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ABSTRACT

Detecting anomalous subsequences in time series is an important
task in time series analytics because it serves the identification
of special events, such as production faults, delivery bottlenecks,
system defects, or heart flicker. Consequently, many algorithms
have been developed for the automatic detection of such anomalous
patterns. The enormous number of approaches (i. e., more than
158 as of today), the lack of properly labeled test data, and the
complexity of time series anomaly benchmarking have, though, led
to a situation where choosing the best detection technique for a
given anomaly detection task is a difficult challenge.

In this demonstration, we present TimeEval, an extensible, scal-
able and automatic benchmarking toolkit for time series anomaly
detection algorithms. TimeEval includes an extensive data genera-
tor and supports both interactive and batch evaluation scenarios.
With our novel toolkit, we aim to ease the evaluation effort and
help the community to provide more meaningful evaluations.
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1 TIME SERIES ANOMALY DETECTION

Time series anomaly detection (TSAD) is the process of detecting
unusual and, hence, anomalous subsequences in data series. An
anomaly can describe special events, such as heart failures in car-
diology [1], structural defects in jet turbine engineering [13], or
ecosystem disturbances in earth sciences [3]. For this reason, anom-
aly detection is a central activity in various domains ranging from
car manufacturing over finance applications to health monitoring.
The relevance of anomalies has led to the development of a plethora
of different anomaly detection algorithms in different domains. In a
recent study [10], we collected 158 publications on TSAD algorithms
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Figure 1: A synthetic ECG time series generated with TimeE-

val and the scorings of two algorithms. The time series has

a subsequence anomaly (pattern shift) and a point anomaly

(extremum).

and benchmarked a representative set of 71 algorithms on more
than 900 datasets. In this demonstration paper, we introduce the
TimeEval benchmarking toolkit that enabled this research project.
We believe that the toolkit will help our large anomaly detection
community to ensure the long-term quality assurance of future
TSAD algorithm evaluations.

A data series as shown in Figure 1 is an ordered sequence of data
points recorded in equidistant intervals based on some continuous
measure, such as temperature, angle, position, or speed. If the data
series is ordered by time, it is called a time series. Because most
anomaly detection approaches are agnostic of the reference mea-
sure, we can use the terms data series and time series interchange-
ably. A time series anomaly is either a point or a point sequence
that deviates significantly from the regular patterns observed in the
time series. Anomalies might have different lengths, shapes, and
magnitudes, and they could re-appear multiple times in the same
time series. As the anomaly detection algorithms sometimes differ
in their formulation of an anomaly, we proposed to translate all
detection results into point-wise anomaly scores, such as those also
shown in Figure 1, to make them comparable [10].

The need for a systematic TSAD benchmarking toolkit arises
from the observation that the time series research community strug-
gles to offer a consistent and complete overview of their research
achievements: Many algorithms are remarkably heterogeneous in
their detection approaches, the current number of proposed algo-
rithms is large, and the research on novel algorithms is still very
active. What makes the necessary evaluations even harder is a lack
of well-labeled benchmarking datasets, a careful consideration of
runtime and quality aspects, and the need to evaluate a multitude of
specific properties including anomalies that are uni-/multivariate,
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point/sequence, unique/repeating, shape/magnitude etc. anoma-
lous. For this reason, most TSAD publications focus on specific,
isolated domains, which makes their evaluations severely limited
in scope. Wu and Keogh even showed that most evaluations use
trivial, cherry-picked, biased, mislabeled, or only few datasets [14].

As an answer to the evaluation deficit, we developed TimeEval,
a Python toolkit that evaluates TSAD algorithms on real-world and
synthetically generated datasets in either automatic or interactive
mode. It consists of four major components: a dataset generator
called GutenTAG, the core evaluation engine called Eval, a Python
API to programmatically configure systematic batch experiments,
and a visual frontend for interactive experiments. TimeEval is
highly customizable through various configuration options and
user-defined code/plugins to meet different existing and upcoming
evaluation settings. The toolkit can execute custom TSAD algo-
rithms and work with external datasets, which ensures its applica-
bility to future evaluation needs.

In our demonstration, we show a TimeEval setup with 71 state-
of-the-art TSAD algorithms and 1,354 benchmark datasets from
related work. Attendees will be able to inspect the results of exten-
sive TimeEval runs that took multiple weeks to execute (cf. [10]).
These results provide detailed insights about the performance of
specific TSAD algorithms. The demo will also offer the opportunity
to interact with the toolkit, create own benchmarking datasets, and
run challenging experiments with algorithms of choice. In this way,
the demo is supposed to spark a lively discussion in our community
and improve collaboration between research areas.

In this paper, we (i) discuss the use cases of TimeEval (Section 2),
(ii) introduce TimeEval’s architecture (Section 3), and (iii) present
the contents of our live system demonstration (Section 4).

2 TIMEEVAL USE CASES

Systematic evaluation. TimeEval’s primary use case is the sys-
tematic evaluation of numerous TSAD algorithms on large sets of
time series. We already demonstrated this use case in a recent exten-
sive evaluation [10]. Data scientists can use the toolkit to specify all
necessary evaluations as a batch job. TimeEval then automatically
generates the according executions, distributes them on a compute
cluster, and collects and aggregates the results; intermediate results
are written to disk to prevent data loss on failures or early stopping.
Algorithm selection. TimeEval helps data scientists to find an
appropriate algorithm for a specific anomaly detection task. This
use case is themain focus of our live demonstration. If a dataset with
ground truth is available, existing algorithms can be benchmarked
directly on this dataset. In the more likely case where ground truth
data is not available, TimeEval can generate labeled time series
with the required characteristics and expected anomaly properties.
Algorithm evaluation. TimeEval supports developers of new
TSAD algorithms in evaluating the performance of their novel ap-
proaches w. r. t. various dataset characteristics and w. r. t. existing
approaches. As we provide the TimeEval toolkit with a broad se-
lection of state-of-the-art TSAD algorithms and datasets, we hope
for a wide adoption of our toolkit in future TSAD evaluations. The
toolkit’s extensibility and its highly configurable dataset generator
should also enable the creation of novel and particularly challenging
experiments that open new research directions.
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Figure 2: Architecture of the TimeEval toolkit.

3 TIMEEVAL ARCHITECTURE

The open-source TimeEval toolkit1 consists of four components:
The dataset generator GutenTAG, the evaluation engine Eval, a
powerful Python API, and an interactive web frontend. Figure 2
visualizes the interaction between these components. By providing
both an API and a frontend, TimeEval can be integrated as a code
package into other software projects, and it can also be used as a
stand-alone tool. We offer GutenTAG and Eval as separate com-
ponents so that users can utilize them independently, i. e., they can
generate time series with certain properties for external projects,
and they can evaluate TSAD algorithms on already given datasets.

For the evaluations, TimeEval resorts to a pool of external re-
sources that can be extended without programmatically chang-
ing the toolkit. As initial resources, we provide 1,354 benchmark
datasets and 71 TSAD algorithms2. For documentation purposes,
TimeEval stores all generated artifacts, i. e., configurations, log
messages, models, anomaly scorings, and algorithm scores, on disk.

In the following sections, we describe GutenTAG (Section 3.1),
Eval (Section 3.2), the Python API (Section 3.3), and the frontend
(Section 3.4) in more detail.

3.1 Dataset Generation with GutenTAG

The GutenTAG component is a time series generator that can
generate new training and testing time series according to the
users’ desired dataset characteristics and anomalies. Figure 3 de-
picts GutenTAG’s data generation process. Every time series con-
sists of one or more base oscillations (BOs), optional trends, and
optional random white noise. To increase complexity, BOs can be
combined and stacked to multivariate time series. Once the basic
time series is created, GutenTAG injects a user-defined number of
anomalies. Because some anomalies must be aligned to the BO’s
periodicity and patterns, it takes the already generated BOs into
account. Afterwards, GutenTAG combines the four elements into
one uni- or multivariate anomalous time series. It then generates
some time series metadata and index-files for TimeEval; the final
result is written to disk. The entire generation process is based on
a user-defined, declarative configuration, which can be provided
either from a configuration file or through the Python API. If the
pre-defined oscillation and anomaly types are insufficient, the user
can define new types or implement a custom post-processing rou-
tine via plugins.

1https://github.com/hpi-information-systems/timeeval-gui.
2Datasets and algorithms are published at https://hpi.de/naumann/s/time-series-
anomaly-detection-evaluation.
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Figure 3: Process of generating a time series withGutenTAG.

3.1.1 Base Oscillations. GutenTAG can generate time series based
on 6 pre-defined BOs: Sine Wave (Sine) and Polynomial (Poly) BOs
are generated from their respective mathematical representations;
Electrocardiogram (ECG) BOs are generated using the NeuroKit2
Python package; and Chaotic BOs can be generated based on Ran-
domWalk (RW), Cylinder Bell Funnel (CBF) [7], and RandomMode
Jump (RMJ) types. GutenTAG provides a special seventh BO type,
called Formula, that uses an arithmetic language to build mathemat-
ical combinations of already defined channels to create correlated
multivariate time series.

3.1.2 Anomaly Types. GutenTAG can inject anomalies of 10 types
into the BOs. The anomaly types can alter the position of an anoma-
lous pattern (Mean, Pattern-Shift, Trend, Mode Correlation), change
the shape of a reoccurring pattern (Amplitude, Frequency, Pattern),
and inject anomalous artifacts into the BO (Extremum, Variance,
Platform). Anomaly types can also be combined with each other to
generate, for example, a Frequency anomaly with larger Amplitude.

3.2 Evaluation of TSAD Algorithms with Eval

The Eval engine takes an algorithm, a (custom or GutenTAG)
dataset and a run configuration, which contains the algorithm
parameters (windows sizes, thresholds etc.) and the experiment
configurations (timeouts, memory limits, metrics, nodes etc.); it
then executes the experiment, calculates the quality metrics, and
stores all results. The quality metrics capture the execution time and
the Area under the Receiver Operating Characteristics Curve [2, 6]
(AUC-ROC), Area Under the Precision-Recall Curve [4, 9] (AUC-
PR), and Area Under the ranged-based Precision, range-based Re-
call Curve [12] (AUC-PTRT) scores, which are the most common,
threshold-agnostic evaluation measures for TSAD algorithms [10].
Additional metrics can be added using the Python API. Eval ends
an execution when the final results are generated, an error occurred,
or a user-defined time or memory limit was exceeded.

Multiple experiments are run isolated from each other in parallel
and, if possible, even distributed on a compute cluster. They can
conveniently be defined in a single batch configuration; Eval then
executes the entire run as the Cartesian product of all algorithms,
datasets, and configurations.

To enable the execution of algorithms implemented using differ-
ent programming languages and runtimes, such as Python, Java,
or R, Eval uses an adapter architecture with a flexible calling in-
terface for algorithms. One special adapter is the Docker-adapter
that allows the execution of arbitrary code within Docker contain-
ers [5]; this adapter is also used for the 71 provided algorithms. The

Figure 4: Screenshot of the TimeEval web frontend compo-

nents: GutenTAG (left column), Eval (right column), and

the results view (bottom)

adapters also allow the addition of new algorithms to TimeEval
without changing its implementation.

3.3 Dataset and Task Definitions with the API

The Python API is a uniform and comprehensive user-facing in-
terface for the entire TimeEval tookit. It allows the configuration
and execution of both GutenTAG and Eval in a programmatic and
automated way; both can be imported as separate Python packages.
GutenTAG’s API provides the functions to generate time series
and inject anomalies. Eval’s API provides the functions to define
and execute experiment configurations, add new algorithms and
datasets, and retrieve execution results.

3.4 Interaction with TimeEval’s Frontend

The frontend component joins the GutenTAG (Section 3.1) and
Eval (Section 3.2) components in a single Graphical User Inter-
face (GUI) and is built on top of the Python API (Section 3.3). It



provides the functionality of the Python API and also reads and
writes artifacts (configurations, datasets, metadata, results etc.) to
show and manipulate them visually. This allows the configuration,
monitoring, and result inspection in an interactive workflow. The
frontend uses the Streamlit [11] Python package, with which we
redirect user inputs to the GutenTAG and Eval API calls.

Figure 4 shows a screenshot of TimeEval’s three frontend pages:
GutenTAG 1 , Eval 2 , and Results 3 . The GutenTAG page 1

allows the user to define a to-be-generated time series by its prop-
erties, such as length, name, number of channels, BO attributes,
and various anomaly settings. An export button triggers the gen-
eration and saving of the time series. During parameterization,
generated time series can be previewed using an interactive plot.
The Eval page 2 contains the control panels for the configuration
of evaluation experiments, such as the selection of algorithms, their
parameter settings, and the datasets. The second part of the Eval
page provides users with general settings around the experiment
execution including remote configuration and resource constraints.
The Start Experiments button then triggers the execution of the spec-
ified experiments. While Eval executes all experiments, a progress
bar shows the user how long the experiments are expected to take.
Once the entire run has finished, the results can be inspected in a
separate, interactive results view 3 . This view shows the results
table, which lists important insights of an evaluation run, such as
the algorithms’ quality scores, their runtimes, and an overview
about potential errors and timeouts; it also provides visualizations
of the anomaly scores of selected algorithms on selected datasets.
For additional, in-depth inspections, the results can automatically
be loaded into a prepared Jupyter Notebook [8] template.

4 SYSTEM DEMONSTRATION

Our demonstration consists of two parts: First, we show our TimeE-
val setup consisting of 71 TSAD algorithms and 1,354 datasets that
was used to perform the evaluation of [10]; then, we guide our
participants through the algorithm selection use case.

In the first part, we demonstrate the programmatic configuration
of TimeEval for a systematic evaluation using the Python API. Our
goal is to show how easy and concise huge evaluation tasks can be
configured in TimeEval. We inspect the results of our extensive
evaluation [10] and let attendees discover interesting insights, such
as that there is no one-size-fits-all solution, and that different algo-
rithms can detect different kinds of anomalies better or worse (cf.
Figure 1). We want to show the variety of existing approaches and
encourage researchers to perform their own systematic evaluations.

In the second part, we demonstrate how TimeEval supports the
selection of effective TSAD algorithms for specific use cases using
its interactive web frontend. According to a pre-defined exercise
anomaly detection use case, attendees use GutenTAG ( 1 in Fig-
ure 4) to generate proxy/surrogate-datasets with use-case-specific
properties and anomalies. They, then, choose algorithm candidates
and evaluate them on the generated datasets using the Eval engine
( 2 in Figure 4). When TimeEval displays the evaluation results
in the frontend ( 3 in Figure 4), users can apply filters and sor-
tations (by, e. g., lexicographical order, metric scores, or runtime)
to find particularly interesting results. In a further step, attendees
can visualize the anomaly scores of the algorithms on a selected

dataset and compare their performances, strengths, and weaknesses
in detail. While experimenting with TimeEval, users learn how
difficult choosing an algorithm for a use case is, what strengths and
weaknesses existing TSAD algorithms have, and how important an
effective parameterization is.

We hope that our demonstration can contribute to the exist-
ing discussion on how to evaluate TSAD algorithms and improve
possible future work.
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