

Agenda

April 26, 2018

- Recap of Causal Graphical Models
- Introduction to Conditional Independence Testing
 - Peliminaries
 - Statistical Inference
 - Central Limit Theorem
 - Confidence Level
 - 2. Statistical Hypothesis Testing
 - Hypothesis Types and Errors
 - Critical Values, P-Values
 - Supplement: Z-Test
 - 3. (Conditional) Independence Testing
 - Concept
 - Multivariate Normal Data
 - Overview

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

The Concept of Causal Inference

E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Summary (I/II)

- Causal Structures formalized by *DAG* (directed acyclic graph) G with random variables $V_1, ..., V_n$ as vertices.
- Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Local Markov Condition states that the density $p(v_1, ..., v_n)$ then factorizes into

$$p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

• Causal conditional $p(v_i|Pa(v_i))$ represent causal mechanisms.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Summary (II/II)

Assumptions:

- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

Causal Structure Learning:

- Accept only those DAG's G as causal hypothesis for which $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Defines the basis of *constraint-based causal structure learning*, i.e., use statistical hypothesis testing theory to derive $(X \perp Y \mid Z)_P$.
- Identifies causal DAG up to Markov equivalence class
 (DAGs that imply the same conditional independencies in P.)

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Statistical Inference: Draw Conclusion on P from Data

recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference - Theory and **Applications**

Uflacker, Huegle, Schmidt

Statistical Inference

Statistical Inference:

Deduce properties of a population's probability distribution P on the basis of random sampling \bigcirc .

■ Random samples $X_1, ..., X_n$

independent and identically distributed (i.i.d.) random variables $X_1, ..., X_n$

- Statistic T
 - function $g(X_1,...,X_n)$ of the observations in a random sample $X_1,...,X_n$
 - is a random variable with probability distribution (sampling distribution)
- Point estimator ô

Statistic to estimate a population parameter Θ

Examples:

Sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ with value \overline{x}_n is an estimator of the population mean μ

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Normal Distribution

Normal Distribution:

We say a random variable X has a normal distribution with mean μ and standard deviation σ^2 if its density function f is given

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \qquad x \in \mathbb{R}.$$

- We write $X \sim N(\mu, \sigma^2)$
- $\Phi_{\mu\sigma^2}(x) = F_X(x) = Pr(X \le x)$ is the *cumulative distribution function*
- $X \sim N(0,1)$ with $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ is called *standard normal distributed*
- If $X \sim N(\mu, \sigma^2)$, then
 - $\Box \frac{X-\mu}{\sigma} \sim N(0,1)$ (Standardization)

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Central Limit Theorem

Central Limit Theorem:

For a random sample $X_1, ..., X_n$ of size n from a population with mean μ and finite variance σ^2 then, for $n \to \infty$,

$$Z = \sqrt{n} \ \frac{\bar{X}_n - \mu}{\sigma} \to N(0,1)$$

- Therefore, \overline{X}_n is approximately normal distributed with mean μ and standard deviation σ/\sqrt{n} , i.e., $\overline{X}_n \sim N(\mu, \sigma^2/n)$
- Hence, for the sum $S_n = \sum_{i=1}^n X_i$ we have $S_n \sim N(n\mu, n\sigma^2)$

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Confidence Intervals (I/II)

Confidence Interval:

A confidence interval estimate for the mean μ is an interval of the form $l \le \mu \le u$,

With endpoints l and u computed from $X_1, ..., X_n$.

- Suppose that $Pr(L \le \mu \le U) = 1 \alpha$, $\alpha \in (0,1)$. Then for $l \le \mu \le u$:
 - $_{\square}$ l and u are called *lower-* and *upper-confidence bounds*
 - \Box 1 α is called the *confidence level*
- Recall that $\overline{X}_n \sim N(\mu, \sigma^2/n)$. For some positive scalar value $z_{1-\alpha/2}$ we have

$$\Pr\left(\overline{X}_n \le \mu + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = \Pr\left(\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{1-\alpha/2}\right) = \Phi_{0,1}(z_{1-\alpha/2})$$

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Confidence Intervals (I/II)

Therefore

$$\Pr\left(\mu - z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \overline{X}_n \le \mu + z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 2 \,\Phi_{0,1}(-z_{1 - \alpha/2})$$

Recall, we want

$$\Pr\left(\mu - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \overline{X}_n \le \mu + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

• With $\alpha = 2\Phi_{0,1}(z_{1-\alpha/2})$ the $100(1-\alpha)\%$ confidence interval on μ is given by

$$\overline{X}_n - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X}_n + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

• Since $\alpha = 2\Phi_{0,1}(-z_{1-\alpha/2})$, we can choose $z_{1-\alpha/2}$ as follows:

$$99\% \Rightarrow \alpha = 0.01 \Rightarrow \Phi_{0,1}(-z_{1-\alpha/2}) = 0.005 \Rightarrow z_{1-\alpha/2} = 2.57$$

$$0.95\% \Rightarrow \alpha = 0.05 \Rightarrow \Phi_{0,1}(-z_{1-\alpha/2}) = 0.025 \Rightarrow z_{1-\alpha/2} = 2.32$$

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Introduction

Knowing the sampling distribution is the key of statistical inference:

Confidence intervals

Framework to derive error bounds on point estimates of the population distribution based on the sampling distribution

Hypothesis testing

Methodology for making conclusions about estimates of the population distribution based on the sampling distribution

Statistical Hypothesis:

Statement about parameters of one or more populations

- Null Hypothesis H_0 is the claim that is initially assumed to be true
- Alternative Hypothesis H_1 is a claim that contradicts the H_0

A *hypothesis test* is a decision rule that is a function of the test statistic. E.g., reject H_0 if the test statistic is below a threshold, otherwise don't.

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Hypothesis Types and Errors

For some arbitrary value μ_0

one-sided hypothesis test:

$$H_0: \mu \ge \mu_0 \ vs \ H_1: \mu < \mu_0$$

 $H_0: \mu \le \mu_0 \ vs \ H_1: \mu > \mu_0$

two-sided hypothesis test:

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$

	H_0 is true	H_0 is false (H_1 is true)
Retain H_0	OK	Type II error
Reject H ₀	Type I error	OK

- Significance level of the statistical test
 - $\alpha = \Pr(\text{type I error}) = \Pr(\text{reject } H_0 | H_0 \text{ is true})$
- Power of the statistical test

 $\beta = \Pr(\text{type II error}) = \Pr(\text{retain } H_0 | H_1 \text{ is true})$

Hypothesis testing

Desire: α is low and the power $(1 - \beta)$ as high as can be

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Critical Value

- Suppose $X_1, ..., X_n \sim N(\mu, \sigma^2)$ (σ is known)
- We would like to test H_0 : $\mu = \mu_0 \ vs \ H_1$: $\mu > \mu_0$

Goal:

Decision rule, i.e., reject H_0 : $\mu = \mu_0$ if $\bar{x}_n > c$ for a $c \in \mathbb{R}$

- Choose test statistic T to be \overline{X}_n
- Under H_0 , we have $T \sim N(\mu_0, \sigma^2/n)$

$$\alpha = P_{\mu_0}(\overline{X}_n > c) = P_{\mu_0}\left(\frac{\sqrt{n}(\overline{X}_n - \mu_0)}{\sigma} > \frac{\sqrt{n}(c - \mu_0)}{\sigma}\right)$$
$$= P_{\mu_0}\left(Z > \frac{\sqrt{n}(c - \mu_0)}{\sigma}\right) = 1 - \Phi_{0,1}\left(\frac{\sqrt{n}(c - \mu_0)}{\sigma}\right)$$

• Therefore, $c = \mu_0 + \Phi_{0,1}^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}}$

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

P-Value

The p-value is the probability that under the null hypothesis, the random test statistic takes a value as extreme as or more extreme than the one observed.

- Rule of thumb: p-value low $\Rightarrow H_0$ must go
- We would like to test H_0 : $\mu = \mu_0 \ vs \ H_1$: $\mu > \mu_0$
- Here, the p-value is $P_{H_0}(\overline{X}_n > \overline{x}_n) = \cdots$

$$= P_{H_0}\left(Z > \frac{(\overline{X}_n - \mu_0)}{\sigma/\sqrt{n}}\right) = 1 - \Phi_{0,1}\left(\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}\right)$$

- \implies If $P_{H_0}(\overline{X}_n > \overline{x}_n) < \alpha$ we reject $H_0: \mu = \mu_0$
- Absolutely identical to the usage of the critical value

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Supplement: Z-Test

- If the distribution of the test statistic T under H_0 can be approximated by a normal distribution the corresponding statistical test is called z-test
- Overview for Z-tests with known σ :

Testing Hypothe Model:	eses on the Mean, Variance $X_i \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$	Known (Z-Tests) with μ unknown but σ^2 known.
Null hypothesis:	$H_0: \mu = \mu_0.$	
Test statistic:	$z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}, \qquad Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}.$	
Alternative	P-value	Rejection Criterion
Hypotheses		for Fixed-Level Tests
Hypotheses $H_1: \mu \neq \mu_0$	$P = 2[1 - \Phi(z)]$	
		for Fixed-Level Tests

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

- Hypothesis
 - Null Hypothesis H_0 is the claim that is initially assumed to be true
 - \Box Alternative Hypothesis H_1 is a claim that contradicts H_0
- Hypothesis test is a decision rule that is a function of the test statistic T
- How to test a hypothesis?
 - Relation test and confidence interval
 - Approximate T under H_0 by a known distribution
 - Different distributions yield to different tests, e.g., T-test, χ^2 -test, etc.
 - Derive rejection criteria for H_0

 - c-value: reject H_0 if $T(x_n) > c$ for a $c \in \mathbb{R}$ p-value: reject H_0 if $P_{H_0}(T(X) > T(x)) < \alpha$

Causal Inference - Theory and **Applications**

Uflacker, Huegle, Schmidt

3. (Conditional) Independence Testing Concept (I/II)

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

 \longrightarrow Use statistical hypothesis tests to obtain information about $(X \perp Y \mid Z)_P$.

Concept (II/II)

Basic idea:

Find a measure T of (conditional) dependence within the random samples $X_1, ..., X_N$ and apply statistical hypothesis tests whether $T(X_1, ..., X_N)$ is zero or not, i.e.,

$$H_0: t = 0 \ vs \ H_1: t \neq 0$$

 $V_1, ..., V_N$ multivariate normal

Correlation coefficient

$$\rho_{V_i,V_j} = cor(V_i, V_j) = \frac{cov(V_i, V_j)}{\sigma_{V_i}\sigma_{V_i}}$$

as measure of linear relationship

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Multivariate Normal Data (I/II)

Theorem:

Two variables bi-variate normal distributed variables V_i and V_j are independent if and only if the correlation coefficient ρ_{V_i,V_j} is zero.

• Hence, we test whether the correlation coefficient ρ_{V_i,V_i} ,

$$\rho_{V_i,V_j} = \frac{E\left[\left(V_i - \mu_{V_i}\right)\left(V_j - \mu_{V_j}\right)\right]}{\sigma_{V_i}\sigma_{V_j}},$$

is equal to zero or not, i.e., $H_0: \rho_{V_i,V_i} = 0$ vs $H_1: \rho_{V_i,V_i} \neq 0$

For i.i.d. normal distributed V_i, V_j , applying Fisher's z-transformation ρ_{V_i, V_j} ,

$$Z\left(\rho_{V_i,V_j}\right) = \frac{1}{2}\log\left(\frac{1+\rho_{V_i,V_j}}{1-\rho_{V_i,V_j}}\right),\,$$

yields to
$$Z\left(\rho_{V_i,V_j}\right) \sim N\left(\frac{1}{2} \ln\left(\frac{1+\rho_{V_i,V_j}}{1-\rho_{V_i,V_j}}\right), \frac{1}{\sqrt{n-3}}\right)$$
.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Multivariate Normal Data (II/II)

- Thus, we can apply standard statistical hypothesis tests, i.e.,
 - Derive p-value

$$p(V_i, V_j) = 2 \left(1 - \Phi_{0,1}(\sqrt{n-3} | Z(\rho_{V_i, V_j})|\right)$$

- Given significance level α , we reject the null-hypothesis $H_0: \rho_{V_i,V_j} = 0$ against $H_0: \rho_{V_i,V_j} \neq 0$ if for the corresponding estimated p-value it holds that $\hat{p}(V_i,V_j) \leq \alpha$
- This can be easily extended for conditional independence:

Theorem:

For multivariate normal distributed variables $V = \{V_1, ..., V_N\}$ we have that two variables V_i and V_j are conditionally independent given the separation set $S \subset V/\{V_i, V_j\}$ if and only if the partial correlation $\rho(V_i, V_j | S)$ between V_i and V_j given S is equal to zero.

 I.e., we can apply the same procedure to receive information about conditional independencies Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Overview

- Statistical hypothesis testing theory allows to obtain $(X \perp Y \mid Z)_P$ from data
- Distribution of $V_1, ..., V_N \Rightarrow$ dependence measures $T(V_i, V_i, S) \Rightarrow$ hypothesis test $H_0: t = 0$

Examples

• Multivariate normal data:

 $Z(v_i, v_j | \mathbf{s}) = \frac{1}{2} \ln \left(\frac{1 + \widehat{\rho}_{v_i, v_j | \mathbf{s}}}{1 + \widehat{\rho}_{v_i, v_j | \mathbf{s}}} \right)$

with sample (partial) correlation coefficient $\hat{\rho}_{v_i,v_i|s}$

Categorical data:

$$\chi^{2}(v_{i},v_{j}|s) = \sum_{v_{i}v_{j}} s \frac{\left(N_{v_{i}v_{j}s} - E_{v_{i}v_{j}s}\right)^{2}}{E_{v_{i}v_{j}s}} \quad and \quad G^{2}(V_{i},V_{j}|S) = 2\sum_{v_{i}v_{j}S} N_{v_{i}v_{j}S} \ln\left(\frac{N_{v_{i}v_{j}s}}{E_{v_{i}v_{j}s}}\right)$$

$$with \ E_{v_{i}v_{j}s} = \frac{N_{v_{i}+s}N_{+v_{j}s}}{N_{++s}} \quad where \ N_{v_{i}+} = \sum_{v_{j}} N_{v_{i}v_{j}}, N_{v_{i}+} = \sum_{v_{j}} N_{v_{i}v_{j}},$$

$$N_{+v_{i}} = \sum_{v_{i}} N_{v_{i}v_{j}} \quad and \ N_{++} = \sum_{v_{i}v_{i}} N_{v_{i}v_{j}} \quad are \ calculated \ for \ every \ value \ of \ S$$

This defines the basis of constraint-based causal structure learning

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

References

Literature

- Lehmann et. al. (2006). Testing statistical hypotheses. Springer Science & Business Media.
- Montgomery et. al. (2010). Applied statistics and probability for engineers.
 John Wiley & Sons.
- Dempster et. al. (1969). Elements of Continuous Multivariate Analysis.
 Addison-Wesley Publ. Co., Reading, Mass. 1969.
- Joe Whittaker. (2009). Graphical Models in Applied Multivariate Statistics.
 Wiley Publishing.

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Thank you for your attention!