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Recap of Causal Graphical Models



Recap of Causal Graphical Models
The Concept of Causal Inference
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Inference

E.g., what is the sailors’ probability of 
recovery when we see a treatment with 
lemons? 

𝑸𝑸 𝑷𝑷 = 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍

E.g., what is the sailors’ probability of 
recovery if we do treat them with 
lemons? 

𝑸𝑸 𝑮𝑮 = 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒅𝒅𝒓𝒓(𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍)



■ Causal Structures formalized by DAG (directed acyclic graph) 𝐺𝐺 with 
random variables 𝑉𝑉1, … ,𝑉𝑉𝑛𝑛 as vertices.

■ Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply
𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝐺𝐺 ⇔ 𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝑃𝑃.

■ Local Markov Condition states that the density 𝑝𝑝(v1, … , 𝑣𝑣𝑛𝑛) then factorizes 
into

𝑝𝑝 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 = ∏𝑖𝑖=1
𝑛𝑛 𝑝𝑝 𝑣𝑣𝑖𝑖 𝑃𝑃𝑃𝑃 𝑣𝑣𝑖𝑖 .

■ Causal conditional 𝑝𝑝 𝑣𝑣𝑗𝑗 𝑃𝑃𝑃𝑃 𝑣𝑣𝑗𝑗 represent causal mechanisms. Uflacker, Huegle, 
Schmidt
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Recap of Causal Graphical Models
Summary (I/II)



■ Assumptions:
□ Causal Sufficiency
□ Global Markov Condition
□ Causal Faithfulness

■ Causal Structure Learning: 
□ Accept only those DAG’s 𝐺𝐺 as causal hypothesis for which

𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝐺𝐺 ⇔ 𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝑃𝑃 .
□ Defines the basis of constraint-based causal structure learning, i.e., 

use statistical hypothesis testing theory to derive 𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝑃𝑃.
□ Identifies causal DAG up to Markov equivalence class 

(DAGs that imply the same conditional independencies in 𝑃𝑃.)
Uflacker, Huegle, 
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Recap of Causal Graphical Models
Summary (II/II)



Introduction to Statistical Hypothesis Testing



1. Preliminaries
Statistical Inference: Draw Conclusion on 𝑃𝑃 from Data
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Causal Models
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Inference
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Aspects of 𝑮𝑮

Inference

E.g., what is the sailors’ probability of 
recovery when we see a treatment with 
lemons? 

𝑸𝑸 𝑷𝑷 = 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍

E.g., what is the sailors’ probability of 
recovery if we do treat them with 
lemons? 

𝑸𝑸 𝑮𝑮 = 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒅𝒅𝒓𝒓(𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍)



■ Random samples 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛
independent and identically distributed (i.i.d.) random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

■ Statistic 𝑇𝑇
□ function 𝑔𝑔(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) of the observations in a random sample 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛
□ is a random variable with probability distribution (sampling distribution)

■ Point estimator �Θ
Statistic to estimate a population parameter Θ
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1. Preliminaries
Statistical Inference

Statistical Inference:
Deduce properties of a population’s probability distribution 𝑃𝑃
on the basis of random sampling    .

Examples:
Sample mean 𝑋𝑋𝑛𝑛 =

1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 with value 𝑥̅𝑥𝑛𝑛 is an estimator of the 

population mean 𝜇𝜇



■ We write 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2)
■ Φ𝜇𝜇𝜎𝜎2 𝑥𝑥 = 𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑋𝑋 ≤ x) is the cumulative distribution function

■ 𝑋𝑋~𝑁𝑁 0, 1 with f x = 1
2𝜋𝜋 𝑒𝑒

−12𝑥𝑥
2

is called standard normal distributed

■ If 𝑋𝑋~𝑁𝑁 𝜇𝜇,𝜎𝜎2 , then 

□
𝑋𝑋−𝜇𝜇
𝜎𝜎 ~N(0,1) (Standardization) 

□ 𝑋𝑋 = 𝜇𝜇 + 𝜎𝜎𝑍𝑍 with 𝑍𝑍~𝑁𝑁 0,1
Uflacker, Huegle, 
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1. Preliminaries
Normal Distribution

Normal Distribution:
We say a random variable 𝑋𝑋 has a normal distribution with mean 𝜇𝜇
and standard deviation 𝜎𝜎2 if its density function 𝑓𝑓 is given

f x =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒−

1
2
𝑥𝑥−𝜇𝜇
𝜎𝜎

2

, 𝑥𝑥 ∈ ℝ.



■ Therefore, 𝑋𝑋𝑛𝑛 is approximately normal distributed with mean 𝜇𝜇 and 
standard deviation 𝜎𝜎/ 𝑛𝑛, i.e., 𝑋𝑋𝑛𝑛~𝑁𝑁(𝜇𝜇,𝜎𝜎2/𝑛𝑛)

■ Hence, for the sum 𝑆𝑆𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 we have Sn~𝑁𝑁 𝑛𝑛𝜇𝜇,𝑛𝑛𝜎𝜎2

Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Central Limit Theorem

Central Limit Theorem:
For a random sample 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 of size 𝑛𝑛 from a population 
with mean 𝜇𝜇 and finite variance 𝜎𝜎2 then, for 𝑛𝑛 → ∞, 

𝑍𝑍 = 𝑛𝑛
�𝑋𝑋𝑛𝑛 − 𝜇𝜇
𝜎𝜎 → 𝑁𝑁 0,1 .



■ Suppose that 𝑃𝑃𝑃𝑃 𝐿𝐿 ≤ 𝜇𝜇 ≤ 𝑈𝑈 = 1− 𝛼𝛼, 𝛼𝛼 ∈ (0,1). Then for 𝑙𝑙 ≤ 𝜇𝜇 ≤ 𝑢𝑢:
□ 𝑙𝑙 and 𝑢𝑢 are called lower- and upper-confidence bounds
□ 1 − 𝛼𝛼 is called the confidence level

■ Recall that 𝑋𝑋𝑛𝑛~𝑁𝑁 𝜇𝜇, 𝜎𝜎2/𝑛𝑛 . For some positive scalar value 𝑧𝑧1−𝛼𝛼/2 we have

□ Pr 𝑋𝑋𝑛𝑛 ≤ 𝜇𝜇 + 𝑧𝑧1−𝛼𝛼/2
𝜎𝜎
𝑛𝑛 = Pr 𝑋𝑋𝑛𝑛−𝜇𝜇

𝜎𝜎
𝑛𝑛

≤ 𝑧𝑧1−𝛼𝛼/2 = Φ0,1(𝑧𝑧1−𝛼𝛼/2)

□ Pr 𝑋𝑋𝑛𝑛 ≤ 𝜇𝜇 − 𝑧𝑧1−𝛼𝛼/2
𝜎𝜎
𝑛𝑛 = 1−Φ0,1(𝑧𝑧1−𝛼𝛼/2)

Uflacker, Huegle, 
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1. Preliminaries
Confidence Intervals (I/II)

Confidence Interval:
A confidence interval estimate for the mean 𝜇𝜇 is an interval of the form

𝑙𝑙 ≤ 𝜇𝜇 ≤ 𝑢𝑢,
With endpoints 𝑙𝑙 and 𝑢𝑢 computed from 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛.



■ Therefore

Pr 𝜇𝜇 − 𝑧𝑧1−𝛼𝛼2
𝜎𝜎
𝑛𝑛
≤ 𝑋𝑋𝑛𝑛 ≤ 𝜇𝜇 + 𝑧𝑧1−𝛼𝛼2

𝜎𝜎
𝑛𝑛

= 2Φ0,1(−𝑧𝑧1−𝛼𝛼/2)

■ Recall, we want

Pr 𝜇𝜇 − 𝑧𝑧1−𝛼𝛼/2
𝜎𝜎
𝑛𝑛
≤ 𝑋𝑋𝑛𝑛 ≤ 𝜇𝜇 + 𝑧𝑧1−𝛼𝛼/2

𝜎𝜎
𝑛𝑛

= 1− 𝛼𝛼

■ With 𝛼𝛼 = 2Φ0,1(𝑧𝑧1−𝛼𝛼/2) the 100 1− 𝛼𝛼 % confidence interval on 𝜇𝜇 is given by

𝑋𝑋𝑛𝑛 − 𝑧𝑧1−𝛼𝛼/2
𝜎𝜎
𝑛𝑛
≤ 𝜇𝜇 ≤ 𝑋𝑋𝑛𝑛 + 𝑧𝑧1−𝛼𝛼/2

𝜎𝜎
𝑛𝑛

■ Since 𝛼𝛼 = 2Φ0,1(−𝑧𝑧1−𝛼𝛼/2), we can choose 𝑧𝑧1−𝛼𝛼/2 as follows:

□ 99% ⇒ 𝛼𝛼 = 0.01 ⇒ Φ0,1 −𝑧𝑧1−𝛼𝛼/2 = 0.005 ⇒ 𝑧𝑧1−𝛼𝛼/2 = 2.57

□ 95% ⇒ 𝛼𝛼 = 0.05 ⇒ Φ0,1 −𝑧𝑧1−𝛼𝛼/2 = 0.025 ⇒ 𝑧𝑧1−𝛼𝛼/2 = 2.32
Uflacker, Huegle, 
Schmidt
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1. Preliminaries
Confidence Intervals (I/II)
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2. Statistical Hypothesis Testing
Introduction

Knowing the sampling distribution is the key of statistical inference:
■ Confidence intervals

Framework to derive error bounds on point estimates of the population 
distribution based on the sampling distribution

■ Hypothesis testing
Methodology for making conclusions about estimates of the population 
distribution based on the sampling distribution

A hypothesis test is a decision rule that is a function of the test statistic. 
E.g., reject 𝐻𝐻0 if the test statistic is below a threshold, otherwise don’t.

Statistical Hypothesis:
Statement about parameters of one or more populations
� Null Hypothesis 𝐻𝐻0 is the claim that is initially assumed to be true 
� Alternative Hypothesis 𝐻𝐻1 is a claim that contradicts the 𝐻𝐻0



For some arbitrary value 𝜇𝜇0
■ one-sided hypothesis test: 

𝐻𝐻0: 𝜇𝜇 ≥ 𝜇𝜇0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇 < 𝜇𝜇0
𝐻𝐻0: 𝜇𝜇 ≤ 𝜇𝜇0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇 > 𝜇𝜇0

■ Significance level of the statistical test
𝛼𝛼 = Pr type I error = 𝑃𝑃𝑃𝑃 reject𝐻𝐻0 𝐻𝐻0 is true

■ Power of the statistical test
𝛽𝛽 = Pr type II error = 𝑃𝑃𝑃𝑃(retain 𝐻𝐻0|𝐻𝐻1 is true)

■ Hypothesis testing
Desire: 𝛼𝛼 is low and the power 1− 𝛽𝛽 as high as can be

Uflacker, Huegle, 
Schmidt
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2. Statistical Hypothesis Testing
Hypothesis Types and Errors

■ two-sided hypothesis test: 
𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇 ≠ 𝜇𝜇0

𝑯𝑯𝟎𝟎 is true 𝑯𝑯𝟎𝟎 is false (𝑯𝑯𝟏𝟏 is true)

Retain 𝐻𝐻0 OK Type II error

Reject 𝐻𝐻0 Type I error OK



■ Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛~𝑁𝑁(𝜇𝜇,𝜎𝜎2) (𝜎𝜎 is known)
■ We would like to test 𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇 > 𝜇𝜇0

■ Choose test statistic 𝑇𝑇 to be 𝑋𝑋𝑛𝑛
■ Under 𝐻𝐻0, we have 𝑇𝑇~𝑁𝑁(𝜇𝜇0,𝜎𝜎2/𝑛𝑛)

■ 𝛼𝛼 = 𝑃𝑃𝜇𝜇0 𝑋𝑋𝑛𝑛 > 𝑐𝑐 = 𝑃𝑃𝜇𝜇0
𝑛𝑛 𝑋𝑋𝑛𝑛−𝜇𝜇0

𝜎𝜎 > 𝑛𝑛 𝑐𝑐−𝜇𝜇0
𝜎𝜎

= 𝑃𝑃𝜇𝜇0 𝑍𝑍 > 𝑛𝑛 𝑐𝑐−𝜇𝜇0
𝜎𝜎 = 1 −Φ0,1

𝑛𝑛 𝑐𝑐−𝜇𝜇0
𝜎𝜎

■ Therefore, 𝑐𝑐 = 𝜇𝜇0 +Φ0,1
−1 1− 𝛼𝛼 𝜎𝜎

𝑛𝑛

Uflacker, Huegle, 
Schmidt
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2. Statistical Hypothesis Testing
Critical Value

Goal:
Decision rule, i.e., reject 𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0 if 𝑥̅𝑥𝑛𝑛 > c for a 𝑐𝑐 ∈ ℝ

𝛼𝛼



■ Rule of thumb: 𝑝𝑝-value low ⇒ 𝐻𝐻0 must go
■ We would like to test 𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇 > 𝜇𝜇0
■ Here, the p-value is 𝑃𝑃𝐻𝐻0 𝑋𝑋𝑛𝑛 > 𝑥𝑥𝑛𝑛 = ⋯

= 𝑃𝑃𝐻𝐻0 𝑍𝑍 > 𝑋𝑋𝑛𝑛−𝜇𝜇0
𝜎𝜎/ 𝑛𝑛 = 1−Φ0,1

𝑋𝑋𝑛𝑛−𝜇𝜇0
𝜎𝜎/ 𝑛𝑛

■ If 𝑃𝑃𝐻𝐻0 𝑋𝑋𝑛𝑛 > 𝑥𝑥𝑛𝑛 < 𝛼𝛼 we reject 𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0
■ Absolutely identical to the usage of the 

critical value Uflacker, Huegle, 
Schmidt

Causal Inference 
- Theory and 
Applications

Slide 17

2. Statistical Hypothesis Testing
P-Value

The 𝑝𝑝-value is the probability that under the null hypothesis, 
the random test statistic takes a value as extreme as or more 
extreme than the one observed.



Uflacker, Huegle, 
Schmidt

Causal Inference 
- Theory and 
Applications

Slide 18

2. Statistical Hypothesis Testing
Supplement: Z-Test

■ If the distribution of the test statistic 𝑇𝑇 under 𝐻𝐻0 can be approximated by 
a normal distribution the corresponding statistical test is called 𝑧𝑧-test

■ Overview for 𝑍𝑍-tests with known 𝜎𝜎:



■ Hypothesis
□ Null Hypothesis 𝐻𝐻0 is the claim that is initially assumed to be true 
□ Alternative Hypothesis 𝐻𝐻1 is a claim that contradicts 𝐻𝐻0

■ Hypothesis test is a decision rule that is a function of the test statistic 𝑇𝑇
■ How to test a hypothesis?

□ Relation test and confidence interval
□ Approximate 𝑇𝑇 under 𝐻𝐻0 by a known distribution
□ Different distributions yield to different tests, e.g., 𝑇𝑇-test, 𝜒𝜒2-test, etc.
□ Derive rejection criteria for 𝐻𝐻0

– 𝑐𝑐-value: reject 𝐻𝐻0 if 𝑇𝑇(𝑥𝑥𝑛𝑛) > c for a 𝑐𝑐 ∈ ℝ
– 𝑝𝑝-value: reject 𝐻𝐻0 if 𝑃𝑃𝐻𝐻0 𝑇𝑇 𝑋𝑋 > 𝑇𝑇 𝑥𝑥 < 𝛼𝛼 Uflacker, Huegle, 

Schmidt
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2. Statistical Hypothesis Testing
Summary

are equivalent
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3. (Conditional) Independence Testing
Concept (I/II)

Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷𝑷

Aspects of 𝑮𝑮

Inference

Use statistical hypothesis tests to obtain information about 𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝑃𝑃.
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3. (Conditional) Independence Testing
Concept (II/II)

Basic idea:
Find a measure 𝑇𝑇 of (conditional) dependence within the random 
samples 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁 and apply statistical hypothesis tests whether 
𝑇𝑇 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁 is zero or not, i.e.,

𝐻𝐻0: 𝑡𝑡 = 0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝑡𝑡 ≠ 0

Cooling House Example:
𝑉𝑉1, … ,𝑉𝑉𝑁𝑁 multivariate normal

Correlation coefficient 

𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑃𝑃 𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 =
𝑐𝑐𝑐𝑐𝑣𝑣(𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗)
𝜎𝜎𝑉𝑉𝑖𝑖𝜎𝜎𝑉𝑉𝑗𝑗

as measure of linear relationship

𝑉𝑉1 𝑉𝑉2

𝑉𝑉4 𝑉𝑉3

𝑉𝑉5 𝑉𝑉6



■ Hence, we test whether the correlation coefficient 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗,

𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 =
𝐸𝐸 𝑉𝑉𝑖𝑖 − 𝜇𝜇𝑉𝑉𝑖𝑖 𝑉𝑉𝑗𝑗 − 𝜇𝜇𝑉𝑉𝑗𝑗

𝜎𝜎𝑉𝑉𝑖𝑖𝜎𝜎𝑉𝑉𝑗𝑗
,

is equal to zero or not, i.e.,   𝐻𝐻0:𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 = 0 𝑣𝑣𝑣𝑣 𝐻𝐻1:𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 ≠ 0

■ For i.i.d. normal distributed 𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗 , applying Fisher’s 𝑧𝑧-transformation 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗,

𝑍𝑍 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 =
1
2 log

1 + 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗
1− 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗

,

yields to 𝑍𝑍 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 ~ N 1
2 ln

1+𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗
1−𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗

, 1
𝑛𝑛−3 .
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3. (Conditional) Independence Testing
Multivariate Normal Data (I/II)

Theorem:
Two variables bi-variate normal distributed variables 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 are 
independent if and only if the correlation coefficient 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 is zero.  



■ Thus, we can apply standard statistical hypothesis tests, i.e.,
□ Derive 𝑝𝑝-value 

𝑝𝑝 𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗 = 2 1 −Φ0,1( 𝑛𝑛 − 3 |𝑍𝑍 𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 |

□ Given significance level 𝛼𝛼, we reject the null-hypothesis 𝐻𝐻0:𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 = 0 against 
𝐻𝐻0:𝜌𝜌𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 ≠ 0 if for the corresponding estimated 𝑝𝑝-value it holds that 𝑝̂𝑝 𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗 ≤ 𝛼𝛼

■ This can be easily extended for conditional independence:

■ I.e., we can apply the same procedure to receive information about
conditional independencies

Uflacker, Huegle, 
Schmidt

Causal Inference 
- Theory and 
Applications

Slide 23

3. (Conditional) Independence Testing
Multivariate Normal Data (II/II)

Theorem:
For multivariate normal distributed variables 𝑉𝑉 = {𝑉𝑉1, … ,𝑉𝑉𝑁𝑁} we have 
that two variables Vi and Vj are conditionally independent given the 
separation set 𝑺𝑺 ⊂ 𝑉𝑉/{𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗} if and only if the partial correlation 
𝜌𝜌 𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗 𝑺𝑺 between 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 given 𝑺𝑺 is equal to zero.  



■ Statistical hypothesis testing theory allows to obtain 𝑋𝑋 ⊥ 𝑌𝑌 𝑍𝑍 𝑃𝑃 from data
■ Distribution of 𝑉𝑉1, … ,𝑉𝑉𝑁𝑁 ⇒ dependence measures 𝑇𝑇(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗 ,𝑺𝑺) ⇒ hypothesis test 𝐻𝐻0: 𝑡𝑡 = 0

■ This defines the basis of constraint-based causal structure learning
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3. (Conditional) Independence Testing
Overview

Examples
� Multivariate normal data:

𝑍𝑍 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 𝒍𝒍 = 1
2
ln

1+ �𝜌𝜌𝑣𝑣𝑖𝑖,𝑣𝑣|𝒍𝒍
1+�𝜌𝜌𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗|𝒍𝒍

𝑤𝑤𝑤𝑤𝑡𝑡𝑤 𝑣𝑣𝑃𝑃𝑠𝑠𝑝𝑝𝑙𝑙𝑒𝑒 𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑙𝑙 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑒𝑒𝑙𝑙𝑃𝑃𝑡𝑡𝑤𝑤𝑐𝑐𝑛𝑛
𝑐𝑐𝑐𝑐𝑒𝑒𝑓𝑓𝑓𝑓𝑤𝑤𝑐𝑐𝑤𝑤𝑒𝑒𝑛𝑛𝑡𝑡 �𝜌𝜌𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗|𝒍𝒍

� Categorical data:

𝜒𝜒2 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 𝒍𝒍 = ∑𝑣𝑣𝑖𝑖 𝑣𝑣𝑗𝑗 𝒍𝒍
𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝒍𝒍−𝐸𝐸𝑣𝑣𝑖𝑖 𝑣𝑣𝑗𝑗 𝒍𝒍

2

𝐸𝐸𝑣𝑣𝑖𝑖 𝑣𝑣𝑗𝑗 𝒍𝒍
𝑃𝑃𝑛𝑛𝑎𝑎 𝐺𝐺2 𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗 S = 2∑𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑺𝑺 𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝒍𝒍 ln

𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝒍𝒍
𝐸𝐸𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝒍𝒍

𝑤𝑤𝑤𝑤𝑡𝑡𝑤 𝐸𝐸𝑣𝑣𝑖𝑖 𝑣𝑣𝑗𝑗 𝒍𝒍 =
𝑁𝑁𝑣𝑣𝑖𝑖+𝒍𝒍𝑁𝑁+𝑣𝑣𝑗𝑗𝒍𝒍

𝑁𝑁++𝒍𝒍
𝑤𝑤𝑤𝑒𝑒𝑃𝑃𝑒𝑒 𝑁𝑁𝑣𝑣𝑖𝑖+ = ∑𝑣𝑣𝑗𝑗𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 ,𝑁𝑁𝑣𝑣𝑖𝑖+ = ∑𝑣𝑣𝑗𝑗𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 ,

𝑁𝑁+𝒓𝒓𝒋𝒋= ∑𝑣𝑣𝑖𝑖 𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 𝑃𝑃𝑛𝑛𝑎𝑎 𝑁𝑁++ = ∑𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 𝑁𝑁𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 𝑃𝑃𝑃𝑃𝑒𝑒 𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑢𝑢𝑙𝑙𝑃𝑃𝑡𝑡𝑒𝑒𝑎𝑎 𝑓𝑓𝑐𝑐𝑃𝑃 𝑒𝑒𝑣𝑣𝑒𝑒𝑃𝑃𝑒𝑒 𝑣𝑣𝑃𝑃𝑙𝑙𝑢𝑢𝑒𝑒 𝑐𝑐𝑓𝑓 𝑺𝑺
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