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Inclusion dependencies (INDs) are a well-known type of data dependency, specifying that the values of one
column are contained in those of another column. INDs can be used for various purposes, such as foreign-key
candidate selection or join partner discovery. The traditional notion of INDs is based on clean data, where
the dependencies hold without exceptions. Unfortunately, data often contain errors, preventing otherwise
valid INDs from being discovered. A typical response to this problem is to relax the dependency definition
using a similarity measure to account for minor data errors, such as typos or different formatting. While this
relaxation is known for functional dependencies, for inclusion dependencies no such relaxation has been
defined.

We formally introduce similarity inclusion dependencies, which relax the inclusion by demanding the
existence only of sufficiently similar values. Similarity inclusion dependencies can fulfill traditional IND use
cases, such as foreign-key candidate discovery, even in the presence of dirty data. We present Sawfish, the
first algorithm to discover all similarity inclusion dependencies in a given dataset efficiently. Our algorithm
combines approaches for the discovery of traditional INDs and string similarity joins with a novel sliding-
window approach and lazy candidate validation. Our experimental evaluation shows that Sawfish can
outperform a baseline by a factor of up to 6.5.
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1 INCLUSION DEPENDENCY

Data profiling is the process of extracting metadata from datasets. Data dependencies are an
important type of metadata and, thus, have a crucial role in data profiling. There are different forms
of data dependencies, e.g., functional dependencies (FDs) and inclusion dependencies (INDs). In
particular, INDs express that the tuples of one column-combination are contained in the tuples of
another column-combination. We call an IND unary, if it holds between two individual columns.
INDs help data practitioners to understand and structure unknown data, in particular, in discovering
foreign key candidates and joinable partners [20]. Moreover, INDs have assisted schema design
in [15] and can improve query execution [12].
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Traditional IND discovery assumes clean data: all tuples of the dependent column-combination
must be exactly equal in the referenced column-combination. However, the ever-increasing volume
of data also leads to more “dirty” data [18]. Thus, relaxed dependencies have been introduced to
deal with erroneous data [4].
One example of relaxed dependencies is matching dependencies (MDs), which generalize the

concept of functional dependencies (FDs) [23]. For a traditional FD, the tuples on the dependent side
must be equal for all equal tuples on the determinant side. In contrast, MDs use similarity measures
instead of the strict equality constraint. In other words, an MD holds if, for all similar tuples on the
determinant side, all tuples on the dependent side are also similar. MDs allow data practitioners to
address typical use cases of FDs, such as schema normalization, even in the presence of dirty data.
Moreover, MDs can also be used for duplicate detection [23]. A feature of MDs is that they support
arbitrary similarity measures and a configurable similarity threshold to balance the error tolerance
and over generalization.
There is no corresponding notion yet for INDs to allow for similar values. Thus, we introduce

similarity inclusion dependencies (sINDs). In contrast to traditional INDs, sINDs use a similarity
measure to define inclusion. An sIND holds if, for all dependent values, there exists a referenced
value that is at least similar. Like MDs, sINDs support arbitrary similarity measures and configurable
similarity thresholds. For this work, we consider representatives of both edit-based and token-based
similarity measures: the edit distance and the Jaccard similarity.

sINDs are a natural way to handle dirty data. Besides traditional IND use cases, sINDs can also
identify sources of possibly erroneous data in data lakes. If a candidate IND does not hold, but its
respective sIND holds, the data can be analyzed and used to identify erroneous relations. Either
only one of the relations contains errors, so we can use the other relation to fix these, or both
relations contain errors, and the data needs to be cleaned more thoroughly.
To illustrate the usefulness of sINDs, we present an example in Table 1. The tables are for a

fictitious soccer tournament. While one table shows the results after all teams played against each
other, the other table presents an aggregation of the participation forms of all goalkeepers in the
tournament. We would assume that the values of the club column of Table 1b are contained in
the values of the name column of Table 1a. However, multiple goalkeepers made minor spelling
mistakes in their club name. Despite these mistakes, we want to discover the dependency. On the
one hand, we are interested in joining these columns to know which goalkeeper played for the most
successful team. On the other hand, we could perform a data cleaning task, because all mistakes
are only in the club column of Table 1b. Thus, there is a matching counterpart in the other column
to automatically correct the errors.

Table 1. Example relations of a soccer tournament

(a) Final Results

results

name points

SpVgg Beelitz 4
Potsdamer SC 9
SpVgg Bernau 4
VfL Potsdam 0

(b) Participating Goalkeepers

goalie

p_id club

202 SpVgg Beelitz
216 SpVgg Beelittz
469 Potsdamer SC
617 SpVgg Be_nau
692 ViL Potsdam
853 Potsdamer SC
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There are other known extensions to INDs that can deal with dirty data. One example is partial
INDs [2], which allow a certain portion of the dependent tuples to not be present in any form in
the referenced tuples. Therefore, partial INDs are especially useful when dealing with incomplete
columns. However, partial INDs provide no insight into what kind of matching failures occur. If a
significant portion of tuples have a similar, but not equal counterpart, no partial INDs would be
found. Since half of the goalkeepers in our example have misspelled their club names, we would
need to set the error threshold above 50% to find a partial IND. In a typical database, this threshold
would lead to many spurious dependencies. A special form of partial dependencies are conditional
INDs (cINDs), which hold only for tuples that fulfil a certain condition [3, 1].

Another example are approximate INDs [13]. They are discovered on a sample of the complete
data and show that an IND holds only with a certain probability. This relaxation is used to increase
the discovery speed, but not the generality of the found IND. Moreover, approximate INDs also
provide no insight into data errors. In our example, typical sampling strategies would lead to
different value sets for the columns. Therefore, we would not find a dependency in our samples.

Apart from introducing the concept of similarity inclusion dependencies, we present Sawfish,
the first approach to efficiently discover sINDs in a given dataset. In particular, we make the
following contributions:

(1) We introduce the formal concept of similarity inclusion dependencies.
(2) We propose Sawfish, an efficient approach to discover all unary sINDs in a given dataset

using the edit-distance and the Jaccard similarity measure.
(3) We offer an in-depth evaluation of Sawfish, comparing our approach to the state-of-the-art

IND discovery algorithm Binder [22] and a naive baseline. We show how Sawfish scales
with the size of the input data and different algorithm configurations.

(4) We present a case study that explores the usefulness of the discovered sINDs. We have
manually built a ground-truth with over 1000 sINDs and publicly provide the annotations.

(5) We integrate Sawfish on the Metanome data profiling platform [21], so it can be easily used
with a variety of datasets and compared to other data profiling algorithms. All code is made
publicly available.

The remainder of this work is structured as follows. In Section 2 we present related research
on inclusion dependencies, other relaxed dependencies and string similarity joins. We formally
define sINDs in Section 3. Section 4 shows how to efficiently discover sINDs and presents the
general principle of Sawfish. We present an exhaustive evaluation of Sawfish in Section 5. Finally,
Section 6 draws a conclusion and gives insights into the limitations of Sawfish and provides an
outlook on future work.

2 RELATEDWORK

Although there has been no research on similarity inclusion dependencies yet, three research
areas overlap with this work: traditional inclusion dependency discovery, other relaxations of
dependencies, and string similarity joins.
Inclusion dependencies (INDs) are a well-known type of data dependency and have several

algorithms to discover them from data— see Dürsch et al. for an overview of approaches [9].
There are approaches for both unary and n-ary IND discovery. De Marchi et al. presented an early
algorithm to discover unary INDs by intersecting the attribute sets for each value [6].Many also
discovers unary INDs, but focuses on the problem of finding INDs in millions of tables [24]. A
prominent representative for n-ary, i.e., inclusion between tuples of attribute lists, IND discovery
is Zigzag [7]. It combines both up- and downwards pruning to discover maximal n-ary INDs
efficiently.
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In particular, Sawfish adapts a few techniques from the algorithm Binder [22]. Initially, Binder
splits the input data into buckets for each attribute. It uses hash-partitioning to distribute the values
evenly and place equal values into the same bucket. If main memory is exhausted, the largest
buckets are written to disk, allowing Binder to scale to large datasets. To validate IND candidates,
Binder loads data partitions into the main memory. Each partition contains one bucket from each
attribute with the same bucket number. As the bucket number relates to the hash value, equal
values of different attributes are in the same partition. If a partition is too large for main memory,
it can be lazily refined into subpartitions. Binder deduces which INDs still hold in the data for
each partition and prunes the other candidates. After processing every partition, Binder outputs
all remaining candidates as valid INDs.

The input-handling of Sawfish also splits the column values into different buckets. However, it
cannot use hash-partitioning due to the similarity measure, so it uses an adaptive main memory
handling—presented in detail in Section 4.1. Sawfish also loads chunks of data into main memory
and checks remaining sIND candidates to validate sIND candidates. We detail our validation strategy
in Section 4.2.

Similarly to how sINDs extend the concept of INDs, there are examples of such relaxations of other
dependencies— see Caruccio et al. for an overview of relaxed FD approaches [4]. As mentioned in the
introduction, matching dependencies (MDs) are a prominent extension of functional dependencies
(FDs). Like sINDs, they incorporate a similarity measure to find additional dependencies in the data.
MDs were first introduced by Fan [10]. Schirmer et al. showed how to efficiently find all MDs in a
database [23]. Their HyMD algorithm combines two techniques to find MDs: lattice traversal and
inference from record pairs. The lattice comprises all candidate MDs in a sorted order. Therefore,
it can be traversed to find minimal MDs. To quickly find counterexamples for an MD candidate,
HyMD can compare record pairs and infer which MDs might still be minimal. After comparing
every record pair, the inferred MDs are the correct solution set. We cannot use inference from
record pairs, because we cannot infer the validity of an sIND from only a record pair. Since a
single value can be similar to multiple other values, a record pair that shows that a value is not
similar to another value does not disprove the validity of an sIND. HyMD computes the similarity
of every value pair beforehand to access it quickly when validating MDs. Our approach avoids this
preprocessing and computes the similarity while validating. Thus, we can save many unnecessary
computations, because only those value pairs that we actually process are compared.

Finally, string similarity joins and sINDs share a related sub-problem. Like sINDs, for a large set
of strings, string similarity joins need to identify similar strings based on some similarity measure
to execute the join. Yu et al. provide an overview of different approaches [27]. Most methods either
use specific substrings or a tree-like data structure to compute the similarity of two strings. For
example, the algorithm TrieJoin uses a trie to efficiently calculate the similarity [11].
Sawfish uses the underlying method of PassJoin [17] to find similar strings for a dependent

value when using the edit distance as its similarity measure. The author’s observation is based on
the pigeonhole principle: Assume an edit distance threshold 𝜏 , two strings 𝑥,𝑦 and 𝐸𝐷 (𝑥,𝑦) ≤ 𝜏 .
If we split 𝑥 into 𝜏 + 1 disjoint segments, there exists a substring of 𝑦 that is equal to one of the
segments. Otherwise, we would need at least one edit operation for each segment to transform it
to a substring of 𝑦. However, this violates our assumption that 𝐸𝐷 (𝑥,𝑦) ≤ 𝜏 . For example, given
the two soccer club names, Potsdamer SC and SpVgg Beelitz, we want to know if their edit distance
is within one, i.e. 𝜏 = 1. Therefore, we segment Potsdamer SC in 𝜏 + 1 = 2 equally-sized segments:
Potsda and mer SC. We observe that there is no substring in SpVgg Beelitz that matches any of
the segments. Therefore, we know that these club names are not similar without computing their
actual edit distance. This segment filter effectively prunes dissimilar string pairs. Moreover, based
on this filter, an inverted index of the segments to the indexed elements can be built. Additionally,
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Li et al. presented techniques to reduce the number of substrings that need to be compared to the
segments. They also improve the exact edit distance computation based on their segmentation
filter. We detail our usage of the validation techniques in Section 4.
When using the Jaccard similarity, Sawfish uses and adapts the ScanCount [27] method.

Assume a given Jaccard similarity threshold 𝛿 , a string 𝑥 and a set of strings 𝑌 . First, for each 𝑦 ∈ 𝑌 ,
it stores a mapping of each token to its parent string. For each token of 𝑥 , ScanCount retrieves
the list of parent strings that contain that token and maintains a count of each occurrence of
each parent string in all lists. Next, it computes a threshold 𝑇 = 𝛿

1+𝛿 ( |token(𝑥) | + |min(token(𝑦)) |).
Afterwards, all strings 𝑦 ∈ 𝑌 that have a count ≥ 𝑇 are directly compared to 𝑥 to compute their
actual Jaccard similarity. We improve this version for our needs and show the modified version in
Section 4. Note that we cannot use the popular minHash [26] to discover similar strings, because it
is only an estimation of the Jaccard similarity.

3 SIMILARITY INCLUSION DEPENDENCY

Let 𝑅 and 𝑆 be two relations of a database 𝐷 (with an instance 𝐼 ), and let A and B be two attributes.
The notations 𝑅 [A] and 𝑆 [B] indicate the projections of 𝑅 and 𝑆 on A and B respectively. A unary
inclusion dependency (IND) 𝑅 [A] ⊆ 𝑆 [B] can be defined using quantifiers as follows:

𝑅 [A] ⊆ 𝑆 [B] ⇐⇒ ∀𝑟 ∈ 𝐼 (𝑅), ∃𝑠 ∈ 𝐼 (𝑆) : 𝑟 [A] = 𝑠 [B]
The values 𝑅 [A] are called dependent values, whereas 𝑆 [B] are called referenced values. 𝑅 and 𝑆
can be the same relation (𝑅 = 𝑆), but most typical use-cases are interested in INDs across relations.
We extend the definition of INDs to accommodate similarity measures, thereby introducing

similarity inclusion dependencies (sINDs). Let 𝜎 (𝑥,𝑦) → [0, 1] be a similarity measure and let
≈𝜎 be an operator that checks whether two values are similar for 𝜎 and a threshold. An sIND
𝑅 [A] ⊂∼𝜎 𝑆 [B] can be defined as follows:

𝑅 [A] ⊂∼𝜎 𝑆 [B] ⇐⇒ ∀𝑟 ∈ 𝐼 (𝑅), ∃𝑠 ∈ 𝐼 (𝑆) : 𝑟 [A] ≈𝜎 𝑠 [B]
In simpler terms, for each dependent value exists a similar referenced value given the similarity
measure 𝜎 and some threshold.

We can identify trivial sINDs that correspond to trivial INDs. First, an empty column references
every other column. Since there exist no values on the dependent side, every statement using the
universal quantifier is trivially true. Second, every column trivially references itself: 𝑅 [A] ⊂∼𝜎 𝑅 [A]
always holds. Thus, we ignore such reflexive sIND candidates. Like in traditional IND discovery,
we also ignore null values [22], i.e., in the presence of a null value in the dependent column, we do
not demand a null value or a value similar to null in the referenced column.
Sawfish supports both edit-based and token-based similarity measures. As a prominent repre-

sentative of edit-based similarity measures, we explore the Levenshtein distance. The Levenshtein
distance, also known as edit distance (𝐸𝐷), is defined as the minimum number of edit operations
to transform one string into another [16]. There are three possible edit operations: substitutions
can exchange any character of the string with another character; insertions allow the addition of a
character at any position of the string; deletions allow the removal of any character of the string.
To determine whether two strings are considered similar, the Levenshtein distance is compared to
a user-defined threshold 𝜏 .

We identify another special case that is specific to sINDs and the Levenshtein distance. Let 𝜏 be
the user-defined edit distance threshold. Each value with ≤ 𝜏 characters is similar to every other
value with ≤ 𝜏 characters, because we can construct every word that consists of ≤ 𝜏 characters
with 𝜏 edit operations. Therefore, all pairwise columns that contain only values with ≤ 𝜏 characters
automatically form sINDs. However, these sINDs do not have any meaning other than that the
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columns contain only short strings. We call these sINDs simple sINDs and exclude them from our
analysis.

Besides supporting the absolute edit distance (𝐸𝐷), Sawfish can also be used with a normalized
edit distance (𝑁𝐸𝐷) threshold 𝛿 . The normalized edit distance is defined as follows:

𝑁𝐸𝐷 (𝑥,𝑦) = 𝐸𝐷 (𝑥,𝑦)
𝑚𝑎𝑥 ( |𝑥 |, |𝑦 |)

Applying this definition allows us to convert a normalized similarity threshold into an absolute
edit distance value depending on the maximum length of the two involved strings. Given the
longer string length 𝑙 and the normalized threshold 𝛿 , we can calculate the absolute threshold 𝜏 as
𝜏 = (1 − 𝛿) · 𝑙 .

Since we preprocess the data, we can calculate individual absolute thresholds for each occurring
length beforehand. However, we observed that we discover fewer dependencies when using a
normalized threshold. Normalization yields a minimum string length before we allow a single edit
operation, i.e., 𝑙 ≥ 1

𝛿
. This shortcoming of the normalized edit distance is especially noticeable in

sINDs, because they are typically found in columns that contain shorter values.
Therefore, we created a hybrid mode for Sawfish that always allows at least a single edit

operation, but uses a normalized threshold for larger string lengths. Given two strings 𝑥 and 𝑦
and a normalized threshold 𝛿 , the hybrid mode of Sawfish considers the strings to be similar as
follows:

𝑥 ∼𝛿 𝑦 =

{
𝐸𝐷 (𝑥,𝑦) ≤ 1 if𝑚𝑎𝑥 ( |𝑥 |, |𝑦 |) ∗ (1 − 𝛿) ≤ 1
𝑁𝐸𝐷 (𝑥,𝑦) ≤ 1 − 𝛿 otherwise

As the representative of token-based measures, we choose the Jaccard similarity (𝐽𝐴𝐶). The
Jaccard similarity is defined as the number of tokens in the intersection divided by the number of
tokens in the union of two token sets. To determine whether two strings are considered similar, the
resulting ratio is compared to a user-defined threshold 𝛿 . There are multiple ways to tokenize strings,
e.g. using n-grams. In this work, we tokenize strings by splitting them up at their whitespaces.
There are no simple sINDs for the Jaccard similarity, because it is a relative similarity measure.

Lastly, we do not expect interesting or meaningful inclusion dependencies among very long
values, e.g., abstracts of scientific papers, because we are not typically joining over those columns.
Therefore, we ignore columns that include any value with more than 50 characters or 10 tokens.

4 THE SAWFISH ALGORITHM

Sawfish stands for Similarity AWare Finder of Inclusion dependencies via a Segmented Hash-
index. Sawfish preprocesses the dataset, generates some metadata, and marks the sIND candidates
requiring validation. Then, it performs the actual sIND discovery using an inverted index, which
is used to identify possibly similar strings. We illustrate the discovery process by following the
example from Table 1. We use the 𝐸𝐷 mode of Sawfish and set an edit distance threshold 𝜏 = 1.
Sawfish currently supports both the Levenshtein distance and the Jaccard similarity, but it

can easily be extended to any similarity measure that has the following properties. First, it must
be possible to prune value pairs based on an ordered numeric measure, e.g., length of values
for Levenshtein and number of tokens for Jaccard. Second, it must be possible to prune value
pairs based on the inequality of subparts. This property allows the creation of an inverted index,
where substrings point to their parent strings. If two values do not share a substring, they must be
dissimilar according to the similarity measure. Thereby, Sawfish can avoid validating dissimilar
string pairs. Other similarity measures that fulfill these properties include the Hamming distance,
the Cosine similarity, and the Dice similarity.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 75. Publication date: May 2023.

https://orcid.org/0009-0007-6547-592X
https://orcid.org/0000-0002-4852-3113
https://orcid.org/0000-0002-4483-1389


Discovering Similarity Inclusion Dependencies 75:7

indexed values when

validating lengthresults goalie

length name club 11 12 13 14

11 VfL Potsdam ViL Potsdam, 


SpVgg Benau

12 Potsdamer SC, Potsdamer SC 
SpVgg Bernau

13 SpVgg Beelitz SpVgg Beelitz
]

14 SpVgg Beelittz

Fig. 1. Example relation after preprocessing, including a visualization of the sliding length window; showing

the indexed values for each currently validated length

4.1 Preprocessing

We transform the input into a particular data format and extract additional metadata. First, we
group all distinct values of each column by their lengths. Here, length is the number of characters of
the string for the 𝐸𝐷 case, whereas it is the number of tokens of the string for the 𝐽𝐴𝐶 case. Figure 1
illustrates this grouping structure for our example relations and the 𝐸𝐷 case. The right-hand side
of the figure visualizes the sliding length window that will be explained later.

We can discard any column containing at least one value with more than fifty characters or more
than ten tokens. During input reading, we collect the minimum and maximum length of all values
for each column.
To preprocess the data without requiring entire tables to fit into main memory, we can evict

buckets by writing them to disk. The memory check occurs after reading a configurable number
of values, which defaults to 100. If we need to free memory, we first identify the largest column.
Therefore, we obtain the column sizes of the preprocessing routine and compare them against each
other. We evict the largest column first because we free most of the memory with minimal disk I/O.
To obtain the bucketized view of the data without having to read the entire column again later, we
write the buckets separately to disk. We reset all data structures to free the memory that we have
just written to disk. We repeat this process until we fall below the memory limit. After processing
the entire input, we deduplicate all evicted buckets again. Due to their early eviction, there might
be duplicate values that need to be eliminated.
There are up to 𝑛2 unary sIND candidates. However, we can prune some candidates based on

the collected metadata. First, we prune trivial sINDs, e.g., reflexive sINDs and sINDs with empty
columns. Second, we prune the simple sINDs in the 𝐸𝐷 case, i.e., sINDs where both columns contain
only values smaller than 𝜏 characters. Third, we prune sIND candidates that cannot hold due to their
length difference. In the 𝐸𝐷 case, the maximum length difference between two similar strings is 𝜏 ,
because we can only perform 𝜏 insert or delete operations. Therefore, we can prune any candidate
where the longest value of the dependent column is longer than the longest value of the referenced
column plus 𝜏 . Similarly, we can prune any candidate, where the shortest value of the dependent
column is shorter than the shortest value of the referenced column minus 𝜏 . In the 𝐽𝐴𝐶 case, any
value 𝑥 can only be similar to values 𝑦 where |𝑥 | · 𝛿 ≤ |𝑦 | ≤ |𝑥 |

𝛿
. Therefore, we can apply a similar

pruning for the shortest and longest values of a column. We store the remaining candidates by
assigning each referenced column all columns that possibly depend on it.
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In our example, we generate two candidate sINDs for 𝜏 = 1: results[name]
⊂∼ goalie[club] and

goalie[club]
⊂∼ results[name]. All candidates containing results[points] and goalie[p_id] are pruned

based on their length difference.

4.2 Basic Discovery Approach

As with the detection of traditional INDs, the general idea of Sawfish is that it is sufficient to find
a single counterexample to invalidate an sIND candidate. Due to the universal quantifier in the
sIND definition, there needs to be at least one similar referenced value for each dependent value.
However, it is infeasible to directly compare every dependent value to every referenced value. To
reduce the number of comparisons of string pairs, Sawfish uses an inverted index. After building
the index for a referenced column, each dependent column is probed against the index. For each
dependent value that matches an index entry, the similarity of the resulting value pair is validated.
If each dependent value is similar to at least one referenced value, the sIND is emitted as a valid
dependency.

4.3 Inverted Index

The inverted index is the centerpiece of Sawfish. It stores a mapping of deduplicated substrings to
their input strings. In 𝐽𝐴𝐶 mode, we simply store a mapping of each token to its input string.

In 𝐸𝐷 mode, we need to segment every string and store the mapping of each segment to its input
string. This procedure is based on the segment-based filter of the PassJoin algorithm [17]. Sawfish
does so in two steps. First, it generates the start positions of the segments. Since having segments
with roughly the same size performs well in practice [17], the string length is divided by the number
of segments. If the result has a remainder, we use shorter segments at the beginning and larger
segments at the end. Due to the length grouping in the preprocessing, we need to compute the
start positions only once for each length. Second, Sawfish obtains the substrings by using the
previously generated start positions. It maps each substring to its parent string. However, not all
substrings are placed on the same map. There is a map for each segment position to access the
segment sets individually.
Table 2 shows the inverted index for the name column in our example. We use 𝜏 = 1, so every

value is split into two segments. The segments within each segment position are deduplicated; thus,
for instance, SpVgg is presented only once.

Table 2. Inverted index of the name column for 𝜏 = 1

Segment 1 Segment 2 Original value

SpVgg Bernau SpVgg Bernau
Beelitz SpVgg Beelitz

VfL P otsdam VfL Potsdam

Potsda mer SC Potsdamer SC

To reduce memory consumption of the inverted index, we employ a technique similar to
std::string_view of the C++ standard. Since all strings and their substrings are immutable in
the index, we do not need to copy the characters, but can use a view instead.

Sliding Length Window. Based on the intuition of the length filter, we only need to compare a
dependent value 𝑦 to the index values within a certain interval. We do not use the entire index;
instead, we only use the index blocks required to validate the current dependent values. We can
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iterate the dataset length-wise and build new indices only on-demand while removing unused
indices. This technique resembles a sliding window through the occurring lengths of the dataset,
as illustrated on the right-hand side of Figure 1.

We take advantage of the length buckets from preprocessing to iterate value lengths. We iterate
from the longest to the shortest length because we expect fewer accidental matches for longer
strings. Thus, we can prune candidates earlier. Let 𝑙 be the length of the current iteration. In every
iteration, we discard the index with length 𝑙 + 𝜏 + 1 or 𝑙

𝛿
+ 1, respectively. Next, we load the bucket

with length 𝑙 − 𝜏 , or 𝑙𝛿 , respectively, and create the inverted index. Afterwards, we validate the
dependent values with length 𝑙 . We loop until all lengths are processed, or there are no dependent
candidates for our referenced column left.

There are two main advantages of the sliding length window. First, there is no need to build the
entire index if a column is no longer referenced by any other column. Therefore, we can abort the
execution early. Second, the indices in the main memory are smaller, so they are more likely to fit
into the cache lines and can be accessed faster.

4.4 Dependent Value Validation

This section presents our approach to validating the individual values from the dependent columns
of candidate sINDs. This phase shows the largest difference between the 𝐸𝐷 and 𝐽𝐴𝐶 modes.

4.4.1 𝐸𝐷 mode. To validate values in 𝐸𝐷 mode, we show how to generate substrings compatible
with the inverted index. Then, we describe our method for efficiently using the inverted index in our
use case. Also, we demonstrate how to use the inverted index to speed up similarity computation.

Substring Generation. If two strings 𝑥 and 𝑦 are similar, at least one substring of 𝑦 matches a
segment of 𝑥 . Since we created the inverted index based on the segments, we need to generate all
substrings that can match a segment. However, we do not want to probe the index for all substrings
of 𝑦. Instead, we use the techniques by Li et al. to reduce the substring comparisons [17]. We
compare only equally-sized substrings to the segments. Furthermore, we limit the start positions of
the substrings to be close to the start positions of the segments. Finally, we employ a multi-match
aware technique that skips unnecessary substrings.
Additionally, we need to compute substrings for multiple target lengths. Any string 𝑦 can be

similar to a string 𝑥 , only if |𝑦 | − 𝜏 ≤ |𝑥 | ≤ |𝑦 | + 𝜏 . Therefore, we need to compute the substrings
for every length in [|𝑦 | − 𝜏, |𝑦 | + 𝜏]. Due to these different target lengths, also the inverted index is
divided into the different lengths of its values.

Index Probing. We need the generated substrings and their respective target length to probe the
inverted index. Therefore, we iterate all possible length differences ld. For each target length, we
first generate the substrings. Then we select the correct index for the target length. Finally, each
substring for the 𝑖-th segment position is compared to the 𝑖-th segments of the selected index. If we
find matching pairs of substring and segment for position 𝑖 , we validate their actual similarity, as
we describe in the next paragraph. Either one of the matches is similar to the dependent value, or
we continue with checking the 𝑖 + 1-th segment. To not process a referenced value multiple times,
we keep a set of already validated values. Algorithm 1 shows the entire function.

This routine differs from the original PassJoin index probing because we need to find only one

similar value, instead of all similar values [17]. Therefore, we reduce the number of unnecessary
index accesses by validating the index matches earlier.

String Similarity Computation. After obtaining possibly similar string pairs from the inverted
index, we validate their similarity by computing their exact edit distance. There is a well-known
dynamic programming-based algorithm to calculate edit distances [25]. However, it is possible
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Algorithm 1 Index Probing in 𝐸𝐷 mode
Data: indices, value
Result: existsSimilarString

1: function ProbeIndex

2: for ld← [−𝜏, 𝜏] do
3: substrings← GenerateSubstrings(value, ld, 𝜏 + 1)
4: index← indices[len(value) + ld]
5: alreadyValidated← ∅
6: for i ∈ [1, 𝜏 + 1] do
7: segmentMap← index[i]
8: matches← ∅
9: for all sub ∈ substrings[i] do
10: for all match ∈ segmentMap[sub] do
11: if match ∉ alreadyValidated then
12: matches← ∪ match

13: alreadyValidated← ∪ match

14: if matches ≠ ∅ then
15: existsSimilarString← ValidateMatches(value, matches)

16: if existsSimilarString then
17: return existsSimilarString

18: return False

to use a technique from Li et al. to improve this algorithm by avoiding computing all matrix
entries [17]. First, we are only interested in whether two strings are similar. Thus, we can abort the
computation if we cannot obtain an edit distance below 𝜏 . Second, we know about a matching part
between the strings due to the segment filter. Therefore, we can split the edit distance computation
into the left and right parts of the match separately. Thus, we can use tighter thresholds. Finally, we
compare the obtained edit distance to the user-defined edit distance threshold 𝜏 to decide whether
the two strings are similar.

4.4.2 𝐽𝐴𝐶 mode. The method for validating the Jaccard similarity is significantly simpler than that
for the Levenshtein distance. Since we know the number of tokens for the entries in the inverted
index and the number of tokens of the dependent value, we can calculate the minimum number of
tokens that need to match to be similar. This threshold can be computed as 𝑇 = 𝛿

1+𝛿 ( |𝑦 | + |𝑖𝑛𝑑𝑒𝑥 |).
We use the scan count method to identify similar strings [27]. After determining𝑇 , we simply count
the number of exact matches between the tokens of the dependent value 𝑦 and each index entry
𝑖𝑛𝑑𝑒𝑥𝑖 . If there are more than 𝑇 matches for any 𝑖 , we can directly return that there is a sufficiently
similar value for 𝑦 and validate the next dependent value. Algorithm 2 shows the procedure in
detail.

4.5 sIND Discovery

Sawfish combines the building blocks above – Algorithm 3 presents the entire procedure. For each
referenced column, we build an index and validate all possible dependent columns. This approach
explains the order in which we store the candidates in preprocessing. It allows us to build the index
only once and go through all possible dependent columns without rebuilding it. We probe the
inverted index for each dependent value and save the matches. However, if we do not find a single
match for all substrings, we can directly discard the sIND candidate because we only need one
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Algorithm 2 Index Probing in 𝐽𝐴𝐶 mode
Data: indices, value
Result: existsSimilarString

1: function ProbeIndex

2: for indexLength← [⌈𝛿 |value|⌉, ⌊ |value |
𝛿
⌋] do

3: index← indices[indexLength]
4: T← 𝛿

1+𝛿 ( |value| + indexLength)
5: counts← {}
6: tokens← Tokenize(value)

7: for all tok ∈tokens do
8: for all match ∈index[tok] do
9: count[match]++
10: if count[match] ≥ 𝑇 then
11: return True

12: return False

counterexample. Otherwise, we validate the individual matches using the similarity measure. If one
of the matches is indeed similar to the dependent value, we can jump to the next dependent value.
Otherwise, we also can discard the candidate. If the dependent column is still in the candidates set
of the referenced column after validating all dependent values, we can output a valid sIND between
the dependent and the referenced column.

Validating one referenced column at a time is not optimal. While there might be situations where
only one index fits into main memory, for most real-world datasets, multiple indexes do fit into
main memory. Since we require the largest index to fit into the main memory, smaller indexes can
coexist in the main memory. Therefore, we can build the inverted index for multiple columns at
once, enabling us to use the available memory better. Moreover, since the columns of the indices
might depend on each other, we do not need to load them into main memory just for validating the
values, but we can also build the index for them. Nonetheless, we still need to decide which indices
to fit into the main memory and model the decision after the bin packing problem.

The bin packing problem is NP-hard [19]. However, there exist multiple approximation techniques.
The First Fit Decreasing (FFD) algorithm works by first sorting the integers (here: index sizes) and
then selecting fitting elements. Dósa proved the tight bound of FFD(b) ≤ 11/9OPT(b) + 6/9, where
FFD(b) is the number of bins used by FFD and OPT(b) the number of bins of the optimal solution [8].
We use FFD to select the columns that we process in each iteration. Thus, our column batching
selection method works well because even in the worst-case scenario, our algorithm needs to run
only slightly more often than in an optimal case.

5 EXPERIMENTAL EVALUATION

Our evaluation of Sawfish includes a comparison with two competitors, and we investigate the
scaling behavior of Sawfish. Finally, we look into the actual dependencies that Sawfish produces,
and examine their usefulness. We publicly provide all source code1.

5.1 Experimental Setup

All experiments were run on an Ubuntu-based (20.04 LTS) server, equipped with two Intel Xeon
E5-2650 processors and 256 GB of RAM. All algorithms are single-threaded, running on Java 11

1https://github.com/HPI-Information-Systems/Sawfish
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Algorithm 3 Candidate Validation
Data: candidates, columnBucketMap, 𝜏 ⊲ From Preprocessing

Result: all valid unary sINDs

1: processed←∅
2: while |processed| ≠ |columns| do
3: refColumns← GetReferencedColumns(columnBucketMap, processed)

4: for 𝑙 ← [50, 1] do
5: if ∀ ref ∈ refColumns: candidates[ref] = ∅ then
6: break
7: for all ref ∈ refColumns do
8: if candidates[ref] ≠ ∅ then
9: columnIndices[ref] [𝑙 + 𝜏 + 1] ← ∅
10: columnIndices[ref] [𝑙 − 𝜏] ← BuildIndex(columnBucketMap[ref] [𝑙 − 𝜏], 𝜏 + 1)
11: for all ref ∈ refColumns do
12: indices← columnIndices[ref]
13: for all dep ∈ candidates[ref] do
14: for all value ∈ columnBucketMap[dep] do
15: exisitsSimilarString← ProbeIndex(indices, value)

16: if ¬ existsSimilarString then
17: candidates[ref].drop(dep)
18: break
19: if ¬ existsSimilarString then
20: break
21: for all ref ∈ refColumns do
22: for all dep ∈ candidates[ref] do
23: output dep ⊂∼ ref

and reading their input data from CSV files. We do not use the entire main memory, but set explicit
memory limits for the Java Virtual Machine. We use a 4 GB limit for all datasets, except for the
IMDB dataset, which uses 32 GB. Moreover, we set a time limit of 24 hours, aborting executions
that exceeded that time threshold. Unless stated otherwise, all experiments were run three times,
and we present the mean of the runs.
Sawfish is compatible with the Metanome data profiling platform [21], which handles both

file and database backed inputs and provides a unified view for the algorithms. We used the
metanome-cli to conduct the experiments in a repeatable and efficient way.
We use four publicly available datasets2: three real-world datasets, and the synthetic TPC-H

dataset. Table 3 shows the datasets and their characteristics. The number in parentheses indicates
the number of ignored attributes (due to values containing more than 50 characters or more than
ten tokens). The number of distinct values across all columns excludes the values of the ignored
columns.
Because there exists no other sIND detection algorithm, we compare Sawfish to a traditional

IND detection algorithm and a baseline. For the former, we choose the state-of-the-art algorithm
Binder [22] using the authors’ implementation. Binder solves a specialized task in comparison to
Sawfish, implicitly setting 𝜏 = 0. Thus, it can use techniques more tailored to the traditional IND
discovery, as we explained in Section 2.

2https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
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Table 3. Summary of datasets used in the experiments.

size (MB) cols (ignored) rows distincts

CENSUS 112 42 (0) 199 524 101 937
WIKIPEDIA 570 14 (3) 14 024 428 6 950 343
TPC-H 1430 61 (6) 6 001 215 9 547 611
IMDB 3790 108 (14) 36 244 344 47 539 970

Also, we compare Sawfish to a baseline solution for each similarity measure – an approach
based on the original string similarity join algorithms PassJoin [17] and ScanCount [27]. Applying
the definition of sINDs, we simply similarity-join each value of the dependent column one by
one with the referenced column. If each value of the dependent column finds at least one join
partner, the sIND between the dependent and the referenced column holds. For PassJoin, we based
our implementation on the EditDistanceJoiner by the database group of Tsinghua University3.
The provided algorithm is capable of handling only strings that are longer than the edit distance
threshold. Therefore, Sawfish also ignores shorter strings when comparing both algorithms. Since
Sawfish can handle strings that are shorter than the edit distance threshold, we process all strings
up to length 50 in the other experiments. Additionally, we implement the commonly known length
filter, which compares the minimum and maximum lengths of column pairs. For ScanCount, we
did not find a suitable Java implementation, so we implemented a plain Java version ourselves.

5.2 Runtime Scalability

This section examines how Sawfish scales in different dimensions. We investigate the row and
column scalability. Additionally, we analyze the runtime impact of the edit distance threshold.

5.2.1 Row Scalability. This experiment investigates the runtime scalability with the number of
rows. We used random samples: starting with 10% of the input dataset and then gradually growing
the sample size by 10%. We repeated this experiment 10 times and plotted the mean and standard
deviation.

We present the results for the CENSUS, WIKIPEDIA, TPC-H, and IMDB (𝐽𝐴𝐶 mode only) datasets
in Figure 2. We do not show the IMDB dataset in 𝐸𝐷 mode, as processing the entire dataset exceeds
our time limit of 24 hours, as shown in Figure 7a. We set the edit distance threshold 𝜏 = 1 and
the Jaccard similarity threshold 𝛿 = 0.4. The solid yellow and blue lines show the runtime of the
𝐽𝐴𝐶 mode and 𝐸𝐷 mode, respectively. The numbers of sINDs are presented as dashed lines in the
respective colors.

We observe that Sawfish exhibits a near perfect linear scaling, both in 𝐸𝐷 mode and 𝐽𝐴𝐶 mode.
We also observe that the runtime is not dependent on the result set size: in the CENSUS and the
WIKIPEDIA datasets the result set size is almost constant, but the runtime increases similarly to
the TPC-H and the IMDB datasets, where the result set size continuously grows. However, this
independence of runtime and result set size is related to our experimental setup. Sawfish benefits
from discarding sIND candidates early. Verifying an sIND candidate that is valid is most demanding
because, for every dependent value, it probes the index and computes the exact edit distance at
least once. Since we sampled from the input dataset, for all sINDs that do not appear in the result
set of smaller data portions, there is a missing value in the referenced column. The validation effort
for other values does not change because we cannot check the dependent value that references the

3https://github.com/lispc/EditDistanceClusterer
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missing value first. Thus, the validation effort decreases only linearly. Nonetheless, we can expect
Sawfish to scale linearly to even longer datasets.
Interestingly, the variance is higher in 𝐸𝐷 mode for theWIKIPEDIA dataset, while it is higher

for the TPC-H dataset in 𝐽𝐴𝐶 mode. For the CENSUS dataset, the overall variance is low due to the
short runtime. The results for the IMDB dataset also exhibit little variance and follow the linear
trend of the other datasets. There is even a slight decrease in mean runtime in 𝐽𝐴𝐶 mode on the
TPC-H dataset. However, these longer running samples do not necessarily contain more sINDs.
These artifacts can be linked to the individual dataset characteristics. If we find dependent values
that have many matches in the inverted index, but are in fact dissimilar to all referenced values,
the validation takes longer. By increasing row set sizes, we also increase the number of “strong”
counterexamples, i.e., counterexamples with no index matches. We observe a similar behavior in
Section 5.2.3.
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Fig. 2. Row scalability on different datasets (for 𝐸𝐷 mode 𝜏 = 1, for 𝐽𝐴𝐶 mode 𝛿 = 0.4)

5.2.2 Column Scalability. Next, we investigate the scalability of Sawfish with an increasing
number of columns. For this experiment, we randomly sampled column sets for each of the ten
column set sizes. We used 30 samples for each size to accommodate the high variance from
different column sets, because the runtime depends on the number of valid sINDs that happen to
hold in that sample. To explain the variance, we take another look at our introductory example,
regarding two sets of two columns each. Let the first set consist of column results[name] and column
goalie[p_id], and the second consist of column results[name] and column goalie[club]. As the sIND
results[name] ⊂∼ goalie[club] as well as the symmetric counterpart are valid, Sawfish needs
to iterate through both columns, build indices, and validate all dependent values. On the other
hand, we can already determine after preprocessing that there are no sINDs in the first column
set, because of their length difference. Thus, Sawfish can process it much faster. We investigate
the impact of valid dependencies in Section 5.3. To emphasize the variance between the results,
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we present boxplots for each sample size. Figure 3a shows the results for the column scalability of
the CENSUS, WIKIPEDIA and TPC-H datasets in 𝐸𝐷 mode. We omit the IMDB dataset for the same
reasons as in our row-scaling experiment.

Since the number of sIND candidates grows quadratically in the number of columns, one could
expect a quadratic scaling. However, we observe a linear scaling. In our experimental setup of
sampling from an input dataset, the number of valid sIND candidates on average grows linearly
with the number of columns. Additionally, we find that Sawfish’s runtime in general does not
grow over-proportionally with rising data amounts. This shows the effectiveness of Sawfish’s
memory handling.
While the CENSUS dataset shows almost no variance due to its small size, the runtimes vary

widely for the WIKIPEDIA and the TPC-H dataset. For the WIKIPEDIA dataset, we observe a small
runtime variance for column sets of sizes 10 and 11, as only a few sets have such column counts.
The remaining variance can be attributed to the differences between the three experiment runs.
However, we observe some outliers. On the one hand, there are two outliers for column set size 10
that have a drastically reduced runtime. On the other hand, there are two outliers for column set
sizes 3 to 5 that have a drastically increased runtime. For column set size 2, there are also a few
outliers. These are artifacts related to the difference between processing a valid sIND and quickly
discarding an invalid candidate, as we explained before. However, they are also related to the dataset
“shape”. The WIKIPEDIA dataset consists of two tables: Table 1 is wider, while Table 2 is longer.
There exists the valid sIND Table1[column9] ⊂∼ Table2[column1]. It takes roughly 40 seconds to
validate this sIND alone, explaining the extreme outlier for column set size 2. This sIND is also
responsible for the two outliers for column set size 10. There are similar explanations for the other
outliers.

When using 𝐽𝐴𝐶 as similarity measure, the results in Figure 3b for the WIKIPEDIA dataset look
quite similar. While we can process the data faster overall, the scalability differs not much. We
observe similar outliers because they are not specific to the 𝐸𝐷 mode.
For the TPC-H dataset, Sawfish’s column scaling behaves similarly. Figure 3 also shows some

outliers in 𝐸𝐷 mode. However, these exist for the same reasons, as in the WIKIPEDIA dataset.
Similarly to the WIKIPEDIA dataset, the general scaling seems to be linear as well. We observe
another artifact of our random sampling: the mean runtime for the column set size 40 is in fact
lower than the mean runtime for column set size 35. Due to the large number of possible column
sets of these sizes, such a deviation can occur because of the differences in runtime of individual
column combinations. Interestingly, there seems to be a column set of size 50 that takes longer to
process than the entire dataset. The reason for this result is simply normal measuring deviation.

In comparison to the 𝐸𝐷 mode, the column scalability on the TPC-H dataset in Figure 3b in 𝐽𝐴𝐶

mode presents a near perfect linear scaling of the mean runtime. We still observe outliers, but
the overall variance is lower. Due to the lower overall runtime, the time spent on processing the
input has a larger share of the entire runtime. Because the input handling is less dependent on
specific data characteristics, it differs less than the validation time for equal sample sizes. Even on
the largest IMDB dataset, the observed column scaling is linear. We also observe some outliers that
are present for similar reasons as inWIKIPEDIA and TPC-H datasets. However, the overall variance
compared to the absolute runtime is lower. This experiment shows that Sawfish’s column scaling
behavior can be replicated on larger datasets.

5.2.3 Similarity Measure Thresholds. This section examines the impact of the only functional
configuration parameter: the similarity threshold. For the 𝐸𝐷 mode, this is the number of allowed
edits 𝜏 . For the 𝐽𝐴𝐶 mode, this is the similarity threshold 𝛿 .
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Fig. 3. Column scalability on different datasets

Edit Distance Threshold. We investigate the edit distance threshold on two datasets: CENSUS and
WIKIPEDIA. We run Sawfish with an edit distance threshold 𝜏 between 0 and 6. We choose 6 as
the upper bound, because beyond that threshold a majority of the strings consists of less than 𝜏

characters. We do not evaluate the other datasets, as they cannot be processed for 𝜏 = 6 within our
time limit of 24 hours. Figure 4a shows the results for the CENSUS dataset. We plot the runtime
and the number of valid sINDs. While the runtime stays almost constant for lower edit distance
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Fig. 4. Edit distance threshold scaling on different datasets

thresholds, it quickly rises for 𝜏 ≥ 4. In contrast, the result set grows over the entire experiment,
despite a growing number of simple sINDs (all value lengths are ≤ 𝜏).

Interestingly, the jump in runtime does not relate to a jump in the result set size. To investigate
the increasing runtime, we look at the number of matches in our index until a similar string was
found. Figure 4b shows the runtime compared to the number of index matches. We can observe
a clear correlation. There are two factors that influence the number of matches: the number of
dependent values that we need to validate for the candidate sINDs, and the edit distance, which
influences the pruning power of the inverted index. Since the segment length shrinks, there are
more coincidental matches. Both of these factors are dependent on the internal structure of the
dataset. For the CENSUS dataset, we observe that there is an increase in coincidental matches
for edit distance 𝜏 ≥ 4 because the number of index matches grows more than the number of
discovered sINDs. For 𝜏 = 6, the number of index matches decreases again, because we can validate
some strings earlier due to the greater edit distance. However, the effort for each edit distance
computation increases, so overall the runtime still increases.
The results for the WIKIPEDIA dataset are on the right-hand side of Figure 4a. As before, we

plot the runtime and the number of valid sINDs, here in a logarithmic scale to better show the
differences in runtime. Sawfish’s runtime increases significantly for lower edit distance thresholds
and reaches it peak at 𝜏 = 3. Afterward, it decreases slightly for larger edit distance thresholds,
while the result set size stays almost constant.

To investigate both the stark increase and the following decrease in runtime, we regard the index
matches once again. We use linear scaling in Figure 4b to better visualize the similarity of the lines.
Interestingly, the two curves have a nearly identical shape. In contrast to the CENSUS dataset, the
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early increase in the number of valid sINDs coincides with the increase in the number of index
matches. Due to the higher number of valid candidates, we have to validate more dependent values.
However, the number of index matches for 𝜏 = 3 is significantly higher per dependent value than
for all other edit distances. For each dependent value, we find an average of 17 000 index matches
for 𝜏 = 3, while there are only 8500 matches on average for 𝜏 = 4. This means that there are many
index matches for 𝜏 = 3 that cannot be validated. Thus, we have to iterate the complete list of index
matches for each dependent value. In contrast, we can validate more values for 𝜏 = 4, so we do not
have to process all index matches. Additionally, this explains the increase in valid sINDs for 𝜏 = 4.
This trend of earlier validation continues for 𝜏 = 5 and 𝜏 = 6. It also indicates that the number
of coincidental matches does not increase significantly. As explained for the CENSUS dataset, the
number of index matches decreases over-proportionally to the decrease in runtime, because each
individual edit distance computation takes longer.

In conclusion, Sawfish is able to discover sINDs also for higher edit distance thresholds. However,
the runtime is dependent on the internal structure of the dataset, namely the number of valid sINDs
and the number of coincidental index matches.

Jaccard Similarity Threshold. We investigate the effect of different similarity thresholds 𝛿 on the
TPC-H dataset. We focus on this dataset, because it contains strings with varying token counts;
thus the difference for different thresholds is more noticeable.
Figure 5 shows the runtime and the result set size for different 𝛿 , ranging from 0.1 to 1.0. The

reason for the drop in sINDs between 𝛿 = 0.5→ 0.6 is the content of the discovered sINDs. For
𝛿 ≤ 0.5, we find matches between single token and two token strings that form the extra sINDs.

The runtime behavior is related to the validation characteristics, especially for values with more
tokens. For 𝛿 = 0.1, for every string we need at most two matching tokens to validate the similarity,
because we limit the number of tokens to 10. For 𝛿 = 0.2 and 𝛿 = 0.3, we cannot validate each
string so easily, but the threshold is still low. Thus, many coincidental matches occur, which slow
down the discovery process. For 𝛿 ≥ 0.4, the number of coincidental matches decreases, but the
validation effort for each individual value grows, because we need to find more matching tokens.
Nonetheless, the runtime converges. This behavior is different from the edit distance case, because
we discover fewer sINDs overall, but also the number of coincidental matches is lower.
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Fig. 5. Jaccard similarity scalability on the TPC-H dataset

5.3 Impact of Valid Dependencies

The column scalability experiment illustrated how much of the overall runtime depends on individ-
ual columns or even individual sIND candidates. Thus, we explore this effect in more detail. Valid
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dependencies contribute to the runtime especially, because we need to validate each dependent
value and cannot abort early.

Figure 6 shows the runtime for each potential sIND candidate in CENSUS,WIKIPEDIA and TPC-H
datasets. For clarity, we only show the results of 𝐸𝐷 mode, but the findings are similar for the 𝐽𝐴𝐶
mode. We highlight valid candidates and order the candidates by the number of distinct dependent
values. As usual, we filtered any candidates that were discarded during preprocessing.
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Fig. 6. Difference in runtime of valid and invalid candidate validation (log-scale for both axes)

We can observe two expected phenomena. Larger dependent columns and valid dependencies
need more time to validate. The scaling behavior is more interesting. While the runtime for valid
dependencies continuously increases for larger dependent columns, the scaling is not clear for
invalid dependencies. This is because Sawfish needs to find a dependent value for which no
similar referenced value exists. Therefore, the runtime for invalid dependencies is dependent on the
position of the counterexample in the dependent column and thus almost random. This behavior
can be observed especially for larger invalid dependencies, where the position differences between
counterexamples are more noticeable.

5.4 Comparison to Related Work

The experiments in this section compare Sawfish with the baselines using all datasets.

Edit Distance Mode. The following experiment compares the runtimes for an edit distance thresh-
old 𝜏 = 0. In this setting, all performance results are comparable since all algorithms discover
traditional INDs. The left-hand side of Figure 7a shows the results for all datasets, scaled per dataset
to the longest running algorithm. Interestingly, for the CENSUS dataset, our naive baseline is the
fastest algorithm, while Binder needs the most time to complete the search. Since the dataset is rel-
atively small, the benefit of Sawfish’s preprocessing does not outweigh its overhead. Nonetheless,
Sawfish is relatively close to the runtime of the baseline.

For the WIKIPEDIA, the TPC-H and the IMDB datasets, Sawfish’s preprocessing combined with
the improved index access pattern improves the performance over the baseline. Binder is the
slowest in this experiment, because the two other algorithms can operate entirely in main memory
if the entire dataset fits. Binder eagerly writes every bucket to disk after preprocessing, because it
anticipates larger dataset sizes.
Next, we set 𝜏 = 1, i.e., allow sINDs with an edit distance of up to 1 for each value. We present

them on the right-hand side of Figure 7a. The results for Binder remain in the figures for comparison
purposes, even though Binder cannot discover such dependencies. The result for the CENSUS
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Fig. 7. Comparison of Sawfish to related work

dataset is comparable in runtime to the IND discovery experiment. However, the results for the
WIKIPEDIA dataset and the TPC-H dataset show the superiority of Sawfish. For the TPC-H dataset,
we observe the higher complexity of the sIND discovery compared to the IND discovery. The
runtime of Sawfish is about one third of the baseline’s runtime. This visualizes the improvements
that we accomplish by modifying PassJoin’s approach. The effect is even larger in the WIKIPEDIA

dataset: Sawfish outperforms the baseline by a factor of around 6.5. Sawfish was not able to
discover all sINDs for the IMDB dataset, as it exceeded the time limit of 24 hours. This emphasizes
the difficulty of sIND discovery, because Sawfish discovered all INDs (without allowing similarity)
in around 6 minutes. We discuss ideas to improve the validation speed in Section 6.

Our results show that Sawfish can efficiently discover sINDs for reasonably large datasets. While
the sIND discovery is a hard problem, Sawfish manages to process some datasets in a comparable
time to the IND discovery. For all larger datasets, Sawfish outperforms the baseline.

Jaccard Similarity Mode. Figure 7b shows the results for 𝛿 = 1.0 on the left-hand side. Binder
performs best for the CENSUS and the TPC-H datasets, while Sawfish performs best on the other
two datasets,WIKIPEDIA and IMDB. Besides Binder’s algorithmic advantages, the overhead for
tokenization inhibits the performance of the other two algorithms. While Sawfish and the baseline
could have found more dependencies due to the order insensitivity of the Jaccard similarity, we did
not observe such effects in our dataset. Nonetheless, they have to tokenize each value. On the other
hand, Sawfish and the baseline can once again operate entirely in main memory. Therefore, they
gain an advantage in datasets that do not create many tokens per value, e.g.,WIKIPEDIA and IMDB.
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For the next experiment, we set 𝛿 = 0.4 and show the results on the right-hand side of Figure 7b.
In general, the performance characteristics remain similar. The gap between Sawfish and Binder
widens a bit for the TPC-H dataset, while it closes a bit for theWIKIPEDIA dataset. For the IMDB

dataset, Sawfish and the baseline improve their runtime, because they can validate string pairs of
traditional INDs earlier due to the lower threshold.

When using the Jaccard similarity, Sawfish can discover sINDs in a time that is comparable to
the state-of-the-art IND discovery algorithm Binder. We also show that Sawfish outperforms a
baseline for all datasets.

5.5 Joinability Case Study

In this experiment, we want to investigate whether the discovered similarity inclusion dependencies
can indeed indicate joinability in the presence of typos or other data errors. Joinability means that
two columns can be linked together because they contain similar data from the same domain[5].
To investigate the performance on a more heterogeneous data source, we ran Sawfish on a subset
of the 2015 Web Table Corpus (WTC)[14]. This corpus consists of automatically crawled web tables.
While these web tables are typically smaller than traditional database tables, more web tables are
usually processed simultaneously. Our experiment uses an edit distance threshold 𝜏 = 1 and the
random sample of 10 000 tables from the original source4. However, we process only the 2516
relational tables in that set. We omit numeric columns to visualize the results better. Sawfish runs
in 𝐸𝐷 mode, because we find more and also more interesting results.

In total, we observe 1044 sINDs that consist only of strings and are not traditional INDs, i.e., the
dependent column contains at least one value for which only a similar value can be found in the
referenced column.
We manually annotated the sINDs to assess their genuineness. Overall, we found 161 (15%)

meaningful sINDs, while 671 (64%) sINDs are coincidental. Coincidental sINDs are dependencies
where the two columns contain data from different domains, but the values happen to be similar
purely by chance. For example, we discover an sIND between the cost column of a university
audiobook chapter list and the first name column of a table of probate files. Since it is a university
audiobook, all chapters are “Free”. Thus, the entire value set of the column contains only this value.
In turn, in the probate file table, we find the first name Fred. The remaining 212 (20%) sINDs are
caused by errors in the header detection of the underlying dataset.
Additionally, we investigated the characteristics of meaningful and coincidental sINDs. For our

example dataset, we observe that there are two criteria that reduce the number of coincidental
sINDs significantly. First, the maximum number of characters of any value of the dependent side is
above three. Second, the portion of dependent values that match only similarly to a value on the
referenced side is below 30%. Given these two filters, the number of coincidental sINDs is reduced
by 638 to 33 (20%). The number of meaningful sINDs that fulfill these criteria is 101 (64%).
To exemplify the discovered sINDs, we showcase some meaningful sINDs. For example, there

is an sIND between the data type column of an API description and the data type column of the
input parameters of a program. While, one column uses the uppercase versions, such as Float
and String, the other column uses the lowercase versions, such as float and string. Despite
these columns obviously containing data of the same domain, they do not form a traditional IND.
Nonetheless, they could be joined to investigate usages for the same data type.
We present another example of a meaningful sIND in Table 4. There are multiple tables inside

the sample that contain data about college athletes. Typically, students are classified into four
categories: freshman, sophomore, junior, and senior – multiple columns contain abbreviations of

4http://data.dws.informatik.uni-mannheim.de/webtables/2015-07/sample.gz
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these categories. However, as the table shows, they do not match perfectly, so they do not form a
traditional IND. Interestingly, we only discover the sINDs VCU ⊂∼ CFB and VCU

⊂∼ NCAA (and
their symmetric partners). To also discover CFB ⊂∼ NCAA, we need to increase the edit distance
threshold to 2. Nevertheless, all of this data belongs to the same domain. Moreover, if we want to
compare students from the same category, it makes sense to join these values.

Table 4. Example sINDs in theWTC dataset

VCU Football CFB: Tulsa Golden Hurricane NCAA Baseball

Fr FR Fr.
So SO So.
Jr JR Jr.
Sr SR Sr.

6 CONCLUSION

This work introduces the formal concept of similarity inclusion dependencies (sINDs), extending
traditional inclusion dependencies with a similarity measure. First, we identified use cases for
sINDs, which include discovering foreign-key candidates and join partners. Second, we formalized
an sIND definition that extends traditional INDs with an arbitrary similarity measure. Third, we
presented Sawfish, the first efficient approach to automatically discover sINDs from data. It finds
all unary sINDs based on the edit-distance and the Jaccard similarity measure. Sawfish combines
approaches of traditional IND discovery and string similarity joins with a novel sliding-window
approach and lazy candidate validation. Fourth, we evaluated Sawfish, showing that it scales well
in the number of rows, and in the number of columns. Compared to a baseline implementation, we
outperformed it by a factor of up to 6.5. Finally, we examined the sINDs discovered by Sawfish
and observed real-world examples indicating joinability.
While sIND discovery is a harder problem than traditional IND discovery, the runtime could

be further improved by multithreading or distributing the process. As Sindy [9] demonstrated,
distribution can significantly improve the performance. However, we observed that a single column
or even a single sIND candidate can dominate the runtime. Therefore, it is not trivial to scale
Sawfish’s approach to multiple threads or nodes. Further future work shall extend Sawfish to
discover n-ary sINDs.
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