

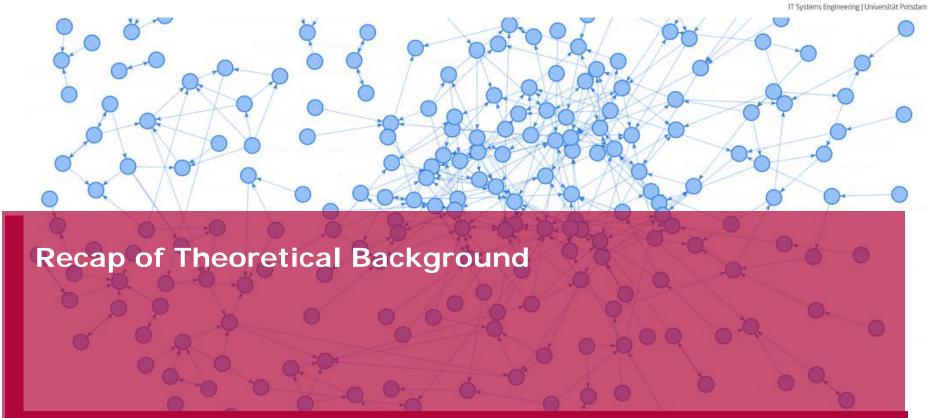
Agenda

May 03, 2018

- Recap of Theoretical Background
- Constraint-Based Causal Structure Learning
 - Introduction
 - Constraint-Based Causal Structure Learning
 - 3. PC Algorithm
 - 4. PC Algorithm in Application
 - 5. Extensions of the PC Algorithm
 - 6. Excursion: Other Causal Structure Learning Algorithms
 - Jupyter Notebook

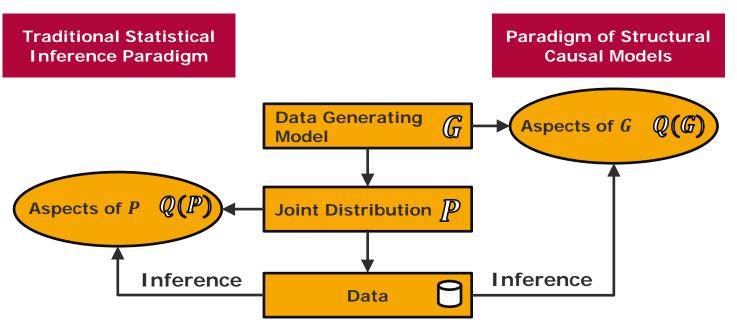
Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt



Recap of Theoretical Background

Causal Inference in a Nutshell



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference
- Theory and
Applications
Uflacker, Huegle,

Slide 4

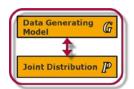
Schmidt

Recap of Theoretical Background Causal Graphical Models

- Causal Structures formalized by *DAG* (directed acyclic graph) G with random variables $V_1, ..., V_n$ as vertices.
- Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Local Markov Condition states that the density $p(v_1, ..., v_n)$ then factorizes into

$$p(v_1, ..., v_n) = \prod_{i=1}^{n} p(v_i | Pa(v_i)).$$

• Causal conditional $p(v_i|Pa(v_i))$ represent causal mechanisms.



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Recap of Theoretical Background

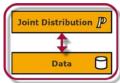
Statistical Inference

- *Null Hypothesis* H_0 is the claim that is initially assumed to be true
- Alternative Hypothesis H_1 is a claim that contradicts the H_0
- How to test a hypothesis?
 - Approximate T under H_0 by a known distribution
 - Different distributions yield to different tests, e.g., T-test, χ^2 -test, etc.
 - Derive rejection criteria for H_0

 - c-value: reject H_0 if $T(x_n) > c$ for a $c \in \mathbb{R}$ p-value: reject H_0 if $P_{H_0}(T(X) > T(x)) < \alpha$ are equivalent
- (Conditional) Independence Test

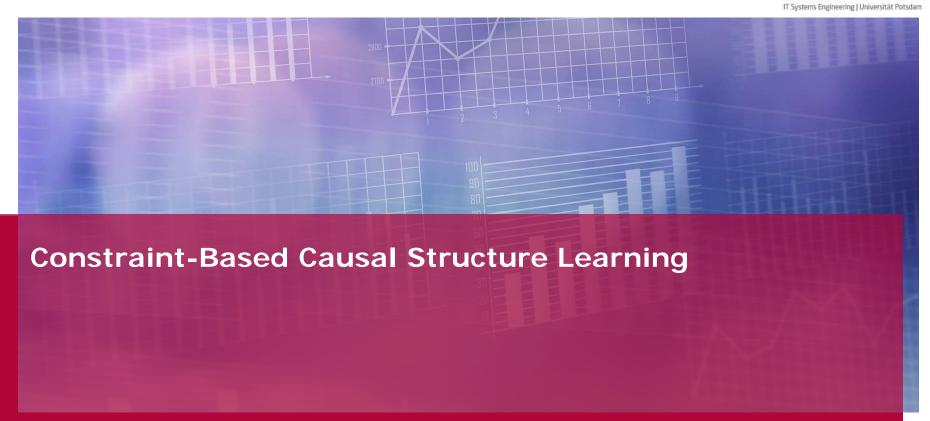
Distribution of $V_1, ..., V_N \Rightarrow$ dependence measures $T(V_i, V_i, S) \Rightarrow$ test $H_0: t = 0$

Allows for constraint-based causal structure learning



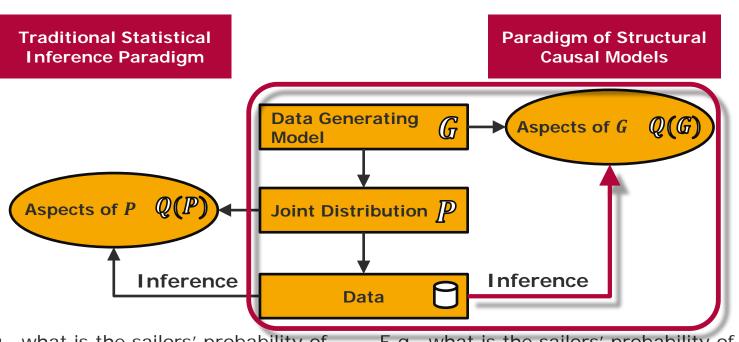
Causal Inference - Theory and **Applications**

Uflacker, Huegle, Schmidt



1. Introduction

The Concept



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

1. Introduction

Recap: Basis of Causal Structure Learning (Pearl et al.)

Assumptions:

- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

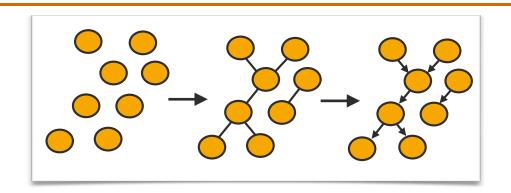
Causal Structure Learning:

- Accept only those DAG's G as causal hypothesis for which $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Identifies causal DAG up to Markov equivalence class
 (DAGs that imply the same conditional independencies)
- □ The Markov equivalence class of a DAG *G* includes all DAGs *G'* that have the same *skeleton C* and the same *v-structures*
- Markov equivalence class of the true DAG G that can be uniquely described by a completed partially directed acyclic graph (CPDAG)

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

2. Constraint-Based Causal Structure Learning Algorithmic Construction (I/II)



Idea:

- Construct skeleton C
- 2. Find *v*-structures
- Direct further edges that follow from
 - Graph is acyclic
 - All v-structures have been found in 2

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Slide 10

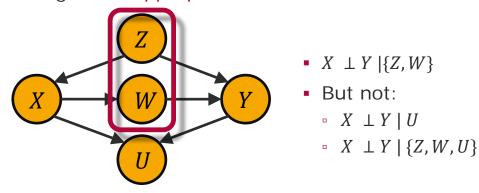
 \rightarrow IC algorithm by Verma and Pearl (1990) to reconstruct CPDAG G from P

2. Constraint-Based Causal Structure Learning Algorithmic Construction (II/II)

Theorem

Assume Markov condition and faithfulness holds. Then X and Y are linked by an edge if and only if there is no set S(X,Y) such that $(X\perp Y|S(X,Y))_{P}$.

 I.e., dependence mediated by other variables can be screened off by conditioning on an appropriate set



...but not by conditioning on all other variables!

• S(X,Y) is called *separation set of X and Y*

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

The Idea

Question:

How to find the appropriate separation sets $S(V_i, V_i)$ for all variables V_i and V_i ?

- Check $V_i \perp V_j \mid S(V_i, V_j)$ for all possible separation sets $S(V_i, V_j) \subseteq V \setminus \{V_i, V_j\}$
 - Computationally infeasible for large V
- Efficient construction of the skeleton C
 Iteration over size of the separation sets S:
 - 1. Remove all edges X Y with $X \perp Y$
 - 2. Remove all edges X Y for which there is an adjacent $Z \neq Y$ of X with $X \perp Y \mid Z$
 - 3. Remove all edges X-Y for which there are two adjacent $Z_1, Z_2 \neq Y$ of X with $X \perp Y \mid \{Z_1, Z_2\}$

4. ...

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Slide 12

→ PC algorithm by Spirtes et al. (1993) to reconstruct CPDAG G from P

Skeleton Discovery: Pseudocode

Algorithm 1 The PCpop-algorithm

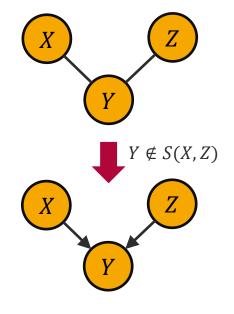
```
1: INPUT: Vertex Set V, Conditional Independence Information
2: OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the skeleton
    afterwards)
 3: Form the complete undirected graph \tilde{C} on the vertex set V.
 4: \ell = -1; C = \tilde{C}
 5: repeat
       \ell = \ell + 1
       repeat
          Select a (new) ordered pair of nodes i, j that are adjacent in C such that |adj(C,i)\setminus\{j\}| \ge \ell
 8:
          repeat
 9:
             Choose (new) \mathbf{k} \subseteq adj(C,i) \setminus \{j\} with |\mathbf{k}| = \ell.
10:
             if i and j are conditionally independent given k then
11:
                Delete edge i, j
12:
                Denote this new graph by C
13:
                Save k in S(i, j) and S(j, i)
14:
             end if
15:
          until edge i, j is deleted or all \mathbf{k} \subseteq adj(C, i) \setminus \{j\} with |\mathbf{k}| = \ell have been chosen
16:
       until all ordered pairs of adjacent variables i and j such that |adj(C,i) \setminus \{j\}| \ge \ell and k \subseteq \ell
17:
       adj(C,i)\setminus\{j\} with |\mathbf{k}|=\ell have been tested for conditional independence
18: until for each ordered pair of adjacent nodes i, j: |adj(C, i) \setminus \{j\}| < \ell.
```

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Edge Orientation: *v*-Structures

- Assume the skeleton is given by:
 - □ Given X Y Z with X and Z nonadjacent
 - Given S(X,Z) with $X \perp Z \mid S(X,Z)$
- A priori, there are 4 possible orientations



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Slide 14

v-Structures:

If $Y \notin S(X,Z)$ then replace X - Y - Z by $X \to Y \leftarrow Z$.

Edge Orientation: Rule 1

(Otherwise we get a new v-structure)

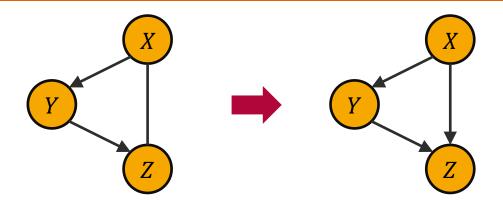
Rule 1:

Orient Y - Z to $Y \to Z$ whenever there is an arrow $X \to Y$ s.t. X and Z are nonadjacent

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Edge Orientation: Rule 2



(Otherwise we get a cycle)

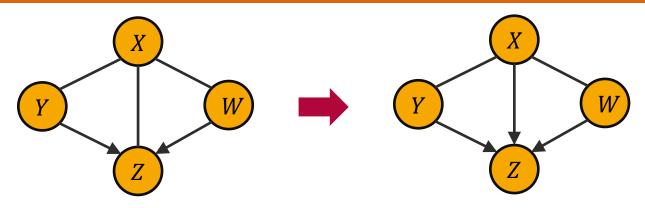
Rule 2:

Orient X - Z to $X \to Z$ whenever there is a chain $X \to Y \to Z$

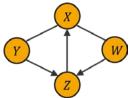
Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Edge Orientation: Rule 3



(Could not be completed without creating a cycle or a new *v*-structure)



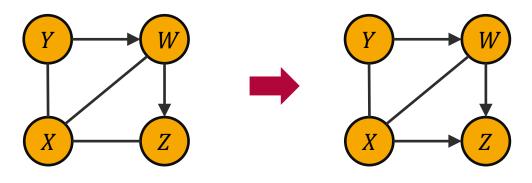
Rule 3:

Orient X - Z to $X \to \overline{Z}$ whenever there are two chains $X - Y \to Z$ and $X - W \to Z$ s.t. Y and W are nonadjacent

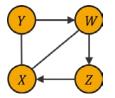
Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Edge Orientation: Rule 4



(Could not be completed without creating a cycle or a new *v*-structure)



Rule 4:

Orient X - Z to $X \to Z$ whenever there are two chains $X - Y \to W$ and $Y \to W \to Z$ s.t. Y and Z are nonadjacent

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Edge Orientation: Pseudocode

Algorithm 2 Extending the skeleton to a CPDAG

INPUT: Skeleton G_{skel} , separation sets S

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k do

if $k \notin S(i, j)$ then

Replace i - k - j in G_{skel} by $i \rightarrow k \leftarrow j$

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated application of the following three rules:

R1 Orient j - k into $j \to k$ whenever there is an arrow $i \to j$ such that i and k are nonadjacent.

R2 Orient i - j into $i \rightarrow j$ whenever there is a chain $i \rightarrow k \rightarrow j$.

R3 Orient i-j into $i \to j$ whenever there are two chains $i-k \to j$ and $i-l \to j$ such that k and l are nonadjacent.

R4 Orient i - j into $i \to j$ whenever there are two chains $i - k \to l$ and $k \to l \to j$ such that k and j are nonadjacent.

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

A Review

Advantages

- Testing all sets S(X,Y) containing the adjacencies of X is sufficient
- Many edges can be removed already for small sets
- Depending on sparseness, the algorithm only requires independence tests with small conditioning sets S(X,Y)
- Polynomial complexity for graph of N vertices of bounded degree k, i.e.,

$$\frac{N^2(N-1)^{k-1}}{(k-1)!}$$

Asymptotic consistency (under technical assumptions), i.e.,

$$\Pr(\hat{G} = G) \to 1 \quad (n \to \infty)$$

Disadvantages

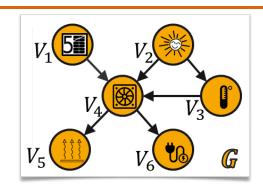
- In the worst case, complexity exponential to number of vertices N
- Assumes causal sufficiency, faithfulness and Markov conditions

Causal Inference
- Theory and
Applications

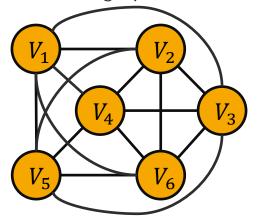
Uflacker, Huegle, Schmidt

4. PC Algorithm in Application Cooling House Example (I/V)

Assume the true DAG G is given by:



We start with a fully connected undirected graph:

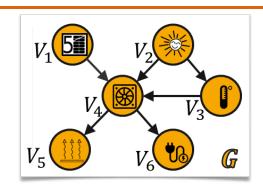


Causal Inference - Theory and Applications

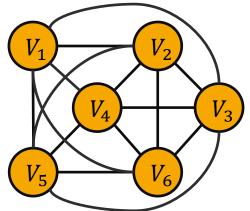
Uflacker, Huegle, Schmidt

Cooling House Example (II/V)

Assume the true DAG G is given by:



- Remove all edges X Y that are directly independent, i.e., $X \perp Y \mid \emptyset$
 - \circ $V_1 \perp V_2$
 - \circ $V_1 \perp V_3$

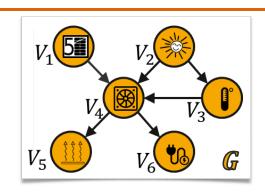


Causal Inference
- Theory and
Applications

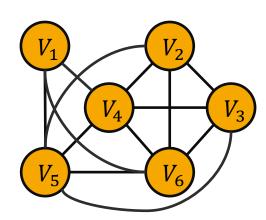
Uflacker, Huegle, Schmidt

Cooling House Example (III/V)

Assume the true DAG G is given by:



- Remove all edges X Y having separation sets of size 1, i.e., $X \perp Y \mid Z$
 - \circ $V_1 \perp V_5 \mid V_4$
 - \circ $V_1 \perp V_6 \mid V_4$
 - \circ $V_2 \perp V_5 \mid V_4$
 - \circ $V_2 \perp V_6 \mid V_4$
 - \circ $V_3 \perp V_5 \mid V_4$
 - \circ $V_3 \perp V_6 \mid V_4$
 - \circ $V_5 \perp V_6 \mid V_4$

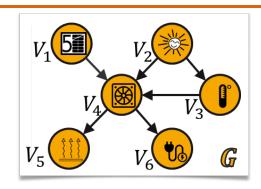


Causal Inference
- Theory and
Applications

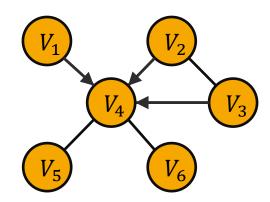
Uflacker, Huegle, Schmidt

Cooling House Example (IV/V)

Assume the true DAG G is given by:



- Find *v*-structures, i.e., orient X Y Z to $X \to Y \leftarrow Z$ if $Y \notin S(X,Z)$
 - $V_4 \notin S(V_1, V_2)$
 - $V_4 \notin S(V_1, V_3)$

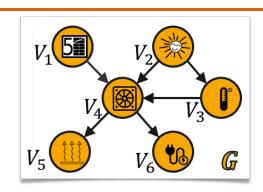


Causal Inference
- Theory and
Applications

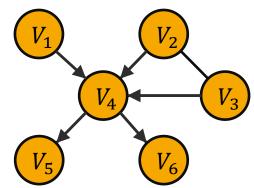
Uflacker, Huegle, Schmidt

Cooling House Example (V/V)

Assume the true DAG G is given by:



- Orient further edges (such that no further *v*-structures arise)
 - \circ $V_1 \rightarrow V_4 V_5$ (Rule 1)
 - $\circ \quad V_1 \to V_4 V_6 \text{ (Rule 1)}$



■ No further edges can be oriented, i.e., $V_2 - V_3$ remain undirected

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

5. Extensions of the PC Algorithm

Order Independence (Colombo et al. 2014)

PC algorithm

Order of $V_1, ..., V_N$ affects estimation of

- 1. Skeleton C
- 2. Separating sets $S(V_i, V_j)$
- 3. Edge orientation

PC-stable algorithm

For each level *l*

- \square Compute and store the adjacency set $a(V_i)$ of all vertices V_i
- \Box Use $a(V_i)$ for search of separation sets
- Edge deletion longer affects which conditional independencies are checked for other pairs of variables at this level *l*

```
Algorithm 4.1 Step 1 of the PC-stable algorithm (oracle version)
Require: Conditional independence information among all variables in V, and an ordering
    order(V) on the variables
1: Form the complete undirected graph \mathcal{C} on the vertex set \mathbf{V}
 2: Let \ell = -1;
       for all vertices X_i in C do
         Let a(X_i) = adj(C, X_i)
       end for
          Select a (new) ordered pair of vertices (X_i, X_i) that are adjacent in \mathcal{C} and satisfy
          |a(X_i) \setminus \{X_i\}| \ge \ell, using order(V);
         repeat
            Choose a (new) set \mathbf{S} \subseteq a(X_i) \setminus \{X_i\} with |\mathbf{S}| = \ell, using order(V);
11:
            if X_i and X_j are conditionally independent given S then
13:
               Delete edge X_i - X_j from C;
               Let sepset(X_i, X_i) = \text{sepset}(X_i, X_i) = \mathbf{S};
         until X_i and X_j are no longer adjacent in \mathcal{C} or all \mathbf{S} \subseteq a(X_i) \setminus \{X_j\} with |\mathbf{S}| = \ell
          have been considered
      until all ordered pairs of adjacent vertices (X_i, X_i) in \mathcal{C} with |a(X_i) \setminus \{X_i\}| \ge \ell have
18: until all pairs of adjacent vertices (X_i, X_i) in \mathcal{C} satisfy |a(X_i) \setminus \{X_i\}| \leq \ell
19: return C, sepset.
```

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

5. Extensions of the PC Algorithm

Parallelization (Le et al. 2016)

PC algorithm

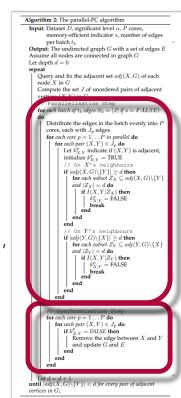
Limitations:

- 1. Order-dependent (→*PC-stable*)
- 2. Inefficient

parallelPC algorithm

PC-stable allows for easy parallelization at each level l, i.e.,

- 1. CI tests are distributed evenly among the cores
- 2. Each core performs its own sets of CI tests in parallel with the others
- 3. Synchronize test results into the global skeleton ${\cal C}$
- Efficient in high dimensional datasets and consistent with PC-stable algorithm



Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

5. Extensions of the PC Algorithm

Theoretical Extensions (A Selection)

Weaker form of faithfulness

- Learn a Markov equivalence class of DAGs under a weaker-than-standard causal faithfulness assumption
- Assumes Adjacency-Faithfulness to justify the step of recovering adjacencies in constraint-based algorithms
- Conservative PC (CPC) by Ramsey et al. (1995)

Allow for latent and selection variables

- Learn a Markov equivalence class of DAGs with latent and selection variables
- Follows maximal ancestral graph (MAG) models
- ⇒ Fast causal inference (FCI) by Spirtes et al. (1999)

Allow for cycles

- Learn Markov equivalence classes of directed (not necessarily acyclic)
 graphs under the assumption of causal sufficiency.
- ⇒ Cyclic causal discovery (CCD) by Richardson (1996)

Causal Inference

 Theory and Applications

Uflacker, Huegle, Schmidt

6. Excursion:

Other Causal Structure Learning Algorithms

Score-based methods

- "search-and-score approach", i.e.,
 - 1. Assume causal structure *G* and functional restrictions (e.g., linear relations and independent Gaussian noise)
 - 2. Optimize some score (e.g., likelihood or BIC) given these restrictions
 - 3. Change G and compute new optimal score value
 - 4. Repeat this for many G and return G^{opt} with the best (optimized) score
- → E.g., Greedy-Equivalent-Search (GES) by Chickering (2002)

Hybrid methods

- Combines constraint-based and search-and-score methods, i.e.,
 - 1. Constraint-based search to find skeleton
 - 2. Score-based approach to orient edges
- ⇒ E.g., Max-Min Hill-Climbing (MMHC) by Tsamardinos et al. (2006)

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference</u>. Cambridge University Press.
- Spirtes et al. (2000). Causation, Prediction, and Search. The MIT Press.
- Kalisch et al. (2007). <u>Estimating high-dimensional directed acyclic graphs</u> with the <u>PC-algorithm</u>. Journal of Machine Learning Research.
- Colombo et al. (2014). <u>Order-independent constraint-based causal</u> <u>structure learning</u>. The Journal of Machine Learning Research.
- Le et al. (2016). <u>A fast PC algorithm for high dimensional causal</u> <u>discovery with multi-core PCs</u>. IEEE/ACM transactions on computational biology and bioinformatics.
- Kalisch et al. (2014). <u>Causal structure learning and inference: a selective</u> <u>review</u>. Quality Technology & Quantitative Management

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

References Implementations

R

- Kalisch et al. (2017), R Package 'pcalg'.
- Le et al. (2015), R Package 'ParallelPC'.

Python

Kobayashi (2015), <u>CPDAG Estimation using PC-Algorithm</u>.

Other

Carneggie Mellon University, <u>The Tetrad Project</u>

Causal Inference
- Theory and
Applications

Uflacker, Huegle, Schmidt

Causal Inference in Application Jupyter Notebook

Causal Inference - Theory and Applications

In our lecture Causal Inference - Theory and Applications, we look at the mathematical concepts that build the basis of causal inference.

Causal Inference in Application

We now look how these concepts are applied on observational data to derive causal relationships and how to use the do-operator to receive an estimation of the causal effect. In order to give you an overview on therelated procedure, this notebook gives a step by step approach in the context of a simple cooling house example.

Table of Contents

- 1. Introduction to R
 - A. Getting Started
 - B. Some Examples
- 2. Use Case
 - A. Description

Causal Inference - Theory and Applications

Uflacker, Huegle, Schmidt

Thank you for your attention!