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Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))



Recap of Theoretical Background ﬂ Hasso

: Pl
Causal Graphical Models .nﬂ%{'&{

s Causal Structures formalized by DAG (directed acyclic graph) ¢ with random
variables V, ..., V;, as vertices.

s Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply
X LY|Z); e (X LY|Z)p.

s Local Markov Condition states that the density p(vy, ..., ;) then factorizes into

Py, va) = | [pilPa(),
=1

Causal Inference
- Theory and

= Causal conditional p(v;|Pa(v;)) represent causal mechanisms. Applications

Uflacker, Huegle,
Schmidt
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Recap of Theoretical Background ﬂ Hasso

o Pl
Statistical Inference .niﬁ?ﬁi

=  Null Hypothesis H, is the claim that is initially assumed to be true
s Alternative Hypothesis H, is a claim that contradicts the H,
= How to test a hypothesis?

o Approximate T under H, by a known distribution
o Different distributions yield to different tests, e.g., T-test, y?-test, etc.
o Derive rejection criteria for H,
- c-value: reject Hy if T(x,,) >cforaceR
- p-value: reject Hy if Py (TGO >T) <a
s (Conditional) Independence Test

} are equivalent

Causal Inference

Distribution of V3, ...,Vy = dependence measures T(V;,V;,§) = test Hy:t = 0 - Theory and
Applications
= Allows for constraint-based causal structure learning Uflacker, Huegle,

Schmidt

Slide 6
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1. Introduction Hasso
Plattner
The Concept Institut
Traditional Statistical Paradigm of Structural
Inference Paradigm Causal Models
r -
Data Generating @
Model
Aspects of P @(ZP) Joint Distribution P
Inference Inference Causal Inference
- Theory and

Applications

Uflacker, Huegle,

E.g., what is the sailors’ probability of E.g., what'is the sailors™ probability of ¢ gt
recovery when we see a treatment with  recovery if we do treat them with
lemons? lemons? Slide 8

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))



1. Introduction Hasso
Plattner

Recap: Basis of Causal Structure Learning (Pearl et al.) ﬂ Institut

s Assumptions:
o Causal Sufficiency
o Global Markov Condition
o Causal Faithfulness

s Causal Structure Learning:

o Accept only those DAG’s ¢ as causal hypothesis for which
X L1LY|Z); o (X L1LY|Z)p.

o ldentifies causal DAG up to Markov equivalence class Causal Inference
(DAGs that imply the same conditional independencies) Loneory and
pplications
o The Markov equivalence class of a DAG G includes all DAGs G’ that Uflacker, Huegle,
have the same skeleton ¢ and the same v-structures Schmidt
o Markov equivalence class of the true DAG ¢ that can be uniquely Slide 9

described by a completed partially directed acyclic graph (CPDAG)
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2. Constraint-Based Causal Structure Learning
Algorithmic Construction (I/11)

o

1. Construct skeleton C

2.  Find v-structures
Causal Inference

3. Direct further edges that follow from - Theory and
o Graph is acyclic Applications
. Uflacker, Huegle,
o All v-structures have been found in 2 Schmidt
Slide 10

mp IC algorithm by Verma and Pearl (1990) to reconstruct CPDAG G from P



2. Constraint-Based Causal Structure Learning ﬂ Hasso

Algorithmic Construction (11/11) .‘L'?%‘.?S{

Theorem
Assume Markov condition and faithfulhess holds. Then X and Y

are linked by an edge if and only if there is no set S(X,Y) such that
(X LY|SX,Y))p

» |l.e., dependence mediated by other variables can be screened off by
conditioning on an appropriate set

- X LY |{Z W)}

= But not:
Causal Inference
= X LY |U - Theory and
s X LY | {Z, w, U} Applications
Uflacker, Huegle,
Schmidt
...but not by conditioning on all other variables! o

m S(X,Y) is called separation set of X and Y



3. PC Algorithm
The Idea

Question:

How to find the appropriate separation sets S(Vi,Vj) for all variables V; and V;?

= Check V; L V; | S(V;,V;) for all possible separation sets S(V;,V;) € V \ {V;,V;}
o Computationally infeasible for large V

m Efficient construction of the skeleton C
Iteration over size of the separation sets S:
1.Remove all edges X —Y with X L Y
2. Remove all edges X —Y
for which there is an adjacent Z#Y of X with X LY | Z
3.Remove all edges X —Y
for which there are two adjacent Z;,Z, # Y of X with X L Y | {Z;,Z,}
4. ...

m) PC algorithm by Spirtes et al. (1993) to reconstruct CPDAG G from P

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt
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3. PC Algorithm
Skeleton Discovery: Pseudocode

Hasso
Plattner
Institut

Algorithm 1 The PC,,-algorithm
1: INPUT: Vertex Set /', Conditional Independence Information
2: OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the skeleton

afterwards)
3: Form the complete undirected graph €' on the vertex set V.
4: ==1; C= C
5: repeat
6: (=(+1
7:  repeat
8: Select a (new) ordered pair of nodes i,/ that are adjacent in C such that |ad j(C,i)\ {j}| = ¢
9 repeat
10: Choose (new) k C ad j(C,i)\ {j} with |k| = .
1: if i and j are conditionally independent given k then
12: Delete cdge Ly Causal Inference
13: Denote this new graph by C - Theory and
14: Sa"’fﬂ kin S(i, j) and S(j,1) Applications
15: end i
16: until edge 7, j is deleted or all k C adj(C,i)\ {j} with |k| = £ have been chosen szzlr?;ké; Huegle,
17:  until all ordered pairs of adjacent variables i and j such that |adj(C,i)\ {j}| > ¢ and k C

adj(C,i)\ {j} with |k| = ¢ have been tested for conditional independence Slide 13

18: until for each ordered pair of adjacent nodes i,j: |adj(C,i)\ {j}| < ¢.




3. PC Algorithm
Edge Orientation: v-Structures

O

O

O

O

O

Assume the skeleton is given by:

Given X —Y — Z with X and Z nonadjacent
Given S(X,Z) with X L Z | S(X,Z)

A priori, there are 4 possible orientations

X->Y->Z
XY Z YeSX,2)
XY <27
XoYez pYESKD

v-Structures:

‘Y ¢ S(X,2)

IfYeS(X,Z) thenreplace X - Y —-Z by X->Y « Z.

Hasso
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3. PC Algorithm ﬂ Hasso
Edge Orientation: Rule 1 et

O-0—0© =» ©-0-0

(Otherwise we get a new v-structure)

Causal Inference
- Theory and
Applications

Uflacker, Huegle,

Rule 1: Schmidt

Orient Y — Z to Y — Z whenever
there is an arrow X —» Y s.t. X and Z are nonadjacent Slide 15




3. PC Algorithm ﬂ Hasso
Edge Orientation: Rule 2 mzm&{

=)

(Otherwise we get a cycle)

Causal Inference
- Theory and
Applications

Uflacker, Huegle,

Rule 2: Schmidt

Orient X —Z to X - Z whenever
thereisachain X-Y > ~Z7 Slide 16




3. PC Algorithm ﬂ Hasso
Edge Orientation: Rule 3 mzm&{

a‘:’m - a‘:’m

(Could not be completed

without creating a cycle o‘.@
or a new U-StrUCture) o Causal Inference

- Theory and
Applications

Uflacker, Huegle,

Rule 3: Schmidt

Orient X — Z to X » Z whenever
there aretwo chains X—-Y >Z and X —-W — Z s.t. Y and W are nonadjacent Sl




3. PC Algorithm ﬂ Hasso
Edge Orientation: Rule 4 et

e

without creating a cycle

or a new v—structure) 0‘0 Causal Inference
- Theory and
Applications

(Could not be completed o’

Uflacker, Huegle,

Rule 4: Schmidt

Orient X — Z to X » Z whenever
there aretwo chains X—-Y ->W and Y- W — Z s.t. Y and Z are nonadjacent JSlIsuRs




3. PC Algorithm
Edge Orientation: Pseudocode

Hasso
Plattner
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Algorithm 2 Extending the skeleton to a CPDAG
INPUT: Skeleton Gger, separation sets §
OUTPUT: CPDAG G
for all pairs of nonadjacent variables i, j with common neighbour & do
if k ¢ S(i, /) then
Replace i —k— jin Gy by i — k +— j
end if
end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated application
of the following three rules:

R1 Orient j— k into j — k whenever there is an arrow i — j such that j and k are nonadjacent.

. L. ; . . . . Causal Inference
R2 Orient i — j into i — j whenever there i1s a chain i — k — J.

- Theory and
R3 Orient i — j into i — j whenever there are two chains i —k — j and i —/ — j such that k and Applications
| are nonadjacent. Uflacker, Huegle,
R4 Orient i — j into { — j whenever there are two chains i — k — [ and k — [ — j such that k and Schmidt

j are nonadjacent. Slide 19




. Plattner
A Review Institut

3. PC Algorithm ﬂ Hasso

Advantages
s Testing all sets S(X,Y) containing the adjacencies of X is sufficient
s Many edges can be removed already for small sets

s Depending on sparseness, the algorithm only requires independence
tests with small conditioning sets S(X,Y)

s Polynomial complexity for graph of N vertices of bounded degree k, i.e.,

NZ(N _ 1)k—1
(k — 1)!

s  Asymptotic consistency (under technical assumptions), i.e.,

A Causal Inference

Pr( G = G) -1 (n- ») - Theory and

Disadvantages Applications

) ) . Uflacker, Huegle,
= In the worst case, complexity exponential to number of vertices N Schmidt

= Assumes causal sufficiency, faithfulness and Markov conditions Slide 20



4. PC Algorithm in Application ﬂHasso

Cooling House Example (1/V) ﬁliﬁ?&%

s  Assume the true DAG G is given by:

s  We start with a fully connected undirected graph:

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 21




4. PC Algorithm in Application ﬂHasso

Cooling House Example (11/V) ﬁliﬁ?&%

s  Assume the true DAG G is given by:

= Remove all edges X —Y that are directly independent, i.e., X LY |Q

(0] V]_ J_VZ
(0] V]_ J_V3

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 22




4. PC Algorithm in Application
Cooling House Example (111/V)

s  Assume the true DAG G is given by:

= Remove all edges X —Y having separation sets of size 1,i.e., X LY |Z

0]

0]

0]

ViLVs |V,
Vi1 VeV,
V, LVs |V,
V, LVg |V,
Vs LVs |V,
Vs LVg |V,
Vs LVg |V,

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt
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4. PC Algorithm in Application
Cooling House Example (1V/V)

Assume the true DAG G is given by:

Find v-structures, i.e., orient X - Y —-ZtoX->Y <« ZifY ¢ S(X,2)

0]

0]

V, &SV, V3)
V, &SV, V3)

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 24



4. PC Algorithm in Application
Cooling House Example (V/V)

Assume the true DAG G is given by:

Orient further edges (such that no further v-structures arise)

(0] V]_ - V4 - V5 (RUIe 1)
(0] V]_ - V4 - V6 (RUIe 1)

No further edges can be oriented, i.e., V, — V; remain undirected

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt

Slide 25



5. Extensions of the PC Algorithm Hasso
Order Independence (Colombo et al. 2014) et

PC algorithm

Order of V,, ..., Vy affects estimation of
1 A S ke I eto n C Algorithm 4.1 Step 1 of the PC-stable algorithmm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering

order(V) on the variables

2 . Se parati n g SetS S (Vl’ I/]) 1: Form the complete undirected graph C on the vertex set V

2: Let £ =-1;

3. Edge orientation

¢ - ¥
. for all vertices X; in C dd

Let a(X;) = adj(C, X;)

. end for

elect, a (new) ordered pair of vertices (X;, X;) that are adjacent in C and satisfy
la(Xi) \ {X;}] = ¢, using order(V);

PC-stable algorithm

10 repeat
F h I I l 11 Choose a (new) set 8 C a(X;)\ {X;} with |S| = £, using order(V);
O r eaC eve 12 if X; and X; are conditionally independent given S then
13 Delete edge X; — X from C:

- 14 Let sepset(X;, X;) = sepset( X, X;) = 8;
o Compute and store the adjacency set . aif
V p f I I t_ V J y 16: uni?l );.‘ and X are no longer adjacent in C or all § C a(X;) \ {X;} with [S| =/ Causal I nference
. . have been considered -
a( l) O a Ve r Ices l 17: un:':l all or‘:l(‘rcltll lpai:n' of adjacent vertices (X;, X;) in € with |a(X;)\ {X;}| > ¢ have The_ory_ and
. been considered App lications
0 Use a(Vl) for Search Of Se paratl On Sets 18: until all pairs of adjacent vertices (X, X;) in C satisfy |a(X:) \ {X;} < ¢

19: return C, sepset.

Uflacker, Huegle,
—> Edge deletion longer affects which - ™= Schmidt

conditional independencies are checked for
other pairs of variables at this level [

Slide 26



5. Extensions of the PC Algorithm
Parallelization (Le et al. 2016)

PC algorithm
Limitations:

1. Order-dependent (—»PC-stable)
2. Inefficient
—> Hinders its application on high dimensional datasets

parallelPC algorithm

PC-stable allows for easy parallelization at each level [, i.e

1. Cl tests are distributed evenly among the cores

2. Each core performs its own sets of Cl tests in parallel
with the others

3. Synchronize test results into the global skeleton C

—> Efficient in high dimensional datasets and consistent
with PC-stable algorithm

Algorithm 2: The parallelPC algorithm

Input: Dataset I, significant level o, P
memory-efficient indicator s, suamber of edges
per batch i,
Output: The undirected graph G with a set of edges I
Assume all nodes are connected in gmph G
Let depthd = D
repeat
Q rvandh the adjacent set adj( X, G) of each
e X in G

& mpure the set ./ of unordered pairs of adjacent
Farallelisation Step
for m&mfmm adges (ty = || if s = FALSE)

Dnt ibute the edges in the batch evenly into P
s, each with J, edges
r cach ;,—L .. P in parailel do
r(X.Y) € J, d

> d ther
et Zx C adj(X.G)\{Y}
d

and | Zy| = d do
i I(X.Y|Zy) then
K = FALSE
break
end

end
end

if\ d;(} ( (,\} > uh en
ach subset Zy C adj(Y, G)\[X}
wnd 2y | - d do
if I(X.Y|Zy) then
k%, = FALSE
break
end

end
end

reach coep=1...P do
ar exch pair (X,Y) € J, do
if K, ,. = FALSE then
Remove the edge between X and ¥
and update & and E

Hasso
Plattner
Institut

Causal Inference
- Theory and
Applications

Uflacker, Huegle,
Schmidt
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5. Extensions of the PC Algorithm ﬂ Hasso

. : : Platt
Theoretical Extensions (A Selection) Institut

s Weaker form of faithfulness

o Learn a Markov equivalence class of DAGs under a weaker-than-standard
causal faithfulness assumption

o Assumes Adjacency-Faithfulness to justify the step of recovering adjacencies
in constraint-based algorithms

—> Conservative PC (CPC) by Ramsey et al. (1995)
s  Allow for latent and selection variables
o Learn a Markov equivalence class of DAGs with latent and selection variables

o Follows maximal ancestral graph (MAG) models
Causal Inference

—> Fast causal inference (FCI) by Spirtes et al. (1999) - Theory and
Applications
= Allow for cycles Uflacker, Huegle,
o Learn Markov equivalence classes of directed (not necessarily acyclic) Schmidt
graphs under the assumption of causal sufficiency. Slide 28

—> Cyclic causal discovery (CCD) by Richardson (1996)



6. Excursion: ﬂ Elasso
. . tt
Other Causal Structure Learning Algorithms ettt

Score-based methods

s “search-and-score approach”, i.e.,

1. Assume causal structure G and functional restrictions (e.g., linear
relations and independent Gaussian noise)

2. Optimize some score (e.g., likelihood or BIC) given these restrictions

3. Change G and compute new optimal score value

4. Repeat this for many ¢ and return G°P* with the best (optimized) score
m) E.g., Greedy-Equivalent-Search (GES) by Chickering (2002)

. Causal Inference
Hybrid methods - Theory and
= Combines constraint-based and search-and-score methods, i.e., Applications
1. Constraint-based search to find skeleton ;’Z‘,";‘;‘fgi Huegle,

2. Score-based approach to orient edges |
=) E.g., Max-Min Hill-Climbing (MMHC) by Tsamardinos et al. (2006) Slide 29
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Causal Inference in Application
Jupyter Notebook

Causal Inference - Theory and Applications

In our lecture Causal Inference - Theory and Applications, we look at the mathematical concepts that build the basis of causal inference.

Causal Inference in Application

We now look how these concepts are applied on observational data to derive causal relationships and how to use the do-operator to receive an
estimation of the causal effect. In order to give you an overview on therelated procedure, this notebook gives a step by step approach in the context
of a simple cooling house example.

Table of Contents

1. Introduction to R
A Getling Staried
B. Some Examples
2. Use Case
A Description
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http://vm-epic-jupyter.eaalab.hpi.uni-potsdam.de:8000/

Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Thank you
for your attention!
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