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Jupyter Notebook
Causal Inference in Application

Causal Inference - Theory and Applications

In our lecture Causal Inference - Theory and Applications, we look at the mathematical concepts that build the basis of causal inference.
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Causal Inference in Application

We now look how these concepts are applied on observational data to derive causal relationships and how to use the do-operator to receive an
estimation of the causal effect. In order to give you an overview on therelated procedure, this notebook gives a step by step approach in the context
of a simple cooling house example.
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Causal Inference in a Nutshell ﬂ Hasso

Paradigm of Structural
Causal Models

Recap: The Concept

Traditional Statistical
Inference Paradigm

[ Data Generating G

Model

—
Joint Distribution [P

Aspects of P @(ZP)

Inference Inference Causal Inference
Data 8 - Theory and
Applications
. . , - . . , . Uflacker, Huegle,
E.g., what is the sailors’ probability of E.g., what is the sailors’ probability of Scﬁrcniﬁ; neale
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 7

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))
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.|
1. Preliminaries ﬂlﬁllaﬁo
Notation Institut

s A B events
m X,Y,Z random variables
s x value of random variable

= Pr probability measure
s Py probability distribution of X

= p density

= p, Or p(X) density of Py

= p(x) density of Py evaluated at the point x _C:t;;ilrinafﬁ:lence
Applications

. Uflacker, Huegle,
» X lYindependenceof X andY Schmidt

= X LY|Z conditional independence of X and Y given Z Slide 10



1. Preliminaries ﬂlﬁllaﬁo
Independence of Events Institut

s Two events A and B are called independent if
Pr(AnB) = Pr(A) - Pr(B),
or - rewritten in conditional probabilities - if

ANB
Pr(A) =—gF = Pr(A|B),

ANB
PI‘(B) = T = PI‘(B'A)

s Ay, .., A, are called (mutually) independent if for every subset S c {1, ...,n}

we have
_ Causal Inference
Pr (ﬂ 4 ) - 1_[ Pr(4,). - Theory and
iES iES Applications
= Note: Uflacker, Huegle,

for n > 3, pairwise independence Pr(4; n 4;) = Pr(4,) - Pr(4,) for all i,j does ~ Schmidt

not imply (mutual) independence. Slide 11



1. Preliminaries
Independence of Random Variables

Two real-valued random variables X and Y are called independent,
X 1Y,

if for every x,y € R, the events {X < x} and {Y < y} are independent,
Or, in terms of densities: for all x, y,
p(x,y) = p()p(y).

Note:
If X LY, then E[XY] = E[X]E[Y], and cov(X,Y) = E[XY] — E[X]E[Y] = 0.
The converse is not true: If, cov(X,Y) =0, then X LY.

No correlation does not imply independence

However, we have, for large F: (Vf,g € F:cov(f(X),g(Y)) =0), then X LY.
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1. Preliminaries ﬂIF;IIaSSO
Conditional Independence of Random Variables hatner

= Two real-valued random variables X and Y are called conditionally
independent given Z,

X1Y|Zor(XLY|2)p
if

p(x,ylz) = p(x|z)p(y|2)
For all x,y and for all z s.t. p(z) > 0.

= Note:
It is possible to find X,Y which are conditionally independent given a Causal Inference
variable Z but unconditionally dependent, and vice versa. - Theory and

Applications

Uflacker, Huegle,
Schmidt

Slide 13
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2. Structural Causal Models
Definition (Pearl)

m Directed Acyclic Graph (DAG) G = (V,E)
o Vertices Vy, ..., V,
o Directed edges E = (V;,V)), i.e., Vi >V},
o No cycles
= Use kinship terminology, e.g., for path V; - V; -
o Vi = Pa(V;) parent of V;
o {V;,V;} = Ang(V}) ancestors of v,
o {V;,Vi} = Des(V;) descendants of V;
» Directed Edges encode direct causes via
o V; = fj(Pa(V;),N;) with independent noise Ny, ..., Ny,

=) This forms the Causal Graphical Model

=, =N(0,1)

=V, =N(0,1)

V3 =3V,+N(0,1) Causal Inference

“V, =4V, +5V,+0.7 V3 + N(0,1) - Theory and
Applications

"Vs =V + N(OL) Uflacker, Huegl

acker, Huegle,
Ve +12V,+N(0,1) Schmidt

|

Slide 14



2. Structural Causal Models ﬂ Hasso

Connecting G and P ﬁliﬁ?ﬁ{

s Basic Assumption: Causal Sufficiency
o All relevant variables are included in the DAG G

[ Data Generating G
Model

v

Joint Distribution [P

Causal Inference

(X LY|Z)¢=> (X LY|Z)p Aoy and

= Key Postulate: (Local) Markov Condition lSJZ'ﬁrCn'ng Huegle,

» Essential mathematical concept: d-separation Siide 15

(describes the conditional independences required by a causal DAG)



3. (Local) Markov Condition ﬂ Hasso

Plattner
Theorem Institut

(Local) Markov Condition:
V; statistically independent of nondescendants, given parents Pa(V}), i.e.,

Vj L Vypeswy|Pa(V;).

= l.e., every information exchange with its nondescendants involves its parents
s Example:

Causal Inference
- V6 1 {Vli Vz; V3}|V4 - Theory and

i V5 1 {Vl, Vz, V3}|V4 Applications

Uflacker, Huegle,
Schmidt
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3. (Local) Markov Condition ﬂHasso

Supplement (Lauritzen 1996) Inetitut

= Assume V,, has no descendants, then ND,, = {V, ..., V,,_1}.
» Thus the local Markov condition implies
Vo L{Vy, o, Vo1 3} Pa(V).

= Hence, the general decomposition

P(W1, o, V) = D(Wn|V1, oo, V) DV, wor, V1)

becomes
p(V1, ., V) = p(vy|Pa(vy)) p(Ve, o) Vp—1).

= Induction over n yields to

n
Causal Inference
Py v0) = | [p@ilPato). “Theory and
i=1 Applications

Uflacker, Huegle,
Schmidt
= l.e., the graph shows us how to factor the joint distribution Py.

Slide 17



4. Factorization ﬂ Hasso

e ey Platt
Definition |n§ti?3{

Factorization:

P v0) = | [pilPaG),
i=1

s [.e., conditionals as causal mechanisms generating statistical dependence

= Example:
p(V)
= p(Vyq, oo, V)
= Causal Inference
B p(vl) . p(vz) - Theory and
Applications
- p(W3|vy) - p(V4lve, Vo, v3) pplicati
Uflack_er, Huegle,
) p(v5|v4) ) p(v6|v4) Schmidt

= [li=1 p(w;|Pa(v;)) Slide 18




5. Global Markov Condition ﬂ Hasso

D-Separation (Pearl 1988) ﬁliﬁ?ﬁ{

s Path = sequence of pairwise distinct vertices where consecutive ones are
adjacent

s A path g is said to be blocked by a set S if

o g contains a chain V; - V; -V, or a fork V; « V; -V}, such that the
middle node is in S, or

o q contains a collider V; - V; « V, such that the middle node is not in §
and such that no descendant of V is in S.

Causal Inference
- Theory and
Applications

D-separation:
Sis said to d-separate X and Y in the DAG G, i.e.,

Uflacker, Huegle,
X1 YlS)G' Schmidt

if § blocks every path from a vertex in X to a vertex in Y.

Slide 19



5. Global Markov Condition ﬂHasso

Examples of d-Separation rrlgiti?ftr

s Example:

= The path from V; to V; is
blocked by V,.

= 1, and V, are d-separated by V,.

= ThepathV, - V; >V, - Vg is
blocked by V; or V, or both.

= But: V, and V, are d-separated
only by V, or {V;,V,}.

Causal Inference
- Theory and

Applications

= V; and V, are not blocked by V,. Uflacker, Huegle,
Schmidt

Slide 20



5. Global Markov Condition ﬂ Hasso

Plattner
Theorem Institut

Global Markov Condition:

For all disjoint subsets of vertices X,Y and Z we have that
X,Y d-separated by Z = (X LY |Z2),.

m l.e,wehave X 1LY|Z);=> X LY|2)p

[ Data Generating G Causal Inference
Model - Theory and
Applications
i Uflacker, Huegle,
Schmidt
Joint Distribution P
Slide 21




6. Functional Model and Markov Conditions ﬂ Hasso

Theorem (Lauritzen 1996, Pearl 2000) rr:?cti?s{

Theorem:

The following are equivalent:

s EXistence of a functional causal model G;

m Local Causal Markov condition: V; statistically independent of nondescendants,

given parents
(i.e.: every information exchange with its nondescendants involves its parents)

m Global Causal Markov condition: d-separation
(characterizes the set of independences implied by local Markov condition)

m Factorization: p(vy, ..., v,) = [li=1 p(v;|Pa(v;)). Causal Inference
] i . - Theory and
(subject to technical conditions) Applications

Uflacker, Huegle,

Schmidt
lLe., X LY|Z)¢ = (X LY|Z)p Slide 22



7. Causal Faithfulness
The key-postulate

Causal Faithfulness:

p is called faithful relative to G if only those independencies hold true

that are implied by the Markov condition, i.e.,
XLY|ZDee X LY|2)p

I.e., we assume that any population P produced by this causal graph G
has the independence relations obtained by applying d-separation to it

Seems like a hefty assumption, but it really isn't: It assumes that
whatever independencies occur in it arise not from incredible coincidence
but rather from structure, i.e., data generating model G.

Hence:

Data Generating G\

Model

1

Joint Distribution IP

e

/
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8. Constraint-based Causal Inference
Concept (Spirtes, Glymor, Scheines and Pearl)

= Assumptions:

O

O

O

Causal Sufficiency
Global Markov Condition
Causal Faithfulness

= Causal Structure Learning:

O

Accept only those DAG's G as causal hypothesis for which
X L1LY| D)o X LY|Z)p.
Defines the basis of constraint-based causal structure learning

Identifies causal DAG up to Markov equivalence class
(DAGs that imply the same conditional independencies)
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9. Markov Equivalence Class ﬂ Hasso

Theorem (Verma and Pearl) rrlecti?E{

Theorem:

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same v-structures

m Skeleton:
corresponding undirected graph

m v-Structure:
substructure X - Y « Z with no

edges between X and Z. Causal Inference
- Theory and

Applications

Uflacker, Huegle,
Schmidt

Slide 25



9. Markov Equivalence Class

Examples

s Same skeleton, no v-structure

O—O—@

OO
W@

XL1Z|Y

s Same skeleton, same v-structure at W

» @
ega ega
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10. Summary ﬂIF;IIaSSO
Causal Structural Models Ing%ti?t?tr

s Causal Structures formalized by DAG (directed acyclic graph) G with
random variables V,, ..., V;, as vertices.

s Causal Sufficiency, Causal Faithfulness and Markov Condition imply
XL1LY| D)o X LY|Z)p.

= Local Markov Condition states that the density p(vy, ..., v,) then factorizes
into

p(vy, .., v) = [Iiza p(vi|Pa(vy)).

Causal Inference
- Theory and
Applications

» Causal conditional p(v;|Pa(v;)) represent causal mechanisms. Uflacker, Huegle,

Schmidt

Slide 27



11. Excursion: Maximal Ancestral Graphs ﬂHasso

Motivating Example mg}ti?ftr

s Suppose, we are given the following list of conditional independencies
among X,Y,Z and W:

¢« X12Z, « X4Y,
« YW, ¢« YUZ
¢« XLW. « ZAW.

=  Which DAG could have generated these, and only these, independencies
and dependencies?

= The pattern of dependencies must be:

X Y 4 W Causal Inference
= And there must be the following colliders: - Theory and
Applications
X—Y—12 Uflacker, Huegle,
Y —Z— W Schmidt

= There is no orientation of Y-Z that is consistent with the independencies. Slide 28



11. Excursion: Maximal Ancestral Graphs
DAG Models and Marginalization

s Let’s include an additional variable U:

U
e N
X—Y Z—W

= This DAG model generates a probability distribution Py 7w 1y in which:

¢« X12Z « X 1Y,
s Y LW, ¢« YUZ
« X LW. « ZAW.

= The marginal distribution Py ; w = Pxy,zw,uydu must adhere the same

independencies. But: this marginal distribution cannot be faithfully
generated by any DAG.

m) DAG models are not closed under marginalization!
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11. Excursion: Maximal Ancestral Graphs ﬂHasso

Ancestral Graphs (informally) mg:[cti?s{

= Ancestral Graph (AG)

is @ graph containing both directed and bi-directed edges, where the
bi-directed edges stand for latent variables, e.qg.,

U
/N
X—Y Z— W XY Z— W

= mMm-Separation

If S m-separates X and Y in an ancestral graph M, then X L Y | S in every
density p that factorizes according to any DAG G that is represented by the AG M.

Causal Inference

- Theory and

» Example p U, N U, /U1\\ Applications
10 /A Uflacker, Huegle,

= X—U—Y X Uo—Y X—U2—Y Schmidt °




11. Excursion: Maximal Ancestral Graphs ﬂglaséo
attner
DAGs vs. AGs Institut
= Advantages of AGs
o AGs can faithfully represent more probability distributions than DAGs.
o AG models are closed under marginalization.
o AGs can (implicitly) represent unobserved variables, which exist in
many (possibly almost all) applications.
= Disadvantages of AGs
o Parameterization is difficult in the general case.
o Markov equivalence is difficult. Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt
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References ﬂ Hasso
Plattner
Institut

Literature

Pearl, J. (2009). Causal inference in statistics: An overview. Statistics
Surveys, 3:96-146.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge
University Press.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction,
and Search. The MIT Press.

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 32


http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
http://bayes.cs.ucla.edu/BOOK-2K/

Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Thank you
for your attention!




