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Recap of Causal Graphical Models ﬂ Hasso

Paradigm of Structural
Causal Models

The Concept of Causal Inference

Traditional Statistical

Inference Paradigm

Data Generating @
Model

Joint Distribution [P

I

Aspects of P @(ZP)

Causal Inference
Inference Data 8 Inference - Theery and
Applications
E.g., what is the sailors’ probability of E.g., what is the sailors’ probability of grocker: Fuegle,
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 4

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))



Recap of Causal Graphical Models ﬂHasso

Summary (I/1I) mg%ti?s{

s Causal Structures formalized by DAG (directed acyclic graph) G with
random variables V,, ..., V;,, as vertices.

m Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply
X LY|Z)geo X LY|Z)p.

m Local Markov Condition states that the density p(v4, ..., v,) then factorizes
into

p(Vq, ., V) = ?:1 p(v;|Pa(vy)).
Causal Inference

- Theory and
Applications

» Causal conditional p(v;|Pa(v;)) represent causal mechanisms. Uflacker, Huegle,

Schmidt

Slide 5



Recap of Causal Graphical Models ﬂHasso
Summary (II/II) Plattner

Institut

= Assumptions:
o Causal Sufficiency
o Global Markov Condition
o Causal Faithfulness

= Causal Structure Learning:
o Accept only those DAG’s G as causal hypothesis for which
XLY|Z)ee (X LY.
o Defines the basis of constraint-based causal structure learning, i.e., Causal Inference

fef ; ; ; - Theory and
use statistical hypothesis testing theory to derive (X 1L Y| Z)p. Applications
o Identifies causal DAG up to Markov equivalence class Uflacker, Huegle,
(DAGs that imply the same conditional independencies in P.) Schmidt

Slide 6
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1. Preliminaries

Hasso
Statistical Inference: Draw Conclusion on P from Data ﬂ T er

Paradigm of Structural
Causal Models

Traditional Statistical

Inference Paradigm

Data Generating @
Model

Aspects of P @(ZP)

Joint Distribution [P

Inference Causal Inference
- Theory and

Applications

Inference

E.g., what is the sailors’ probability of E.g., what is the sailors’ probability of ggﬁrﬂfg{ Huegle,
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 8

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))



1. Preliminaries Hasso
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Statistical Inference:

Deduce properties of a population’s probability distribution P
on the basis of random sampling 8.

= Random samples X, ..., X,

independent and identically distributed (i.i.d.) random variables X, ..., X,
n StatisticT

o function g(Xi, ..., X,) of the observations in a random sample X, ..., X,

o is @ random variable with probability distribution (sampling distribution)

. - ~ Causal Inference
= Point estimator 0 - Theory and

Statistic to estimate a population parameter © Applications
Uflacker, Huegle,
Schmidt

Sample mean X, =% . X; with value x,, is an estimator of the Slide 9

population mean u
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Normal Distribution:

We say a random variable X has a normal distribution with mean u
and standard deviation ¢2 if its density function f is given

1
f(x) = , x € R.
69) e

= We write X~N(u,0?)
n d,,2(x) = Fx(x) = Pr(X < x) is the cumulative distribution function

1
= X~N(0,1) with f(x) = \/%e‘ixz is called standard normal distributed
s If X~N(u 02) then Causal Inference
' ' T T e e v — - Theory and
Applications

X- . .
o —=E~N(0,1) (Standardization)
7 Uflacker, Huegle,
Schmidt

D,0:(X)

o X =u+0Z with Z~N(0,1) =

Slide 10




1. Preliminaries
Central Limit Theorem

Central Limit Theorem:

For a random sample X;, ..., X,, of size n from a population
with mean u and finite variance ¢? then, for n - o,

X _
Z=va22"E_ N1

o

p p Gaussian

samples
of size n

population sampling distribution
distribution of the mean

s Therefore, X,, is approximately normal distributed with mean p and

standard deviation o//n, i.e., X,~N(u, o%/n)
= Hence, for the sum S, = X", X; we have S,~N(nu,no?)

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 11



1. Preliminaries “ Hasso
Confidence Intervals (I/1I) Etines

Confidence Interval:
A confidence interval estimate for the mean u is an interval of the form
l<u<u,

With endpoints [ and u computed from X, ..., X,,.

m Supposethat Pr(L<u<U)=1-a, a€(0,1). Thenforl<u<u:
o [ and u are called lower- and upper-confidence bounds
o 1—ais called the confidence level

= Recall that X,~N(u, ¢%/n). For some positive scalar value Zi_q/2 W€ have
Causal Inference

- Theory and
) = q)O,l(Zl—a/Z) Applications

Uflacker, Huegle,

Schmidt

o Pr(Yn < u+zl_a/2\7_) = Pr(

O Pr(YnS,u Zq_ “/Zx/—) 1—®p1(2- a/Z)

\/ﬁ

Slide 12



1. Preliminaries ﬂll;llasso
Confidence Intervals (I/1I) Ing%ti?l?tr
= Therefore
o — o
Pr{u— Zl—%ﬁ <X, <u+ oy 2@01(—Z1-q/2)

s Recall, we want
o — o
Pr ‘U—Zl_a/zﬁSXn SH'I'Zl—a/Zﬁ =1—«

s With a = 2®(z;_4/2) the 100(1 — a)% confidence interval on u is given by

— o — o
Xn— Z1-a/2 ﬁ SpusXp+ Z1-aj2 =

Vn

= Since a = 2¥y;(—21_4/2), We can choose z;_,/, as follows: Causal Inference

- Theory and

o 9% =>a=001= ¢0,1(—Z1—a/2) = 0.005 = z;_4/, = 2.57 Applications

Uflacker, Huegle,
0 95% = a =005 = ®y;(—2z;_4/,) = 0.025 = z_4/, = 232 Schmidt

Slide 13



2. Statistical Hypothesis Testing “ Hasso

Introduction .”n'iﬁ?ﬁ{

Knowing the sampling distribution is the key of statistical inference:

s Confidence intervals

Framework to derive error bounds on point estimates of the population
distribution based on the sampling distribution

= Hypothesis testing

Methodology for making conclusions about estimates of the population
distribution based on the sampling distribution

o

Statistical Hypothesis:

Causal Inference

Statement about parameters of one or more populations

- Theory and
= Null Hypothesis H, is the claim that is initially assumed to be true Applications
= Alternative Hypothesis H, is a claim that contradicts the H, gflﬁck_g? Huegle,
cnmi
A hypothesis test is a decision rule that is a function of the test statistic. Slide 14

E.g., reject H, if the test statistic is below a threshold, otherwise don't.



2. Statistical Hypothesis Testing
Hypothesis Types and Errors

For some arbitrary value pu,

m one-sided hypothesis test: m two-sided hypothesis test:
Ho:p = po vs Hytpp < po Ho:pp = po vs Hytpp # po

Ho:p < po vs Hytpt > o
\—

= Significance level of the statistical test
a = Pr(type I error) = Pr(reject Hy| H, is true)

= Power of the statistical test
p = Pr(type Il error) = Pr(retain Hy| H is true)

= Hypothesis testing
Desire: a is low and the power (1 — ) as high as can be

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 15



2. Statistical Hypothesis Testing

Critical Value

= Suppose Xj,...,X,~N(u,c?) (o is known)

= We would like to test Hy: u = py vs Hy: >

Y-

Goal:

Decision rule, i.e., reject Hy:u =, if X, >cforaceR

= Choose test statistic T to be X,,
= Under H,, we have T~N(uy,c?/n)
\/ﬁ(}n—ﬂo) > Vn(c—po) )

o o

= Plio (Z > W%ﬂo)) =1- CDO,l (\/T_l(C—Mo) )

g

n a=PMO(Yn>c)=P”O(

= Therefore, ¢ = py + ®g1(1 - cz)j—ﬁ

02

01

00

critical value
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Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 16



2. Statistical Hypothesis Testing “ Hasso
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P-Value Institut

The p-value is the probability that under the null hypothesis,

the random test statistic takes a value as extreme as or more
extreme than the one observed.

= Rule of thumb: p-value low = H, must go ey
= We would like to test Hy: u = py vs Hy: > g

= Here, the p-value is Py (X, > x,) = -

_ (Yn-uo)>_ _ (Yn—uo)
—PHO(Z> ) = 1= @ (E

0
o
7
<
a
<
o

Causal Inference

w If Py, (Xn > x,) < @ we reject Ho:p = g . U'Ob /:T[;) “ - Theory and
= Absolutely identical to the usage of the - Applications
critical value Uflacker, Huegle,
Schmidt

Slide 17



2. Statistical Hypothesis Testing Hasso
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Supplement: Z-Test Institut
»n If the distribution of the test statistic T under H, can be approximated by
a normal distribution the corresponding statistical test is called z-test
= Overview for Z-tests with known o:
Testing Hypotheses on the Mean, Variance Known (Z-Tests)
Model: X; 2 N(p.o?) with g unknown but &2 known.
Null hypothesis:  Ho : g = po.
st statistic: . _ T o _ X —mo
Test statistic: =R Z= N
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests Causal Inference
Hy:p# po P=2[1-®(z|)] 2> 21 OF 2 < 24 - The_ory_and
Applications
Hy:p>po P=1-a() ¢> Z-a Uflacker, Huegle,
Schmidt
Hy:p < o P=d(z) 2 < Zg

| —— T— Slide 18



2. Statistical Hypothesis Testing ﬂ Hasso

Plattner
Summary Institut

s Hypothesis

o Null Hypothesis H, is the claim that is initially assumed to be true

o Alternative Hypothesis H, is a claim that contradicts H,
m Hypothesis test is a decision rule that is a function of the test statistic T
= How to test a hypothesis?

o Relation test and confidence interval

o Approximate T under H, by a known distribution

o Different distributions yield to different tests, e.g., T-test, y?-test, etc.

o Derive rejection criteria for H, Causal Inference

- Theory and
- c-value: reject Hy if T(x,) >cforaceR I Applications
. . are equivalent
- p-value: reject H, if Py, (T(X) > T(x)) <a a gzlr?rcnklgg ruegle

Slide 19
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Concept (I/II)

Traditional Statistical

Inference Paradigm

Paradigm of Structural
Causal Models

Data Generating @
Model

Aspects of P @(ZP ) Joint Distribution P

Inference Causal Inference
- Theory and

Applications

Inference

Uflacker, Huegle,
Schmidt

m) Use statistical hypothesis tests to obtain information about (X L Y| Z),. Slide 20




3. (Conditional) Independence Testing ﬂ Haéso
Concept (II/1I) Plattner

Institut

Basic idea:
Find a measure T of (conditional) dependence within the random

samples X, ..., Xy and apply statistical hypothesis tests whether
T(X4,..,Xy) is zero or not, i.e.,
Hy:t =0 vs Hi:t# 0

Vi, ...,Vy multivariate normal

Causal Inference

Correlation coefficient AThﬁzg‘t’ig::
cov(V;, V)) PP
pvv, = cor(V,V;) = — Uflacker, Huegle,
VitVj Schmidt

as measure of linear relationship
Slide 21




3. (Conditional) Independence Testing “ Hasso

Multivariate Normal Data (I/II) ﬁ!iﬁ?ﬁ{

Theorem:
Two variables bi-variate normal distributed variables V; and V; are

independent if and only if the correlation coefficient pv,v; IS zero.

= Hence, we test whether the correlation coefficient Pvvir

RG]

Pviv; = )
v O-ViO-Vj

is equal to zero or not, i.e., Ho:py,y, =0 vs Hy:pyy, # 0

= Fori.i.d. normal distributed V;,V; , applying Fisher’s z-transformation PVivir o | Ing
ausal lnrerence

1 1+ Pvyv; - Theory and
Z (pVi,Vj) = Elog T | Applications
Priv; Uflacker, Huegle,

) 1+py. v ) Schmidt
ieIdstoZ( . .)~N = In L, .
Y Pviv; 2 \1-pyv; ) V-3 Slide 22



3. (Conditional) Independence Testing “ Hasso

Multivariate Normal Data (II/II) ﬁ!iﬁ?ﬁ{

s Thus, we can apply standard statistical hypothesis tests, i.e.,
o Derive p-value

p(ViV)) =2 (1= @0, (V=3 1Z (py,v,) 1)

o Given significance level a, we reject the null-hypothesis Ho: pv,v; = 0 against
Ho: py,v; # 0 if for the corresponding estimated p-value it holds that p(V;,V}) < a

= This can be easily extended for conditional independence:

Theorem:

For multivariate normal distributed variables V = {V,, ...,Vy} we have Causal Inference
that two variables V; and V; are conditionally independent given the - Theory and
separation set S c V/{V;,V;} if and only if the partial correlation Applications

p(V;,V;|S) between V; and V; given S is equal to zero. gﬂﬁck_g;r Huegle,
cnmi

= l.e., we can apply the same procedure to receive information about Slide 23
conditional independencies



3. (Conditional) Independence Testing
Overview
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m Statistical hypothesis testing theory allows to obtain (X 1 Y| Z), from data
= Distribution of 1, ...,Vy = dependence measures T(V;,V;,S) = hypothesis test Hy:t =0

= Multivariate normal data: = Categorical data:

2
(NuiVjs_Evi vj s)

Evivjs

pils) = L (2 Peerls Nogwjs
o) =i (15722 (w115 = Zocoy s . GUYJS) =2 s Moy (32
with sample (partial) correlation

coefficient ﬁvi_,,ﬂ s

Ny;+sNiv s

. — L ] — —

With By, s = T where Ny, = Z,,]. Ny Nys = 2,,]. Nyw,»
S

N+,,].= hs Nv,-v,- and Ny, = va; N,.,. are calculated for every value of S

ivj

= This defines the basis of constraint-based causal structure learning f?r:se‘:,'ri“:ﬁ;ence

~\ Applications

Uflacker, Huegle,
Schmidt

Slide 24
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