

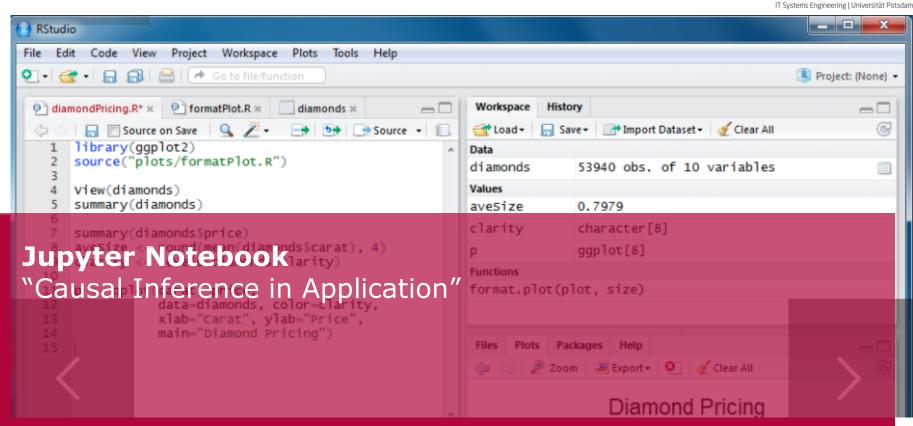
Agenda

April 24, 2018

- Jupyter Notebook "Causal Inference in Application"
- Recap Causal Inference in a Nutshell
- Introduction to Structural Causal Models
 - Preliminaries
 - Structural Causal Models
 - 3. (Local) Markov Condition
 - 4. Factorization
 - Global Markov Condition
 - 6. Functional Model and Markov conditions
 - 7. Faithfulness
 - Constraint-based Causal Inference
 - 9. Markov Equivalence Class
 - 10. Summary
 - 11. Excursion: Maximal Ancestral Graphs

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt



Jupyter Notebook

Causal Inference in Application

Causal Inference - Theory and Applications

In our lecture Causal Inference - Theory and Applications, we look at the mathematical concepts that build the basis of causal inference.

Causal Inference in Application

We now look how these concepts are applied on observational data to derive causal relationships and how to use the do-operator to receive an estimation of the causal effect. In order to give you an overview on therelated procedure, this notebook gives a step by step approach in the context of a simple cooling house example.

Table of Contents

- 1. Introduction to R
 - A. Getting Started
 - B. Some Examples
- 2. Use Case
 - A. Description

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Jupyter Notebook

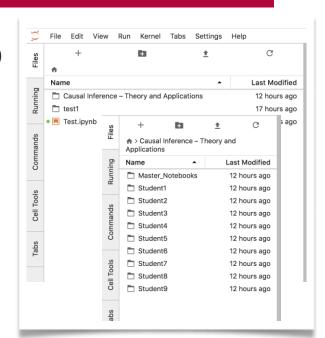
Access Information

System

Link will be provided via email once we have the list of participants!

Procedure

- 1. Login via LDAP (standard HPI credentials)
- Use folder Causal Inference Theory and Applications
- 3. We provide a Master Notebook
 Please use as a read only resource
 Copy relevant information into your
 local workspace
- 4. Your local workspace either in your home directory or as a separate folder in our courses' folder
- 5. Let us know if you require new packages

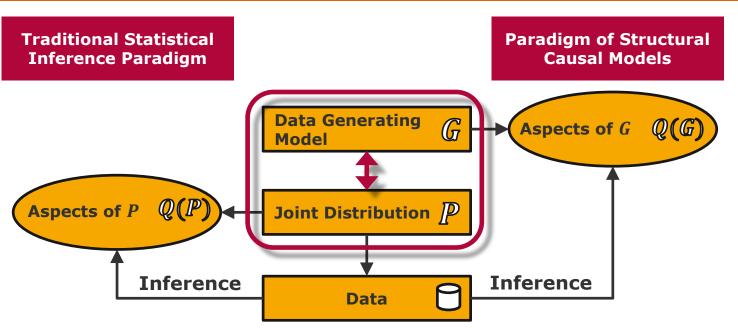


Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Causal Inference in a Nutshell

Recap: The Concept



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

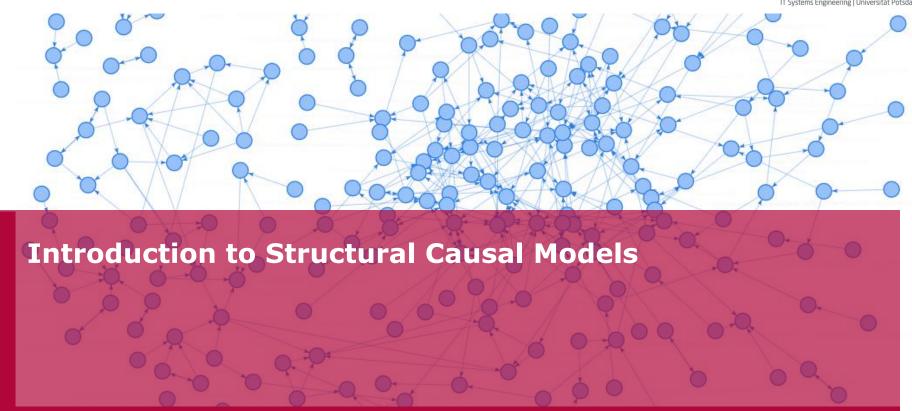
E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

IT Systems Engineering | Universität Potsdam



Introduction to Causal Graphical ModelsContent

- 1. Preliminaries
- 2. Structural Causal Models
- 3. (Local) Markov Condition
- 4. Factorization
- Global Markov Condition
- Functional Model and Markov conditions
- 7. Faithfulness
- 8. Constraint-based Causal Inference
- Markov Equivalence Class
- 10. Summary
- 11. Excursion: Maximal Ancestral Graphs

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Notation

- A, B events
- \blacksquare X,Y,Z random variables
- x value of random variable
- Pr probability measure
- P_X probability distribution of X
- p density
- p_x or p(X) density of P_X
- p(x) density of P_X evaluated at the point x
- $X \perp Y$ independence of X and Y
- $X \perp Y \mid Z$ conditional independence of X and Y given Z

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Independence of Events

Two events A and B are called independent if

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$
,

or - rewritten in conditional probabilities - if

$$Pr(A) = \frac{A \cap B}{B} = Pr(A|B),$$

 $Pr(B) = \frac{A \cap B}{A} = Pr(B|A).$

■ $A_1, ..., A_n$ are called *(mutually) independent* if for every subset $S \subset \{1, ..., n\}$ we have

$$\Pr\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\Pr(A_i).$$

Note:

for $n \ge 3$, pairwise independence $\Pr(A_i \cap A_j) = \Pr(A_i) \cdot \Pr(A_j)$ for all i, j does not imply (mutual) independence.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Independence of Random Variables

• Two real-valued random variables X and Y are called *independent*, $X \perp Y$,

if for every $x, y \in \mathbb{R}$, the events $\{X \le x\}$ and $\{Y \le y\}$ are independent, Or, in terms of densities: for all x, y, p(x, y) = p(x)p(y).

Note:

If $X \perp Y$, then E[XY] = E[X]E[Y], and cov(X,Y) = E[XY] - E[X]E[Y] = 0. The converse is not true: If, cov(X,Y) = 0, then $X \perp Y$.

No correlation does not imply independence

However, we have, for large \mathcal{F} : $(\forall f, g \in \mathcal{F}: cov(f(X), g(Y)) = 0)$, then $X \perp Y$.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Conditional Independence of Random Variables

 Two real-valued random variables X and Y are called conditionally independent given Z,

$$X \perp Y \mid Z$$
 or $(X \perp Y \mid Z)_P$

if

$$p(x,y|z) = p(x|z)p(y|z)$$

For all x, y and for all z s.t. p(z) > 0.

Note:

It is possible to find X,Y which are conditionally independent given a variable Z but unconditionally dependent, and vice versa.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

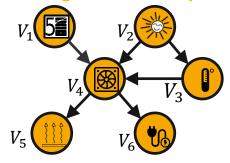
2. Structural Causal Models

Definition (Pearl)

- Directed Acyclic Graph (DAG) G = (V, E)
 - \Box Vertices $V_1, ..., V_n$
 - \Box *Directed edges* $E = (V_i, V_j)$, i.e., $V_i \rightarrow V_j$,
 - No cycles
- Use kinship terminology, e.g., for path $V_i \rightarrow V_j \rightarrow V_k$
 - $\ \ \ \ \ V_i = Pa(V_i) \ parent \ of \ V_i$
 - $\neg \{V_i, V_i\} = Ang(V_k)$ ancestors of V_k
 - $\neg \{V_i, V_k\} = Des(V_i)$ descendants of V_i
- Directed Edges encode direct causes via
 - $V_j = f_j(Pa(V_j), N_j)$ with independent noise $N_1, ..., N_n$

This forms the Causal Graphical Model

Cooling House Example:



- $V_1 = N(0,1)$
- $V_2 = N(0,1)$
- $V_3 = 3V_2 + N(0,1)$
- $V_4 = 4 V_1 + 5 V_2 + 0.7 V_3 + N(0,1)$
- $V_5 = V_4 + N(0,1)$
- $V_6 + 1.2 V_4 + N(0,1)$

Causal Inference - Theory and

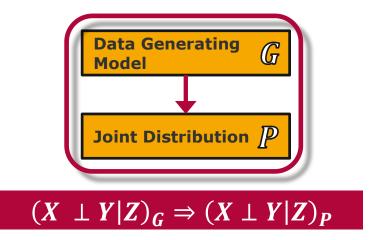
Uflacker, Huegle, Schmidt

Applications

2. Structural Causal Models

Connecting G and P

- Basic Assumption: Causal Sufficiency
 - All relevant variables are included in the DAG G



- Key Postulate: (Local) Markov Condition
- Essential mathematical concept: d-separation
 (describes the conditional independences required by a causal DAG)

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

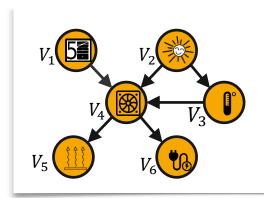
3. (Local) Markov Condition

Theorem

(Local) Markov Condition:

 V_j statistically independent of nondescendants, given parents $Pa(V_j)$, i.e., $V_j \perp V_{V/Des(V_j)}|Pa(V_j)$.

- I.e., every information exchange with its nondescendants involves its parents
- Example:



- $V_6 \perp \{V_1, V_2, V_3\} | V_4$
- $V_5 \perp \{V_1, V_2, V_3\} | V_4$

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

3. (Local) Markov Condition

Supplement (Lauritzen 1996)

- Assume V_n has no descendants, then $ND_n = \{V_1, ..., V_{n-1}\}.$
- Thus the local Markov condition implies

$$V_n \perp \{V_1, ..., V_{n-1}\} | Pa(V_n).$$

Hence, the general decomposition

$$p(v_1, ..., v_n) = p(v_n | v_1, ..., v_{n-1}) p(v_1, ..., v_{n-1})$$

becomes

$$p(v_1, ..., v_n) = p(v_n | Pa(v_n)) p(v_1, ..., v_{n-1}).$$

Induction over n yields to

$$p(v_1, ..., v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

• I.e., the graph shows us how to factor the joint distribution P_V .

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

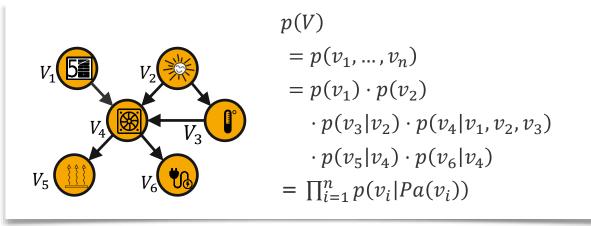
4. Factorization

Definition

Factorization:

$$p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

- I.e., conditionals as causal mechanisms generating statistical dependence
- Example:



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

5. Global Markov Condition

D-Separation (Pearl 1988)

- Path = sequence of pairwise distinct vertices where consecutive ones are adjacent
- A path q is said to be blocked by a set S if
 - q contains a *chain* $V_i \rightarrow V_j \rightarrow V_k$ or a *fork* $V_i \leftarrow V_j \rightarrow V_k$ such that the middle node is in S, or
 - q contains a *collider* $V_i \rightarrow V_j \leftarrow V_k$ such that the middle node is not in S and such that no descendant of V_i is in S.

D-separation:

S is said to **d-separate** X **and** Y in the DAG G, i.e., $(X \perp Y|S)_G$,

if S blocks every path from a vertex in X to a vertex in Y.

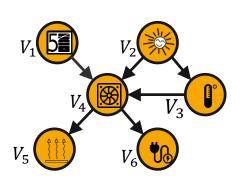
Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

5. Global Markov Condition

Examples of d-Separation

Example:



- The path from V_1 to V_6 is blocked by V_4 .
- V_1 and V_6 are d-separated by V_4 .
- The path $V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_6$ is blocked by V_3 or V_4 or both.
- But: V_2 and V_6 are d-separated only by V_4 or $\{V_3, V_4\}$.
- V_1 and V_2 are not blocked by V_4 .

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

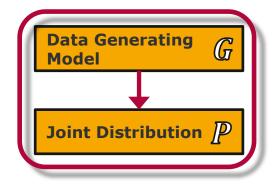
5. Global Markov Condition

Theorem

Global Markov Condition:

For all disjoint subsets of vertices X, Y and Z we have that X, Y d-separated by $Z \Rightarrow (X \perp Y \mid Z)_P$.

• I.e., we have $(X \perp Y \mid Z)_G \Rightarrow (X \perp Y \mid Z)_P$



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

6. Functional Model and Markov Conditions

Theorem (Lauritzen 1996, Pearl 2000)

Theorem:

The following are equivalent:

- Existence of a functional causal model G;
- Local Causal Markov condition: V_j statistically independent of nondescendants, given parents (i.e.: every information exchange with its nondescendants involves its parents)
- Global Causal Markov condition: d-separation (characterizes the set of independences implied by local Markov condition)
- Factorization: $p(v_1, ..., v_n) = \prod_{i=1}^n p(v_i|Pa(v_i))$.

(subject to technical conditions)

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Slide 22

I.e., $(X \perp Y|Z)_G \Rightarrow (X \perp Y|Z)_P$

7. Causal Faithfulness

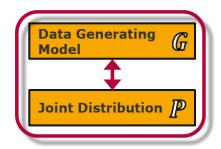
The key-postulate

Causal Faithfulness:

p is called faithful relative to G if only those independencies hold true that are implied by the Markov condition, i.e.,

$$(X \perp Y \mid Z)_G \leftarrow (X \perp Y \mid Z)_P$$

- I.e., we assume that any population P produced by this causal graph G
 has the independence relations obtained by applying d-separation to it
- Seems like a hefty assumption, but it really isn't: It assumes that whatever independencies occur in it arise not from incredible coincidence but rather from structure, i.e., data generating model G.
- Hence:



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

8. Constraint-based Causal Inference Concept (Spirtes, Glymor, Scheines and Pearl)

Assumptions:

- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

Causal Structure Learning:

- Accept only those DAG's G as causal hypothesis for which $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Defines the basis of constraint-based causal structure learning
- Identifies causal DAG up to Markov equivalence class (DAGs that imply the same conditional independencies)

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

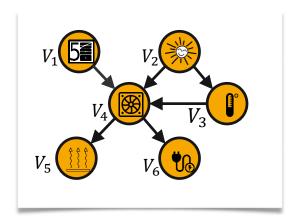
9. Markov Equivalence Class

Theorem (Verma and Pearl)

Theorem:

Two DAGs are Markov equivalent if and only if they have the same skeleton and the same v-structures

- Skeleton: corresponding undirected graph
- v-structure: substructure $X \to Y \leftarrow Z$ with no edges between X and Z.



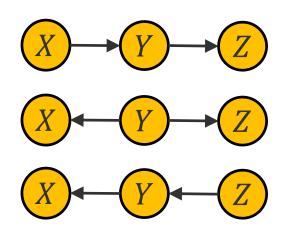
Causal Inference - Theory and Applications

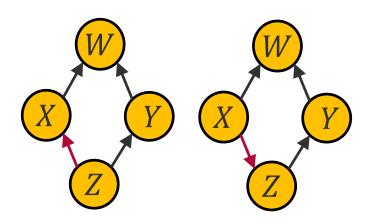
Uflacker, Huegle, Schmidt

9. Markov Equivalence Class

Examples

Same skeleton, no v-structure • Same skeleton, same v-structure at W





Causal Inference - Theory and **Applications**

Uflacker, Huegle, Schmidt

10. Summary

Causal Structural Models

- Causal Structures formalized by DAG (directed acyclic graph) G with random variables $V_1, ..., V_n$ as vertices.
- Causal Sufficiency, Causal Faithfulness and Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Local Markov Condition states that the density $p(v_1, ..., v_n)$ then factorizes into

$$p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

• Causal conditional $p(v_i|Pa(v_i))$ represent causal mechanisms.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

11. Excursion: Maximal Ancestral GraphsMotivating Example

• Suppose, we are given the following list of conditional independencies among X,Y,Z and W:

- Which DAG could have generated these, and only these, independencies and dependencies?
- The pattern of dependencies must be:

$$X \longrightarrow Y \longrightarrow Z \longrightarrow W$$

And there must be the following colliders:

$$X \longrightarrow Y \longleftarrow Z$$

 $Y \longrightarrow Z \longleftarrow W$

There is no orientation of Y–Z that is consistent with the independencies.

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

11. Excursion: Maximal Ancestral Graphs

DAG Models and Marginalization

Let's include an additional variable U:

$$X \longrightarrow Y \stackrel{\smile}{\sim} Z \longleftarrow W$$

- This DAG model generates a probability distribution $P_{\{X,Y,Z,W,U\}}$ in which:
 - X ⊥ Z,

X ⊥ Y.

Y ⊥ W,

Y ⊥ Z,

• X ⊥ W.

- Z ⊥ W.
- The marginal distribution $P_{\{X,Y,Z,W\}} = P_{\{X,Y,Z,W,U\}}du$ must adhere the same independencies. But: this marginal distribution cannot be faithfully generated by any DAG.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Slide 29

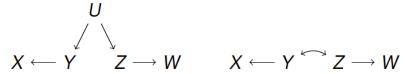
DAG models are not closed under marginalization!

11. Excursion: Maximal Ancestral Graphs

Ancestral Graphs (informally)

Ancestral Graph (AG)

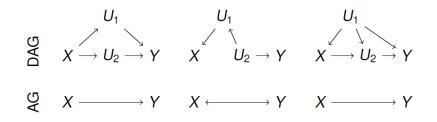
is a graph containing both directed and bi-directed edges, where the bi-directed edges stand for *latent variables*, *e.g.*,



m-Separation

If S m-separates X and Y in an ancestral graph M, then X \perp Y | S in every density p that factorizes according to any DAG G that is represented by the AG M.

Example



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

11. Excursion: Maximal Ancestral Graphs DAGs vs. AGs

Advantages of AGs

- AGs can faithfully represent more probability distributions than DAGs.
- AG models are closed under marginalization.
- AGs can (implicitly) represent unobserved variables, which exist in many (possibly almost all) applications.

Disadvantages of AGs

- Parameterization is difficult in the general case.
- Markov equivalence is difficult.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys, 3:96-146.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference.</u> Cambridge University Press.
- Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. The MIT Press.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Thank you for your attention!