and models actors in
hierarchies – aspects that enable more fine-grained control over the system but also demand
for more thorough architectural system design decisions.

Most related research in the field of actor database systems has been presented in conjunction
with the Orleans framework and the Erlang programming language [Be17; EB16; SS17b].

An Actor Database System for Akka 227



4 Frederic Schneider, Sebastian Schmidl, Thorsten Papenbrock

Biokoda [Bi18] takes another approach and encapsulates a full relational SQL database
inside an actor. Cardin [Ca17] uses actors to build a scalable key-value store and others use
the actor model to build soft caching layers and cloud applications for various purposes [Er18;
Li18b; NE18].

3 Domain Actor Database Framework

Our actor databases system consists of two building blocks: domain actors and Functors.
These two concepts allow for the definition of application data within the application itself.
Since both are based on actor model principles, they make the database system modular,
cloud-ready, and scalable. In this section, we introduce both domain actors and Functors.

3.1 Domain Actors – Encapsulation of Data

Similar to Shah; Salles [SS17b], we introduce a special type of actor, called Dactor, that acts
as an application-defined scaling unit. Dactors can be used to model application-domain
objects and encapsulate the object’s state and application logic in an actor. Using actors for
this enforces technical encapsulation of state access due to the purely private state in actors
and the need of explicit asynchronous messaging between the actors. The encapsulation
also makes it easier to reason about state changes, bugs, and other failures, as only code
within the Dactor can change the corresponding state.

In-memory data contained within a Dactor instance is managed in a data structure called
relation. One Dactor can contain multiple relations. A relation is, similarly to a table in the
relational database model, defined as a multiset of tuples following a predefined schema.
Relations provide an SQL-like interface to query and manipulate the contained data, so
known and proven syntax and semantics can be used to define Dactor-behavior. Relations
form a typed, Dactor-internal data model. Using Dactors to implement a database leads to a
modeling approach that is different to Entity-relationship modeling. The following example
discusses the conceptual differences between the two in more detail.

We consider the example of a web application with information on movies similar to
the imdb.com or rottentomatoes.com websites. A standard query for those websites is to
display a film with its description and cast. A traditional data layout might be comprised
of two entities: Film containing the film’s ID, title, description and release date and Actor
containing the actor’s ID and name. Those two entities might be in a N-to-M relation (Cast)
with an attribute showing the actor’s role in the film. In contrast to the relational model, our
model, shown in Fig. 1a, consists of one Dactor type and two relations and is denormalized.
The information contained in the Actor entity is distributed across the Cast relations. This
allows us to answer the standard queries from one single actor instance without needing to
join the answers from different, possibly physically distributed Dactor instances.
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This approach to layout an application’s data results in much smaller data sizes per Dactor
compared to typical database tables and enables many business-logic-driven approaches to
scaling, data partitioning, and caching. The trade-off, however, is a large number of Dactor
instances and a (partially) denormalized schema.

Film(id: DactorId): Dactor

FilmInfo: SingleRowRelation

title : String
description : String
release : ZonedDateTime

Cast: Relation

actor id : DactorId
actor name : String
role name : String

(a) Graphical representation of the Film Dactor
type definition.

class Film(id: DactorId) extends Dactor(id) {
override protected val relations = {
Film.Info -> SingleRowRelation(Film.Info),
Film.Cast -> RowRelation(Film.Cast)

}
override def receive: Receive = //Dactor behavior

}
object Film {
object FilmInfo extends RelationDef {
val title = ColumnDef[String]("title")
val description = ColumnDef[String]("description")
val release = ColumnDef[ZonedDateTime]("release")

}
object Cast extends RelationDef {
val actorId = ColumnDef[DactorId]("actor_id")
val name = ColumnDef[String]("actor_name")
val rolename = ColumnDef[String]("role_name")

}
}

(b) Example code using our framework.

Fig. 1: Film Dactor type definition with two relations from the example application.

As Dactors not only contain data, but also the corresponding domain logic, computation is
executed concurrently. Actors provide single-threaded semantics, which makes enforcing
constraints on data stored inside one Dactor easy. While state querying and modification
within Dactors is possible in a declarative way, the application developer can explicitly
define the communication across all kinds of actors via asynchronous messages. The explicit
messaging differentiates Dactors from Shah; Salles [SS17b]’s reactors, as reactors can be
used as relational entities and hide the message passing from the developer.

To illustrate the definition of a Dactor in code, we show the definition of Film’s data model
in Fig. 1b. Developers can model the application’s domain objects by defining Dactor types
as subclasses of the framework-provided Dactor class in a declarative way. Instances of such
user-defined Dactor types are managed by the framework and are available for messaging in
a consistent namespace. Using the column’s predefined data types, all functions support
compile-time type-safety. Due to the Dactor system sharing the application’s runtime and
programming environment, these data or object types are equal to the types handled in any
application logic. Thus, this approach helps eliminate the impedance mismatch between
application logic and data tier with regard to handled data types and object (de-)serialization.

3.2 Functors – Encapsulation of Queries

Dactors can answer queries via explicit, asynchronous messaging, i.e., they answer a query
with their local data. Sometimes, however, queries need be answered by several actors. In
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such cases, it makes sense to encapsulate the processing in a new, short-living actor that we
call Functor. Functors are the framework’s concepts that enable inter-Dactor communication
and computations. They communicate with (usually multiple) Dactors, track the completion
of a query, handle the state of pending requests, and resolve failure cases. Every actor can
create a new Functor to encapsulate multiple requests to Dactors. The Functor handles the
message processing and sends the final result or a failure message back to its creator. Since
all Akka actors live in hierarchical parent-child relationships, Functors are always created
by an actor as a child. This Akka-specific hierarchical relationship enables notifying the
calling actor even in case of unforeseen crashes of the Functor themselves, which in turn
allows to trigger error handling, e.g. retrying the Functor execution. In our actor database
system, we consider three messaging patterns for inter-Dactor communication, which are
shown in Fig. 2. These patterns are provided as messaging primitives by the framework and
can be combined to create more complex message flows and computational models:

Dactor A Dactor B Dactor C

Requests

Request

Response

Response

(a) Cascading Computation

Dactor A SeqFunctor Dactor B Dactor C

create

Request

Response

Request

Response

result

(b) Sequential Computation

Dactor A ConFunctor Dactor B Dactor C

create

Requests

Response

Response

result

(c) Concurrent Computation

Fig. 2: Inter-Dactor communication patterns. Gray bars indicate that an actor holds state that is related
to the showed message flow.

Cascading Computation is a pattern where a high-level message to an initial Dactor
(Dactor A) triggers successive messages to other Dactors, which are hidden from the original
requester. Following Dactors can also trigger further messages themselves. As one can see
in Fig. 2a, this pattern is comparable to function calls in Object-oriented Programming. But
contrary to simple function calls, messages in this pattern are sent asynchronously. This
means that the requesting Dactor has to manage the state of pending responses. This clutters
the domain logic in the Dactor and leads to complex and error-prone code. If used sparsely,
this pattern supports separation of concerns and the tell-don’t-ask paradigm.

Sequential Computation is used for queries that consist of consecutive steps, where
each step depends on the previous step’s result, such as filter chains. This pattern can be
implemented via the aforementioned Functors. Using a Functor to process the consecutive
steps of the computational chain relieves Dactor A from dealing with intermediate state,
because it is managed by the Functor. Each Functor deals with only one request-response
pair at a time, which leads to simple state and processing logic for the Functor itself.
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Concurrent Computation is a another messaging pattern based on Functors to encapsulate
the processing of multiple request-response pairs. The concurrent Functor sends messages
to several Dactors in parallel and collects the results when they are finished to forward
them to its creator. It allows for highly parallelized computations as all involved Dactors are
messaged at the same time and calculate their responses concurrently.

In summary, explicit message handling in Dactors is used to implement the cascading
communication pattern; sequential and concurrent Functors are the framework’s concepts
to enable inter-Dactor communication and computations. Returning to the web application
example, we now want to add a new film to the database using the Functor concept. This
involves changes to a new Film and the corresponding Studio Dactor instances. We can
combine the concurrent and sequential Functors to implement this functionality, which is
displayed in Fig. 3. Both sequential Functors are comprised of two subsequent steps: They
retrieve information from one Dactor to update the other one. They are independent of each
other, so they can be executed in parallel, which is done by using the concurrent Functor. It
only sends a successful response to its caller after both sequential Functors have sent their
responses to the concurrent Functor.

Top Level
Actor / Dactor

Concurrent
Functor

Sequential
Functor

Sequential
Functor

Film
(Dactor)

getInfo

addStudio

Studio
(Dactor)

addFilm

getInfo

1

2

1

2

supervision supervision

supervision

Fig. 3: Component diagram indicating the message flow through Functor objects and their supervision
by the calling actor. Arrow and dashed arrow pairs indicate corresponding request and response
messages. The outgoing requests of each sequential Functor are numbered to indicate their order.

3.3 System Details

Data partitioning in an actor database system differs fundamentally from common parti-
tioning techniques used in relational databases. While large tables are typically partitioned
based on a specific column’s value or the hash thereof, our framework provides Dactors as
entities for data encapsulation and partitioning. Dactors can be provisioned across multiple
virtual runtimes and physical machines, because every Dactor instance is independent of
the others and the only mean of communication is message passing. As such, they provide
flexible, fine-grained data partitioning based on application needs.
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The distributed nature of the database system introduces the new problem of partition or
actor discovery. The framework maintains a unified namespace, in which each Dactor
instance is identified by its Dactor type and a unique ID. In fact, querying a specific Dactor
just requires obtaining the messaging address from the name-service and sending a message
to it. In case of a multi-node deployment, this is complemented by Akka’s Cluster Sharding
component, which routes the messages to the right physical host.

Finally, failure handling, especially with regard to computations relying on multiple Dactors’
data, requires careful monitoring due to Dactor distribution. Building on Akka’s parent-child
supervision concept, our framework allows for transparent failure handling configurations.
Failures can be handled within Dactors if appropriate. In case of multi-Dactor queries a
fail-fast approach is chosen to allow calling actors to react to exceptions in a timely manner.

4 Performance and Memory Overhead Experiments

We present a short evaluation of the framework implementation with regard to query
performance and the memory overhead introduced by storing data in possibly hundreds of
thousands of Dactors, each storing only a relatively small amount of data respectively. All
tests were executed on a single consumer computer fitted with an Intel Core i5-7600K CPU
running at 3.8 GHz and 16 GB of RAM.

We performed experiments using an exemplary actor database system, which is modeled
based on a real-world scenario. It consists of four different Dactor types, each containing one
to three relations. The data stored in one Dactor ranges from seven to about 700 kilobytes
depending on its type. We generated four different datasets emulating the scaling of the
system by increasing the number of Dactor-instances and keeping the data size stored in
one Dactor nearly constant. The datasets include various primitive and complex data types
and are distributed across Dactors and relations. The dataset sizes are reported in Tab. 1.

For all runtime performance experiments the median runtime of N = 1000 concurrently
executed queries are reported. A point-query for data contained in a single instance of a
Dactor object presents a response time latency of 22 ms. A concurrent insert of related data
points into two Dactor objects, managed by a concurrent functor ensuring a consistency
constraint, runs 111 ms. For each dataset we performed three different tests in order to
evaluate the memory overhead introduced by encapsulating the system’s data in a large
number of Dactors and relations:

Single string Convert all data into its String representation and load it as a single big
String into memory. This test serves as baseline for the other tests.

Relations Load the data into their respective Relations, preserving the type information
and using the in-memory data storage objects from our framework.

Framework Use the full-fledged framework to load the data into memory. This approach
stores the data distributed across Dactors in Relation objects.
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To obtain the used memory of the objects in our test approaches, we used VisualVM2 to
create heap dumps. After the data was completely loaded into memory, we triggered a
garbage collection run and created a heap dump. VisualVM is able to compute the retained
sizes of object hierarchies in those dumps. This allowed us to investigate the memory usage
of selected objects and their members in detail. We report the results in Tab. 1.

Dataset Disk size # Dactors Heap size Overhead /
Single string Relations Framework Dactor

D1 10 MB 829 11 MB 28 MB 29 MB 526 B
D2 25 MB 2 578 18 MB 43 MB 44 MB 539 B
D3 50 MB 4 373 47 MB 116 MB 119 MB 532 B
D4 100 MB 8 618 101 MB 233 MB 237 MB 534 B

Tab. 1: Used heap size of our three different methods to load data into memory and the memory
overhead of Dactors compared across the four datasets.

If the data is loaded into memory as a single big String object, it takes up around the same
amount of heap as the dataset is big. Storing the data in Relations introduces a overhead of
about 150%. Even for the smallest dataset the data is split up across thousands of relations,
which each use a two dimensional Array to store the individual values. In addition to that,
relations also store metadata about the contained data, such as column names and data
types. Using the full framework with Dactors does not introduce much additional memory
overhead. On average, using a Dactor only needs an additional 533 B more.

Let us assume that we have a 1 TB database and we chose to store 1 MB per Dactor. This
requires the actor database to instantiate about one million Dactors. Using the average
overhead of 550 B per Dactor, this would yield a relative memory overhead of only 0.05 %.
Doing the same thought experiment with storing 10 MB per Dactor, results in about 100 000
Dactors and reduces the relative memory overhead to 0.005%.

5 Conclusion

In our research, we study the question how database features can be incorporated into the
actor programming model. This work presents a proof-of-concept implementation of an actor
database framework, which enables developers to declaratively define a data model using
Dactors. Dactors model application-domain objects by encapsulating both the object’s state
and its application logic. The framework provides a shared, distributed runtime for database
functionality and application logic, mitigating the object-relational impedance mismatch
between data and business logic tier. The introduced Functor concept, which are temporary
actors that manage multi-Dactor queries, provides a transparent computation model and
failure handling capabilities. First experiments with our Akka-based actor database system

2 https://visualvm.github.io/
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show that the memory overhead introduced by using actors for data management is low.
Hence, the approach is feasible and pays off especially if large amounts of data need to
be stored for highly concurrent data manipulation workloads. As future work, we aim to
develop inter-Dactor consistency guarantees by extending Functors with a rollback and, e.g.,
a two-phase commit protocol implementation.
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