
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

ExtracTable: Extracting Tables from Raw Data Files

Leonardo Hübscher1, Lan Jiang2, Felix Naumann3

Abstract: Raw data, especially in text-files, comes in many shapes and forms, often tailored toward
human readability. They include preambles and footnotes, are formatted visually, and in general do
not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many
opportunities for data analysis and processing. With ExtracTable, we present a system that can
automatically ingest a large variety of raw data files, including text files and poorly structured csv-files
by detecting row patterns and thus separating their values into coherent columns. We manually
annotated 957 files of a wide variety containing 1 208 tables. We show experimentally that ExtracTable
can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout
only, significantly outperforming state-of-the-art.

1 Table Extraction

As more and more data is created and made accessible, the ability to automatically ingest
and analyze them becomes increasingly desirable. Various open data portals are a means
for governments, companies, and individuals to make data publicly available. However, to
support data creators to easily share their data, these platforms do not enforce specific data
formats, and we observe very many home-grown formats that are not amenable to easy
parsing and ingesting into a data system.

Data wrangling summarizes the process of transforming raw data into a well-defined format.
According to multiple studies from Kaggle, Anaconda, IBM, and Forbes, data scientists
spend 26% to 80% of their time on data wrangling, distracting them from tackling the original
data processing task [An20; Ch14; Mo18; Pr16]. This effort is not only time-consuming,
but also tedious and error-prone. Still, data preparation is necessary, as data quality issues
otherwise prevent subsequent algorithms from working well.

Data is often displayed and stored in a tabular format that is suitable for both humans and
machines. However, tables may appear quite different when persisted as files. Plain-text files,
for instance, lack proper instructions on how to interpret tables therein. Our work regards two
table formats: csv tables and ascii tables. The widely used csv (character-separated-values)
format was first used by IBM to store tabular data in 1972. However, a formally specified
csv format, which is now known as the rfc 4180 standard, had not been formalized until
33 years later [IB72]. Meanwhile, companies and data practitioners have developed their
1 Hasso Plattner Institute, University of Potsdam, Germany leonardo.huebscher@student.hpi.de
2 Hasso Plattner Institute, University of Potsdam, Germany lan.jiang@hpi.de
3 Hasso Plattner Institute, University of Potsdam, Germany felix.naumann@hpi.de

cba doi:10.18420/BTW2023-20

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 417

mailto:leonardo.huebscher@student.hpi.de
mailto:lan.jiang@hpi.de
mailto:felix.naumann@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-20

2 Leonardo Hübscher, Lan Jiang, Felix Naumann

OBIA4RTM config file for setting up Prospect4SAIL

Typical values (taken from J Gomez-Dans on https://pypi.org/project/prosail/)

===
| Parameter | Description of parameter | Units |Typical min | Typical max |
|-------------|---------------------------------|--------------|------------|-------------|
| N | Leaf structure parameter | N/A | 0.8 | 2.5 |
| cab | Chlorophyll a+b concentration | ug/cm2 | 0 | 80 |
| caw | Equivalent water thickiness | cm | 0 | 200 |
| car | Carotenoid concentration | ug/cm2 | 0 | 20 |
| cbrown | Brown pigment | NA | 0 | 1 |
| cm | Dry matter content | g/cm2 | 0 | 200 |
| lai | Leaf Area Index | N/A | 0 | 10 |
| lidfa | Leaf angle distribution | N/A | - | - |
| lidfb | Leaf angle distribution | N/A | - | - |
| psoil | Dry/Wet soil factor | N/A | 0 | 1 |
| rsoil | Soil brigthness factor | N/A | - | - |
| hspot | Hotspot parameter | N/A | - | - |
| tts | Solar zenith angle | deg | 0 | 90 |
| tto | Observer zenith angle | deg | 0 | 90 |
| phi | Relative azimuth angle | deg | 0 | 360 |
| typelidf | Leaf angle distribution type | Integer | - | - |
===

You can enter your values below -> make sure not to alter the overall structure of this
template -> otherwise bad things might happen

Further Explainations:

min: Minimum Value of Parameter
max: Maximum Value of Parameter (in case min=max, the parameter will not be retrieved)
num: in case min!=max, the number of samples to be drawn for the specific parameter
dist: which statistical distribution of values should be used for drawing the samples (ignored if min=max)
1: truncated Gaussian (between min and max)
2: uniform distribution (between min and max)
0: non-applicable
mean: mean in case of truncated Gaussian distribution
std: in case of truncated Gaussian standard deviation of parameter for drawing the samples

min max num dist mean std comment
min max num dist mean std comment
1.8 1.8 1 0 1.5 0 N
20 60 40 1 40 15 cab
 0 0 1 0 0 0 car
 0 1 10 2 0 0 cbrown
 0.01 0.01 1 0 0 0 cw
 0.009 0.009 1 0 0 0 cm
 0.2 7 40 1 4 2.5 lai
-0.35 -0.35 1 2 0 0 lidfa
-0.15 -0.15 1 0 0 0 lidfb
 0.5 0.5 1 0 0 0 rsoil
 0.2 0.2 1 0 0 0 psoil
 0.01 0.01 1 0 0 0 hspot
27.947 27.947 1 0 0 0 tts
7.04345 7.04345 1 0 0 0 tto
146.691 146.691 1 0 0 0 psi
1 1 1 0 0 0 typelidf

Fig. 1: A real-world plain-text file including two tables in different formats (framed in blue) taken
from the Mendeley data portal (doi: 10.17632/vs55cwssyh.2#file-54e4f7c2-0156-4be8-9960-d95b0ba0f940)

418 Leonardo Hübscher, Lan Jiang, Felix Naumann

https://data.mendeley.com/datasets/vs55cwssyh/2/files/54e4f7c2-0156-4be8-9960-d95b0ba0f940

ExtracTable: Extracting Tables from Raw Data Files 3

own formats that use different utility characters, such as “|” as delimiters, which deviate from
the specification. Unfortunately, the rfc formalization does not account for such variations.
Our previous work recognizes table regions in csv files with visual features based on
different cell data types [VJN21]. To use this approach, however, one must first identify
cells. ascii tables are another type of plain-text data format used to deposit data. Unlike
csv tables that structure data with particular utility characters, ascii tables merely store
characters, leaving the interpretation of file structures to users. The existence of customized
file structures forces data scientists to take care of each file individually.

Figure 1 shows the content of a single real-world file with two tables. While the first table
uses special characters, such as “|”, “=”, and “-” to frame the header row and different
columns, the second table uses whitespace regions to separate columns. To facilitate human
readability, columns in the two tables visually align their values by using different numbers
of utility characters as field separators. There are also texts before or after tables that typically
deliver contextual information, such as experimental setups or sensor information. Texts
might be misinterpreted as structured data when they contain table-like elements. Due to
the ad-hoc shapes of tables, common commercial tools fail to load them correctly [HN20].

We propose the ExtracTable algorithm for automatic table extraction from plain-text
files, which takes all the aforementioned file varieties into consideration. Given a file,
ExtracTable first detects its structure interpretation and uses it to interpret structures of its
lines. Then, the algorithm extracts value patterns of the interpreted lines and builds table
candidates with the optimal pattern consistency. Finally, a subset of table candidates are
selected as the output tables. Our approach makes the following contributions:

1. A set of 957 annotated raw data files selected from a variety of sources, totaling 1 208
tables across all files.

2. The ExtracTable approach, which detects column and row patterns in data, and
ultimately extracts table elements from raw data files.

3. A detailed experimental evaluation, also comparing to multiple csv parsing tools
and the Pytheas system [Ch20]

To encourage further research on this topic, we have published all annotated data and the
code4. We organize the rest of this paper as follows: Section 2 summarizes related work.
We formalize the terms used in this work and the table extraction problem in Section 3. We
elaborate on the proposed ExtracTable algorithm in Section 4, and present the results of a
series of experiments in Section 5. Finally, we conclude the paper and point out future work
in Section 6.
4 https://github.com/HPI-Information-Systems/ExtracTable

ExtracTable: Extracting Tables from Raw Data Files 419

https://github.com/HPI-Information-Systems/ExtracTable

4 Leonardo Hübscher, Lan Jiang, Felix Naumann

2 Related Work

The Pytheas system addresses the problem of table discovery in csv files using a set of
weighted fuzzy rules that exploit column patterns [Ch20]. The weights were trained on a
dataset collected from open data portals containing governmental data. The paper focuses
on table discovery and row classification While the authors optimized their approach for
csv tables, Pytheas could also be applied to tables in ascii files if adapted accordingly. A
limitation of this approach is that input files must have been parsed properly, which the
authors conduct with the standard Sniffer module of Pythons csv library in a pre-processing
step. In comparison, our approach can parse raw files automatically before detecting tables
and classifying rows. We use Pytheas as a baseline for table range detection.

Pyreddy and Croft propose an approach to detect text lines containing tabular structures
represented in ascii [PC97]. A followup work improves the line classification step [Pi03].
From their work, we learn that whitespace alignments in continuous lines are important for
ascii tables. This observation is confirmed by additional related work, such as [SJT03]
and [Hu99]. Thus, our approach also makes uses of whitespace alignments. However, we
note that line classification is only one aspect toward actually extracting tabular data. The
original approach relies solely on the structural features of tables and does not take cell
content into account, which we consider in our approach.

Döhmen et al. noted that existing csv parsers make decisions during the file parsing process
sequentially, which they suspect to negatively impact the overall quality [DMB17]. They
propose a solution that makes decisions about sub-criteria as late as possible, trading run
time for parsing quality. Besides csv parsing, their heuristics cover file encoding detection,
table normalization, and table area detection. While the approach includes a stage dealing
with table area detection, it does not handle multi-table files that account for about 7% of
the cases in our dataset. Additionally, the authors tested only a limited set of csv variants.
We include their published implementation as a baseline when comparing parsing accuracy.

In [BNS19] the authors introduce a novel data consistency measure to correctly parse csv
files. The consistency measure consists of a row pattern score and a data type score. The row
pattern represents the column count per row, depending on the detected csv dialect. The type
score uses regular expressions to detect known data types within cell values and represents
the ratio of known cells compared to the total number of cells. Both scores contribute
equally to the consistency measure, favoring the pattern score on ties. The pattern-based
approach seems to work well according to the provided evaluation. Yet, this solution also
does not work with files containing multiple tables that our approach is able to handle. As
the authors noted, it can become problematic if many of the cell data types are unknown.
We use the publicly available implementation in our experiments.

Ill-formed csv and ascii files are not the only opportunity to extract relations from content
that is designed to be human-readable. For instance, Chu et al. suggest the Tegra approach to
recognize relational tables that appear as lists on web pages with the global record alignment

420 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 5

technique [Ch15]. As our approach is not designed to handle web tables, we do not compare
to this approach.

Overall, existing works lack at least one of the aforementioned features: 1) parse input files
automatically; 2) take content into account; 3) handle multi-table files. Our approach can
handle all these limitations.

3 Table Formats

We recognize two table formats used for persisting data tables in raw plain-text files:
character-separated-values tables (csv) and other (ascii) formats. We first introduce these
two table formats in detail, and then state the table extraction problem.

3.1 CSV and ASCII tables

According to rfc 4180, a csv file is a line-wise plain-text file that stores a table: each line
represents a data record, and the first line optionally represents the table header [Sh05]. The
cells of each line are separated by a special character, the delimiter. If a cell value includes
the delimiter character itself, the value must be put into quotes using quotation characters.
An escape character is used to escape a quote character or the escape character itself, if they
appear within quoted field values. A file’s dialect specifies the used delimiter 3, quotation @,
and escape characters 4, denoted as 〈3, @, 4〉 [Sh05]. Although the rfc document specifies
comma as delimiter and double quote as quotation and escape, it acknowledges the usage of
a wide variety of characters for each dialect component in real-world data [Sh05]. Because
csv files do not carry metadata, the presence of different dialects within and across files
acts as a barrier to the automatic table interpretation and extraction.

A W3C working group for “CSV on the Web” proposes the delivery of an additional json
file, which contains information about the used dialect and the schema [BTH16]. CSVY is a
similar development, which stores such information as a yaml meta block at the beginning
of the file (www.csvy.org). However, neither standard has been widely adopted.

An ascii table separates columns with white space. To visually align values within each
column, ascii tables fill the column gap between fields with one or more space or tab
characters. With their visual alignment, ascii tables are more suitable for human readability.
Fields are separated by white space so that values from different columns do not horizontally
interfere each other. Two columns must be separated by at least one whitespace character.
Because the characters and their number may vary between different pairs of neighboring
fields, we cannot simply delimit lines by using a fixed number of whitespace characters. It
is also not possible to accept an arbitrary number of space characters as delimiter, as empty
fields would not be recognized properly and field values themselves might include spaces.
Instead, a set of column boundaries is required: each boundary defines the inclusive start and

ExtracTable: Extracting Tables from Raw Data Files 421

www.csvy.org

6 Leonardo Hübscher, Lan Jiang, Felix Naumann

exclusive end of a column as the interval [start, end), based on the character index. Figure 2
shows an ascii table using [0, 5), [7, 23), [26, 31), and [32, 35) as column boundaries.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

P a r a m D e s c r i p t i o n U n i t s M i n
- -
l a i L e a f a r e a i n d e x N / A 0
l i d f a L e a f a n g l e d i s t . N / A -

Fig. 2: Exemplary ascii table – columns aligned by layout

ascii tables can include style information, such as borders, which canmake the table structure
clearer to human readers. In particular, horizontal lines are often used for underlining
headers or separating tables. We therefore distinguish two line types. We refer to a line as a
helper line if its content includes only non-alphanumeric characters or whitespace. All lines
with at least one alphanumeric character are content lines.

3.2 The Table Extraction Problem

Before we can extract tables from plain-text files, we must understand the structures of these
files by identifying the dialects and the column boundaries of tables stored in these two
respective file formats. We refer to dialects and column boundaries as parsing instructions
for the two types of files. Here, we highlight the difficulty resulting from the lack of parsing
instructions due to multiple valid ways of interpreting lines.

Figure 3 shows a file excerpt allowing for multiple ascii interpretations. When regarding
the first two lines only, we might split each line into five fields, namely Leaf, angle,
distribution, N/A, and -. However, the introduction of the third line yields multiple
interpretation possibilities.

Leaf angle distribution N/A -
Leaf angle distribution N/A -
Dry/Wet soil factor 0

Fig. 3: ascii table adapted from Figure 1 emphasizing the ambiguity of some ascii records

Similar effects can be observed for tables stored in the csv format. Even if we consider only
dialects using single non-alphanumeric characters, we can generate seven valid delimiter
candidates for a line with the text "N, \"Leaf\"structure";N/A;"0.8". A simple approach
may select the delimiter character based on the candidate frequency across lines. However,
this method is sensitive to the content. For example, cells including delimiter-characters
could easily fail this approach.

We state the table extraction problem from plain-text files as follows: Given a plain-text
file containing one or more vertically stacked tables, determine the line structure and the
range (the beginning and the end row indexes) of each table and transform every table to

422 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 7

the rfc 4180 standard. For simplicity, we assume that individual cells do not contain line
breaks. Moreover, we exclude the detection of the file encoding from our problem and
assume utf-8 as specified in rfc 4180.

4 The ExtracTable algorithm

We propose ExtracTable, an algorithm that exploits data type consistency within columns
to tackle the table extraction problem. To interpret fields in a file, ExtracTable first detects
per-line valid dialects for csv tables and possible column boundaries for ascii tables
(Section 4.1). After applying the detected parsing instructions, the resulting interpretations
divide each line into several fields, which are passed to the next step to identify data type
patterns (Section 4.2). Then our approach generates table candidates with the compatibility
score (Section 4.3). Finally, the algorithm selects a subset of the table candidates (Section 4.4).

4.1 Parsing instruction detection

Detecting parsing instructions is modeled as dialect detection for csv tables and column
boundary detection for ascii tables, respectively. ExtracTable first pre-processes a file by
classifying each line as either a helper line or a content line. It prunes all helper lines, as
they neither deliver content nor help detect correct column boundaries of ascii tables, and
may be incorrectly treated as part of the header or the data region of a table.

Dialect detection for csv tables. To recognize a csv table’s dialect, we propose a two-step
approach that first detects all delimiter candidates, and then quotation and escape characters
for each delimiter candidate. First, ExtracTable replaces consecutive alphanumeric
characters and excluded characters within a line ; with a placeholder character. It then splits
the resulting string by the placeholder character, yielding a list of delimiter sequences and
empty values. All substring combinations of each delimiter sequence are appended to the
list. Values that are empty or longer than the maximum length are removed.

For each detected delimiter, ExtracTable tries to recognize the quotation and escape
characters using a depth-first search method, shown in Algorithm 1. The algorithm receives
the line content ; and a delimiter sequence 3 as input. It tries to parse the line using the
dialect dialect0 = 〈3, Y, Y〉 (see line 16). The parse method iterates over the character
positions of the trimmed line content. For each iteration, get_dialect_component returns the
component matching the dialect specified in the method parameters following the rfc 4180
grammar. The component can be one of content, delimiter, quotation, escape, or error (see
line 5). In cases where the character at the current position cursor violates the rfc 4180
grammar, the get_dialect_component method returns an error and disregards the dialect
(line 7). The state machine for parsing the dialect specified in the ?0AB4 method parameters

ExtracTable: Extracting Tables from Raw Data Files 423

8 Leonardo Hübscher, Lan Jiang, Felix Naumann

is updated in update_parser_state (line 12) based on the returned component. Additionally,
the algorithm checks whether the remaining line starts a new component from the given
dialect. If the current position was classified as content and is not alphanumeric, we could
interpret the content as a quotation or escape. Line 9 starts a new branch of the DFS using the
remaining line content and the updated dialect dialect1 = 〈3, @, Y〉, where @ is the character
sequence at the current position. The same logic is applied to the escape character, as shown
in line 11. If the parser can process the whole line without errors, it found a legitimate
dialect. Finally, the parser returns all valid dialects.

Algorithm 1: Quotation @ and escape 4 character detection
Input: Line content ; and delimiter 3
Output: A set of dialects

1 Def parse(;, 3, @, 4, cursor):
2 cursor=0
3 tl=trim(;)
4 while cursor < |tl| do
5 〈component, length〉 = get_dialect_component(tl, cursor, 3, @, 4)
6 if component=“error” then
7 return Y
8 if @ = Y ∧ component = ”content” ∧ ¬isalnum(tlcursor) then
9 parse(tl, 3, tlcursor, Y, cursor)

10 if @ ≠ Y ∧ 4 = Y ∧ component = ”content” ∧ ¬isalnum(tlcursor) then
11 parse(tl, 3, @, tlcursor, cursor)
12 update_parser_state(component)
13 cursor = cursor + length
14 dialects = dialects ∪ 〈3, @, 4〉
15 dialects = [] // square brackets denote list
16 parse(;, 3, Y, Y, 0) // start DS using delimiter 3, empty quotation and escape
17
18 return dialects \ {Y}

Column boundary detection for ascii tables. Per our definition of ascii tables, two
columns must be separated by a vertical line that has at least one space character. A vertical
line is a consecutive set of character positions, where all characters in lines are whitespace.
To infer the boundaries for all columns, ExtracTable detects vertical lines in-between
columns. Algorithm 2 shows the proposed approach to detect vertical lines in an ascii table.
We explain the algorithm using the example depicted in Figure 4. The variable : depicts the
line index. The file width is the length of the longest line within a file. The set of whitespace
characters is represented by the variable WS.

Transform line content into bitmap with transform(;,width): The algorithm first
transforms the line content ; into a bitmap. As lines may contain a combination of tabs and
spaces for aligning columns, all tab characters are expanded with the corresponding number
of space characters first. We use a tab size of eight, which is the default number in Python’s
expandtabs function. All whitespace characters are then replaced with 1 (True) and any

424 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

𝑘 = 0 N a m e M i n u t e Q u o t e

𝑘 = 1 = = = = = = = = = = = = = = =

𝑘 = 2 V i c t o r i a N / A

𝑘 = 3 H a r r y 4 0 I l i k e c o m p l e x .

(a) An example file with four lines where characters are displayed in monospaced font.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

𝑘 = 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

𝑘 = 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

𝑘 = 2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 = 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

(b) A bitmap representation where green and orange shaded areas show vertical lines and
the ending of them, respectively. Spacers of two table candidates (shown in red and blue
frames) are detected.

Fig. 4: Example for the column boundary detection algorithm.

other character with 0 (False). Lines are padded using multiple 1s to the width of a file.
Figure 4b shows the bitmap representation for the lines in Figure 4a.

After transforming the line content into a bitmap, the algorithm searches for vertical lines.
Subsequent text lines, where bitmapF = 1 for the same character position F, form a vertical
line at F. Consecutive vertical lines are grouped into spacers, which are represented as
a set of consecutive indexes. Each index represents the character positions of a vertical
line. Spacers are significant, if they contain more than one vertical line (|indexes| > 1)
and are not leading (0 ∈ indexes) or trailing (width − 1 ∈ indexes). Significant spacers are
mandatory for tables. For the first and the second lines, there are three spacers: columns 4-9,
16-18, and 24-33.

Append discovered tables with start_table(counter,;): The algorithm identifies a new
table if there is at least one vertical line spanning %mrc (min row count) text lines. The new
table is defined by its starting line index and a set of spacers. For our example, we choose
%mrc = 2. Thus, there was no table discovered after processing the first line. However, after
proceeding with the second line of the example, multiple vertical lines span the minimum
required number of text lines. The first two lines in Figure 4b show a table C0 that has three
spacers shaded in green.

Update existing tables with update_table(C,bitmap): While processing subsequent lines,
the existing tables are updated based on the continuation of vertical lines. If a subset of
vertical lines belonging to a significant spacer is discontinued, the spacer shrinks or is
split into smaller ones so that the continued lines are represented. If the vertical line of an
insignificant spacer was discontinued, the algorithm removes it from the set of table spacers.
The interruption of all indexes of any significant spacer marks the end of the table.

ExtracTable: Extracting Tables from Raw Data Files 425

10 Leonardo Hübscher, Lan Jiang, Felix Naumann

Algorithm 2: Column boundaries detection
Input: File content !, file width, white space charactersWS
Output: Row range of C01;4B, table 1>D=30A84B

1 counter = {F → 0|0 ≤ F < width} // number of consecutive lines for each vertical
index

2 tables = [] // stores tables (indexed by C) with their starting/ending line indexes
3 boundaries = [] // stores boundaries of tables C
4 for : ← 0 to |! | do
5 closed = []
6 bitmap = transform(;: , width)
7 if ∃char ∈ ;: : char ∉ WS then
8 for F ← 0 to width do
9 if bitmapF = 1 then

10 counterF = counterF + 1
11 else
12 counterF = 0
13 for C ← 0 to |tables| do
14 〈closedC , boundariesC 〉 = update_table(C, bitmap) // closedC ∈ {0, 1}
15 if ∃F ∈ 0, . . . ,width : counterF = %mrc ∨ closed |tables |−1 = 1 then
16 tables = tables ∪ start_table(counter, ;:)
17 for C ← 0 to |tables| do
18 boundaries = close_table(C)
19 return tables, boundaries

Close tables with close_table(C): If a closed table covers less than %msr (min significant
rows) rows, insignificant spacers are omitted from the final set, which the algorithm uses to
compute the column boundaries. If the number of resulting column boundaries exceeds
%mcc (min column count), they are stored along the table lines in boundaries. The table
is finally closed by removing it from the set of running tables. However, if there are still
spacers of that table left, the algorithm creates a duplicate of the table. The clone uses the
same set of spacers, but without the discontinued ones. The line index : − 1 is used as the
start for the cloned table.

After processing the third line in the example, all spacers of C0 still exist, whereas the first
one shrinks, because the values included in the indexes 4-7 in the third line are zero (shaded
orange). The algorithm does not find new tables. When reaching the last line, it updates the
last spacer of table C0 by shrinking it into a smaller, insignificant one. Additionally, vertical
lines spanning %mrc rows were found. A new table C1 is created using the spacers [8, 13],
[16, 18], and 25. The last spacer is insignificant as it contains only one index.

In our example, only the table C0 is left. The set of column boundaries is the complement of
the spacer indexes indicated by the red frames, in all indexes. When using %msr = 5, the
insignificant spacer at index 25 is dropped, as the table has only four rows. The remaining
two spacers cover the indexes 8-9 and 16-18. Therefore, the column boundaries for C0 are:
[0, 8), [10, 16), and [19, 34). They are assigned to all four table lines.

426 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 11

The algorithm applies the detected parsing instructions to obtain the resulting interpretations
and the values of every field for each line. Leading and trailing whitespace are trimmed
from all fields.

4.2 Field pattern extraction

In the previous steps, ExtracTable collected all valid parsing instructions for each line
and returned the resulting interpretations for them. The algorithm generates data types
for the values in each interpreted line and uses them in the next step to select the optimal
interpretation for the line based on the data type consistency of the field values. Here, we
explain how the algorithm determines the data type for a given value.

ExtracTable uses a set of 15 domain-agnostic regular expressions to detect known data
types, covering all types mentioned in [BNS19]. Additionally, we include regular expressions
for Boolean values, file paths, expressions in brackets, and hash-like values. The algorithm
assigns the index of the first matching expression to the known data type (K). If no data type
matches the value, the algorithm falls back to detect the atomic data type for the value. If a
field value cannot be covered by any known data type, we use a sequence of atomic type
components to describe the type of this value. We support three atomic types: number (N),
string (S), and other (O). The remaining class other matches everything that is neither a
number nor a string.

Empty values (E) are ignored when calculating the consistency of tables. Therefore, the
appearance of missing values in combination with another data type in a column has no
negative impact on the overall consistency. We use a list of values to represent various forms
of empty values, including empty string Y, N/A, NA, NaN, Null, Unknown, and a sequence
of more than one question mark, dash, star, or number sign, respectively.

Finally, we define a pattern as a vector of pattern components. A pattern component can be
one of String, Number, Known, Empty, or Other. For the input file, ExtracTable detects
several valid interpretations, each of which is applied to obtain a set of fields for each line.
The field pattern extraction step assigns a pattern for the value of every field.

4.3 Table candidate generation

With the value pattern for each field, we calculate a consistency score for a set of lines
over corresponding fields across these lines. We introduce a score-based approach that
exploits this consistency score to build table candidates. Similar to the detection of column
boundaries, ExtracTable iterates over all lines and builds table candidates on the fly. It
groups line interpretations by two criteria: The primary information is the column count
= and the secondary is the parsing instruction instr. The algorithm compares the list of
represented groups with the set of existing table candidates TC. A new table candidate C

ExtracTable: Extracting Tables from Raw Data Files 427

12 Leonardo Hübscher, Lan Jiang, Felix Naumann

is started upon the discovery of an unrepresented group. Table candidates are terminated,
if they are no longer represented or if the file end has been reached. Terminated table
candidates are passed to the final step of ExtracTable.

The algorithm then adds the corresponding interpretations to the table candidates. Before
doing so, it checks whether the current line and the lines in a table candidate are compatible
with regard to the consistency score of corresponding fields across the lines. If the data
types are consistent, the interpretations are appended to the table candidate. If the lines are
incompatible, the algorithm starts a new table candidate. Based on our observation, we can
assume transitivity: If ;: is consistent with both ;:−1 and ;:+1, then ;:−1 and ;:+1 are also
consistent. Therefore, we compare the current line with only the most recent row of the table
candidate. The new table candidate might be created twice: once with and once without
using the previous block of compatible lines as a header. The row count of potential headers
must not exceed %mhr (max header rows) and the headers should not include any floats.

Given two rows, our data type-based consistency score returns a number between 0
(completely inconsistent) and 1 (perfectly consistent). We consider two interpretations to be
compatible if the consistency score exceeds the threshold %mbc (min block compatibility).
We use the pattern consistency as the primary measure for the consistency score. The value
uniformity within columns is calculated to compare consistent tables:

score : � →

−1, if |rich| = 0
0, if |cons| < blog2 (|rich|)c
|cons |
|rich | ∗

1
|rich |

rich∑
col

u(col) otherwise
(1)

where rich is the non-empty subset of columns in �, and cons is the homogeneous subset of
rich. A column is homogeneous if its homogeneity score exceeds one of the thresholds %mbs
(min block score) or %mcs (min column score). We calculate the score using the homogeneity
metric proposed in [Gu11], which considers the distribution of different data types within
one column. Based on our experiments, we require at least blog2 (|rich|)c pattern-consistent
columns to compute the table’s consistency with the third case of Formula (1). Otherwise,
the score for that table is 0. The function u returns the value uniformity of a column col.

To calculate the uniformity of a column, we first generate the patterns for all values
therein and group them by pattern. For each group, we calculate the uniformity using
the homogeneity metric for each component in the pattern. For example, “ABC1” and
“XYZ0.8” are both mapped to the pattern “SN”. Therefore, the uniformity for both “S” and
“N” are calculated. For number components, we compute the homogeneity of both integers
and floats based on their respective counts. A similar calculation is performed for other
components, where the homogeneity of the values is used. For known components of the
same type and string components, we simply assume that all values are homogeneous and
return 1. The value uniformity of empty values is undefined. Therefore, the score for the
“S” and “N” classes in the above example are 1.0 and 0.5, respectively. Then we denote the

428 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 13

uniformity for this pattern by the maximum uniformity score across all components. Finally,
the uniformity of the whole column is the weighted average of the pattern uniformity scores,
where the weights are the occurrences of the patterns. The final score of a table is the
average uniformity of all rich columns.

4.4 Table selection

In the final step, ExtracTable selects a subset of table candidates whose line ranges do
not overlap. We model the table candidate selection problem as a shortest path problem.
We first transform the set of table candidates to a multi-edged directed acyclic graph. The
set of vertexes + represents the line indexes of a file. Each table candidate represents one
edge, using the first and last line index for the source node src and the destination node
dst, respectively. The distance for a given table candidate is calculated using the following
formula. Lower distances represent larger and more consistent tables.

dist : C→− score(data(C)) · (<C − ℎC)2

− score(header(C)) · (<2C − (<C − ℎC)2) − 0.0001 · sgn(ℎC)

where<C is the number of lines in the table and ℎC is the number of header rows therein. The
function calculates the consistency scores score(header(C)) and score(data(C)) for the
header and data parts, respectively. When comparing tables of the same size and consistency,
we favor tables with a header by subtracting a small constant from the consistency score if a
header exists. Before mapping table candidates to edges, the algorithm prunes the ones that
have fewer than %mrc rows and %mcc columns, or have a consistency score of the data part
lower than %mts (min table score).

After the dag has been filled, adjacent vertexes are linked. We connect each vertex pair
〈E, E + 1〉 by an edge with a distance of dis = 0. Figure 5 shows the graph for the seven table
candidates shown in Table 1. The numbers at the edges represent the distances, and the
squared boxes are the table candidate indexes.
Tab. 1: Example table candidates. ‘From’ and ‘To’ fields indicate the beginning and the end indexes
of a table candidate. SH and SD stand for score(header(C)) and score(data(C)), respectively.

From To ℎC <C − ℎC SH SD

1 5 35 0 31 n/a 1.0
2 5 35 0 31 n/a 0.8
3 38 45 0 8 n/a 1.0
4 38 55 0 18 n/a 1.0
5 46 55 0 10 n/a 1.0
6 58 75 0 18 n/a 0.9
7 58 75 2 16 1.0 0.9

ExtracTable: Extracting Tables from Raw Data Files 429

14 Leonardo Hübscher, Lan Jiang, Felix Naumann

5

45 46

5535 38 58 75

2 -768.8

1 -961

4 -324

3 -
64

5 -100

7 -294.4001

6 -291
0 0

Fig. 5: Table selection graph for example of Table 1

We apply the Bellman-Ford algorithm [Be58] to find the shortest path. In case of a tie, we
pick the candidate that has (i) a higher ratio of recognized fields to total fields; (ii) a higher
number of rich columns; (iii) a lower pattern length; (iv) a lower column count. The best
table candidates are found by sorting the edge candidates by their weight and by the criteria
above. In the unlikely event that multiple candidates still qualify, we choose the first one.

5 Experimental Evaluation

We evaluated ExtracTable on large sets of files taken from open data portals, and compared
it with existing solutions regarding accuracy and runtime. The experiments were executed
in Python 3.8.5 on a Linux machine. The test system was equipped with an AMD EPYC
7702P CPU with 64 cores, operating at 2GHz with 512GB memory.

5.1 Datasets

The basis of our ground truth are two existing corpora from related work using plain-text files
taken from Mendeley Data, GitHub, and UKdata5. The Mendeley data corpus was crawled
in August 2020 to study line and cell classification tasks on verbose csv files [JVN21]. This
first corpus includes all projects that contain at least one plain-text file and were hosted on
Mendeley’s servers. It consists of 235 471 files distributed over 1 554 projects. Within the
corpus, we found files of 1 040 different extensions. We kept all files with extensions .txt,
.dat, .csv, .md, and .out, resulting in 94 474 files.

The second corpus was provided as part of [BNS19]. It consists mainly of csv files taken
from GitHub and UKdata. A repository hosted on GitHub typically contains a diversity
of files required for the development of software. The British government uses UKdata to
publish datasets from different departments, such as education, economy, or health. The
dataset consists of 5 000 files each from GitHub and UKdata. Using the authors’ script for
downloading the corpus6 from the original sources, some files were no longer available,
leaving us with 2 577 and 2 539 files from GitHub and UKdata, respectively.

5 https://data.mendeley.com/, https://github.com/, https://data.gov.uk/
6 https://github.com/alan-turing-institute/CSV_Wrangling/

430 Leonardo Hübscher, Lan Jiang, Felix Naumann

https://data.mendeley.com/
https://github.com/
https://data.gov.uk/
https://github.com/alan-turing-institute/CSV_Wrangling/

ExtracTable: Extracting Tables from Raw Data Files 15

Annotating all almost 100 000 would be too time-consuming, so we selected a subset. We
noticed that the Mendeley data source provides a larger variety of files and decided to
grant it a larger share in our final dataset. Ultimately, we randomly selected 598 files from
Mendeley Data, 176 files from GitHub, and 183 files from UKdata, resulting in 957 files.
All files and annotations are publicly available7.

We annotated all tables containing at least two columns and two rows. All rows belonging
to the same table must have the same column count. Our definition of data tables includes
tables with multiple header rows. In our 957 files, we annotated 1 208 tables and obtained
first insights into the dataset. A regular table of our ground truth is quite small, with fewer
than 1 000 rows and between two and ten columns. Approximately 75% of the 190 ascii
tables have fewer than 100 rows. While files containing a single table are represented using
csv in nine out of ten cases, ascii tables are used for more than a third of all tables contained
in multi-table files. Confirming the general observation of [DMB17], we found that 47% of
the csv tables follow rfc 4180. Also, 1% of the files contained at least one csv table using
a multi-character delimiter, e.g., an arrow (->), multiple slashes (//), or multiple tab or space
characters. The majority of fields represent numbers (84%) and only a small portion of cells
did not match any of our data types (4%).

5.2 Comparison targets

Our comparative analysis regards a simple baseline and four solutions from related work,
which we used to evaluate table range selection and parsing accuracy. The simple baseline
approach always returns the dialect specified in rfc 4180. By including this baseline when
evaluating the parsing results, we were able to gain insights into the complexity of files and
the dialect distribution. The Sniffer class is part of the csv package8 of Python. Sniffer
infers the delimiter by character frequencies across lines. Hypoparsr covers multiple parsing
steps, such as file encoding detection, dialect detection, and table area detection [DMB17].
While the R package was removed from the Comprehensive R Archive Network by the
authors, we used the archived version 0.1.0 from GitHub9. Finally, the authors of CleverCSV
propose a pattern-based approach to infer the dialect of a file [BNS19]. It is capable of
handling surrounding text, but does not return the table ranges explicitly. Its command-line
tool (version 0.6.7) is available via the Python Package Index10.

To evaluate the quality of our table range selection, we used the Python implementation
of Pytheas [Ch20] published by the authors11 using the weights that the authors suggest.
In addition, we use a naive approach for this particular evaluation, which simulates the
missing baselines by classifying the complete file content as belonging to a single table.

7 https://owncloud.hpi.de/s/uhHJFzC9mNcdF4i

8 https://docs.python.org/3/library/csv.html (we used Python 3.8.5)
9 https://github.com/tdoehmen/hypoparsr

10 https://pypi.org/project/clevercsv/

11 https://github.com/cchristodoulaki/Pytheas/tree/d77b82a

ExtracTable: Extracting Tables from Raw Data Files 431

https://owncloud.hpi.de/s/uhHJFzC9mNcdF4i
https://docs.python.org/3/library/csv.html
https://github.com/tdoehmen/hypoparsr
https://pypi.org/project/clevercsv/
https://github.com/cchristodoulaki/Pytheas/tree/d77b82a

16 Leonardo Hübscher, Lan Jiang, Felix Naumann

Other solutions mentioned in related work could not be applied to the table range selection
problem. The authors either assumed only a single table to be present within a file, or their
implementations did not return the explicit table ranges.

5.3 Table range selection

ExtracTable can be configured by a set of ten parameters. Half of the parameters, such
as the minimum table dimensions, are subjective and depend on specific tasks. For our
datasets, we require tables to have at least two columns and two rows. Based on a related
work [Em16], we allow tables to have up to four header rows. The length of a dialect
component must not exceed four characters, and all bracket characters are not allowed to
appear within the delimiters. To find the optimal values for the remaining five parameters,
we ran a grid search on a subset of our ground truth. We found the following settings to be
optimal: %msr = 4; %mbc = 0.71; %mbs = 0.31; %mcs = 0.51; and %mts = 0.51.

We measure the quality of the table range selection by calculating the Intersection over
Union (iou) for each pair of detected and annotated tables [Re19]. In [Do19] the authors
use the iou metric for evaluating the performance of the table detection in spreadsheets.
Since we need to compare only the vertical table boundaries, we use the Jaccard index for
the iou. It returns a number between 0 (no match) and 1 (perfect match).

After calculating the Jaccard index for each table pair, we used the maximum Jaccard index
to determine one of four match types: Annotated tables that returned a Jaccard index of 1
for some returned table are a perfect match. In contrast, if the maximum Jaccard index of
an annotated table is 0, no match was found. All remaining annotated tables fall into the
category of partial matches. We refer to returned tables that have no matching annotated
table as eager match. Figure 6 shows the match type counts for the naive approach and
for Pytheas and ExtracTable (ignoring eager matches). For each individual solution, we
excluded those files that were not processed successfully within three minutes. Pytheas
finished around 79% of all files, whereas ExtracTable processed around 87% successfully.
The naive approach worked on all files due to its nature.

The naive approach returned the correct range for precisely 50% of the tables. The remaining
half was classified as a partial match, as every file contains at least one table. Pytheas
was able to detect 59% of the table ranges correctly, yet the approach missed every eighth
annotated table. The tables that were not recognized are of different sizes and are equally
balanced regarding their formats. 6% of all tables returned by Pytheas were not present in
the ground truth.

ExtracTable identified the correct table ranges in more than 70% of all tables and missed
seven tables (1%). A limitation is the high number of eager matches that are not depicted in
the chart. Nearly one out of every six tables returned by ExtracTable is not present in our
ground truth, and therefore are false positives. After manually examining a sample of these

432 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 17

0% 20% 40% 60% 80% 100%

% of tables

ExtracTable

Pytheas

Naive

71

59

50

28

29

50

1

12

Perfect match Partial match No match

Fig. 6: Table range selection performance (higher number of perfect matches is better).

eagerly matched tables, we realized that it found consistent data tables within unlabeled
tabular structures, such as dictionary fragments and single column tables. Pytheas returned
fewer false positive tables than ExtracTable. However, we believe that for users, finding
missing tables is more difficult than identifying incorrectly recognized tables in ascii files,
which appear in various shapes and forms. Therefore, the number of eagerly matched tables
is a secondary metric compared to the number of correctly matched ones.

5.4 Line parsing

To evaluate parsing accuracy, we compared the returned lines of the comparison targets
and ExtracTable line-wise with our annotations. A line was parsed correctly if the
returned fields corresponded to the values in the ground truth, taking into account the
order. We compared ExtracTable to four other solutions: rfc 4180, Hypoparsr, Sniffer,
and CleverCSV. Some aspects of csv parsing, such as the handling of space characters
in-between fields, are implementation-specific. Therefore, we first extracted the dialects
returned by the candidates. We then interpreted lines by feeding the dialect to the same parser.
By doing this, we ensured a fair comparison, independent of the parser implementations.

The first experiment examines parsing correctness per table format. Figure 7 shows the ratio
of fields that have been correctly parsed for both table formats. For csv tables, we note that
Sniffer, CleverCSV, and ExtracTable performed similarly well and detected the correct
parsing instructions in about 90% of the cases. ExtracTable achieved slightly lower results
than CleverCSV, as it interpreted some tables as ascii instead of csv. When disabling the
ascii support, ExtracTable parsed 94% of all table lines correctly: a higher generality
(the ability to also parse ascii tables) can be a cause for misinterpretations.

ExtracTable is the only solution optimized for ascii tables: The remaining solutions
recognized merely a small subset of lines correctly. Nevertheless, it is interesting to see
that they returned a few correct interpretations. We identified three reasons that led to the

ExtracTable: Extracting Tables from Raw Data Files 433

18 Leonardo Hübscher, Lan Jiang, Felix Naumann

CSV ASCII

Table format

0%

20%

40%

60%

80%

100%
%

of
co

rr
ec

tly
pa

rs
ed

lin
es

48

0

73

11

90

10

93

13

90
76

RFC 4180
Hypoparsr

Sni�er
CleverCSV

ExtracTable

Fig. 7: Parsing accuracy (higher is better).

proper representation of single lines. First, empty lines occurring for a small subset of tables
between the header and data part of a table are correct, independent of the used parsing
instruction. Second, the nature of ascii tables lets them use a different number of spaces to
separate columns. Solutions besides ExtracTable sometimes chose the single space as the
delimiter for interpreting these lines. While this does not result in the correct representation
of the whole table, it sometimes yields the proper interpretations for a subset of lines, which
is likely to happen for tables with few columns. Third, some tables can be interpreted using
both ascii and csv. Such a situation may occur if the same number of spaces is used to
separate all columns. Independent of these corner cases, we note that ExtracTable could
correctly interpret 76% of the lines appearing in ascii tables.

In general, the errors made by ExtracTable were independent of the table format but were
caused by the table selection, which favors bigger tables. Lines were interpreted incorrectly
for three main reasons: (i) over-segmented and under-segmented tables; (ii) short texts
surrounding tables; (iii) misinterpretation of tables using tab characters. An annotated table
was represented by multiple returned tables that contained partially sorted or similar values
(over-segmented). ExtracTable under-segmented annotated tables if it found a parsing
instruction that could be applied to neighboring tables of the same schema. As the table
selection prefers tables with higher row counts, it merges both tables in such cases. Short
texts surrounding the tables, such as table titles, causes ascii tables to merge the first
columns as the algorithm tried to include the header row. ExtracTable misinterprets csv
tables when it finds a dialect applicable to both the table and the surrounding text. We traced
both reasons to our design decision to prefer tables having a higher row count. Finally, csv
tables delimited by the tab character were sometimes misinterpreted as ascii tables.

To summarize the results, ExtracTable performed similarly to CleverCSV and Sniffer on
parsing accuracy for csv tables. Hypoparsr did not perform well, yet it outperformed the
rfc 4180 baseline. For ascii files, only ExtracTable could correctly parse a reasonable

434 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 19

number of lines: our approach is more general across the two file types. We assume that the
parsing accuracy could be enhanced by pruning non-table lines – a main source of errors.

5.5 Runtime

We measured the runtime using Linux’s internal system call getrusage. We compared the
runtime of our approach to the ones of rfc 4180, sniffer, hypoparsr, clevercsv,
and pytheas. To reduce the overall runtime of our experiments, we used a timeout of
three minutes, which allowed the slowest approach, Pytheas, to finish for more than 70%
of the files, covering the majority of the dataset. Only one file fails all approaches with
this timeout, which consists of 450 lines, each having 17 365 characters. For each file, we
recorded whether the approach was able to process the files within the processing time and
returned some result. To make the runtime comparable, we kept only files completed by all
parsers within the limit. While this could add a bias towards simpler files, it ensures a fair
comparison. Figure 8 shows the resulting runtimes per line in milliseconds on a logarithmic
scale, based on 551 files.

CleverCSV ExtracTableHypoparsr PytheasSni�er

100

101

102

103

104

Ru
n

tim
e

pe
rl

in
e

(m
s)

Fig. 8: Runtime comparison using logarithmic scale.

The solution that always returns the configuration of rfc 4180 does not read the file contents
and always had a runtime of zero milliseconds. Sniffer and CleverCSV are both very fast,
needing less than 10ms per line on average. Hypoparsr, Pytheas, and ExtracTable were
slower and took 190ms, 217ms, and 90ms, respectively. We acknowledge that all solutions
cover a different feature set: While Sniffer is a heuristic approach, CleverCSV uses a more
advanced, pattern-based dialect detection. Hypoparsr includes multiple stages, such as
encoding detection and normalization. Pytheas uses a large set of fuzzy rules to detect table
ranges. Our approach includes aspects from different solutions as it covers a wider range of
csv dialects, handles ascii tables, and is capable of detecting multiple tables within files.

ExtracTable: Extracting Tables from Raw Data Files 435

20 Leonardo Hübscher, Lan Jiang, Felix Naumann

One driver for the longer runtimes is the number of interpretations. This number depends
on the chosen configuration, line count, and the actual file content. Lines that are very long
or contain many space characters or non-alphanumerical characters take longer to process.
The second driver is the number of table candidates. How many table candidates are found
depends on the actual content and data type compatibility across lines.

6 Summary and Outlook

Tables are stored in arbitrary shapes and forms in plain-text files. To enable automatic
information extraction from these types of files, we must first detect the positions of tables
and their structures. We proposed the ExtracTable algorithm, which tackles the table
extraction problem. For a given file, the algorithm first detects and tests possible parsing
instructions: dialects and column boundaries for csv and ascii tables, respectively. After
applying the parsing instructions to the line content, ExtracTable infers the data type of
each field. It then builds table candidates based on the consistency of data type patterns,
field count, and parsing instruction. Finally, the algorithm models the optimal table selection
problem as the shortest path problem, and outputs a set of tables for the given file.

To evaluate our algorithm, we annotated a dataset consisting of nearly 1 000 files taken from
Mendeley Data, GitHub, and UKdata. We analyzed two aspects of our algorithm: (i) the
table range selection; (ii) the parsing accuracy. Our evaluation showed that ExtracTable
outperforms the other approaches in determining the table ranges, detecting the correct
range for more than 70% of the tables. Comparing the parsing results between ExtracTable
and the related approaches, we found that CleverCSV performs best on csv tables, parsing
93% of the lines correctly. Yet, ExtracTable performs similarly well, yielding correct
parsing results for 90% of the lines. Our solution was the only one capable of parsing a
significant number of ascii tables and achieved an accuracy of 76%.

While ExtracTable supports more complex files, we still had to make a few assumptions,
whose relaxation could be interesting future work. This includes the support for cells
containing line breaks, as well as spanning rows and spanning columns. The main challenge
lies in the scoring of different table candidates. Future work may investigate to what extent
the algorithm benefits from learning the structure and content of typical tables [VHN22].
We hope that by inferring that knowledge during table selection, wrong interpretations
yielding high consistencies can be pruned. Additionally, we identified table selection to be
misled by text lines preceding or succeeding a table, because we favor tables with higher
row counts. This effect could be reduced by filtering non-table lines as a pre-processing
step.

By using the ExtracTable algorithm, data scientists can extract tables from a wider variety
of plain-text files. Therefore, they spend less time dealing with data wrangling and instead
focus on their actual data-driven tasks. While the evaluation returned good results already,
we are still far away from handling files fully automatically.

436 Leonardo Hübscher, Lan Jiang, Felix Naumann

ExtracTable: Extracting Tables from Raw Data Files 21

References

[An20] Anaconda: 2020 State of Data Science, tech. rep., 2020, url: https://know.
anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-

Final.pdf.
[Be58] Bellman, R.: On a routing problem. Quart. Appl. Math. 16/, pp. 87–90, 1958.
[BNS19] van den Burg, G. J.; Nazábal, A.; Sutton, C.: Wrangling messy CSV files by

detecting row and type patterns. Data Mining and Knowledge Discovery 33/6,
pp. 1799–1820, 2019.

[BTH16] Brickley, D.; Tennison, J.; Herman, I.: CSV on the Web Working Group
@ www.w3.org, tech. rep., 2016, url: http://www.w3.org/, visited on:
04/23/2021.

[Ch14] Chessell, M.; Scheepers, F.; Nguyen, N.; van Kessel, R.; van der Starre, R.:
Governing and Managing Big Data for Analytics and Decision Makers. IBM
Redguides for Business Leaders/, p. 28, 2014, issn: 0306-0012.

[Ch15] Chu, X.; He, Y.; Chakrabarti, K.; Ganjam, K.: Tegra: Table extraction by
global record alignment. In: Proceedings of the International Conference on
Management of Data (SIGMOD). Pp. 1713–1728, 2015.

[Ch20] Christodoulakis, C.; Munson, E. B.; Gabel, M.; Brown, A.D.; Miller, R. J.:
Pytheas: Pattern-Based Table Discovery in CSV Files. PVLDB 13/12, pp. 2075–
2089, 2020, issn: 2150-8097, url: https://doi.org/10.14778/3407790.
3407810.

[DMB17] Döhmen, T.; Mühleisen, H.; Boncz, P.: Multi-Hypothesis CSV Parsing. In:
Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM). New York, NY, USA, pp. 1–12, 2017.

[Do19] Dong, H.; Liu, S.; Han, S.; Fu, Z.; Zhang, D.: TableSense: Spreadsheet table
detection with convolutional neural networks. In: Proceedings of the Conference
on Artificial Intelligence (AAAI). Pp. 69–76, 2019.

[Em16] Embley, D.W.; Krishnamoorthy, M. S.; Nagy, G.; Seth, S.: Converting het-
erogeneous statistical tables on the web to searchable databases. International
Journal on Document Analysis and Recognition (ĲDAR) 19/2, pp. 119–138,
2016.

[Gu11] Guo, P. J.; Kandel, S.; Hellerstein, J.M.; Heer, J.: Proactive Wrangling: Mixed-
Initiative End-User Programming of Data Transformation Scripts. In: Pro-
ceedings of the Annual ACM Symposium on User Interface Software and
Technology (UIST). Pp. 65–74, 2011.

[HN20] Hameed, M.; Naumann, F.: Data Preparation: A Survey of Commercial Tools.
SIGMOD Record 49/3, pp. 18–29, 2020.

ExtracTable: Extracting Tables from Raw Data Files 437

https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
https://know.anaconda.com/rs/387-XNW-688/images/Anaconda-SODS-Report-2020-Final.pdf
http://www.w3.org/
https://doi.org/10.14778/3407790.3407810
https://doi.org/10.14778/3407790.3407810

22 Leonardo Hübscher, Lan Jiang, Felix Naumann

[Hu99] Hu, J.; Kashi, R. S.; Lopresti, D. P.; Wilfong, G.: Medium-independent table
detection. In: Document Recognition and Retrieval VII. Vol. 3967, International
Society for Optics and Photonics, pp. 291–302, 1999.

[IB72] IBM Corporation: IBM FORTRAN Program Products for OS and the CMS
Component of VM/370 General Information./, p. 17, 1972.

[JVN21] Jiang, L.; Vitagliano, G.; Naumann, F.: Structure Detection in Verbose CSV
Files. In: Proceedings of the International Conference on Extending Database
Technology (EDBT). Pp. 193–204, 2021, isbn: 9783893180844.

[Mo18] Mooney, P.: Kaggle Machine Learning & Data Science Survey, 2018, url:
https://www.kaggle.com/paultimothymooney/2018-kaggle-machine-

learning-data-science-survey, visited on:
[PC97] Pyreddy, P.; Croft, W.B.: TINTIN: a system for retrieval in text tables. In:

Proceedings of the ACM International Conference on Digital Libraries (DL).
Pp. 193–200, 1997.

[Pi03] Pinto, D.; McCallum, A.; Wei, X.; Croft, W.B.: Table extraction using con-
ditional random fields. In: Proceedings of the International Conference on
Information retrieval (SIGIR). Pp. 235–242, 2003.

[Pr16] Press, G.: Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data
Science Task, Survey Says. Forbes Tech/, pp. 4–5, 2016, url: https://www.
forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-

consuming-least-enjoyable-data-science-task-survey-says/.
[Re19] Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S.:

Generalized intersection over union: A metric and a loss for bounding box
regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Pp. 658–666, 2019.

[Sh05] Shafranovich, Y.: Common Format and MIME Type for Comma-Separated
Values (CSV) Files, RFC 4180, RFC Editor, Aug. 2005, url: https://www.
rfc-editor.org/rfc/rfc4180.txt.

[SJT03] e Silva, A. C.; Jorge, A.; Torgo, L.: Automatic Selection of Table Areas in
Documents for Information Extraction. In: Progress in Artificial Intelligence.
Berlin, Heidelberg, pp. 460–465, 2003.

[VHN22] Vitagliano, G.; Hameed, M.; Naumann, F.: Structural Embedding of Data
Files with MAGRITTE. In: NeurIPS Table Representation Learning workshop
(TRL). 2022.

[VJN21] Vitagliano, G.; Jiang, L.; Naumann, F.: Detecting Layout Templates in Complex
Multiregion Files. PVLDB 15/3, pp. 646–658, 2021.

438 Leonardo Hübscher, Lan Jiang, Felix Naumann

https://www.kaggle.com/paultimothymooney/2018-kaggle-machine-learning-data-science-survey
https://www.kaggle.com/paultimothymooney/2018-kaggle-machine-learning-data-science-survey
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.rfc-editor.org/rfc/rfc4180.txt
https://www.rfc-editor.org/rfc/rfc4180.txt

