Learning Fine-Grained Semantics for Multi-Relational Data

Nitisha Jain and Ralf Krestel

 Motivation Polysemous relations between different types of entities in knowledge graphs Relations with multiple semantics - exhibit distinct meanings in different contexts 	Yago relatio	ns with different meanings owns class types (country, club) (company, club) (company, company) rie) (sovereign, building) (company, airport) .) (organization, airport) character) .game) ter_game)	(organization, airport) Multiple semantics Multiple clusters (company, airport) (company, company, club) (sovereign, build	club) pany)) ding)	Met SemSplit grained r data-driv method Leverage embeddi vectors Find opti clusters v	hod - Define fine- elation semantics en, scalable knowledge graph ngs for semantic mal sub-relation with well defined
Evaluation Clustering algorithms - Spectral (SP), Optics (OP) and Hierarchical Agglomerative (HA)	Relation (algorithm)	SemSplit optimal clusters C_{opt}			Homegeneity Score (# clusters) $C_{orig} = C_{max}(\mathcal{L}) = C_{ont}(\mathcal{N})$	
	created (OP)	{(artist, computer_game)}, {(artist, medium) (officeholder, movie)}, {(writer, movie) (writer, television) (artist, movie) (player, movie)}, 0.14 (1) 0.29 (9) 0.49 (5) {(company, computer_game)}, {(writer, fictional_character)}			0.49 (5)	
<i>C_{opt}</i> clusters by SemSplit perform better than baselines, promising	$\frac{\text{owns}}{(\text{SP})}$	{(company, airport) (organization, airport)}, {(sovereign, building)}, {(company, club) (company, company) (country, club)}) 0.32 (6)	0.52 (3)
	isAffiliatedTo (HA)	{(artist, club)}, {(cricketer, clu (hockey_player, university) (ho	, club)}, {(cricketer, club)}, {(player, club) (hockey_player, club) /_player, university) (hockey_player, team)}, {(officeholder, club)}			0.61 (4)

 C_{orig} - original relation cluster C_{max} - maximal splitting clusters

Contact: Nitisha Jain (nitisha.jain@hpi.de)

Information Systems Chair, Hasso Plattner Institute https://hpi.de/naumann/people/nitisha-jain.html

