

Agenda

April 10, 2019

- 1. Causal Inference in a Nutshell
- 2. Causal Inference in Application
- **3.** Introduction to Research Topics
- 4. Further Reading

1. Causal Inference in a Nutshell

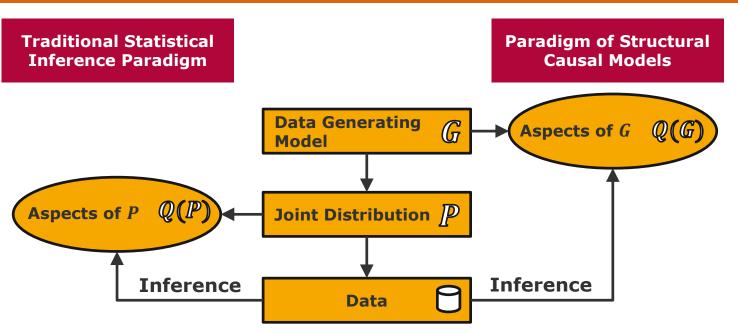
Recap: Summary

Traditional statistics, machine learning, etc.

- About associations
- Model the distribution of the data
- Predict given observations

Causal Inference

- About causation
- Model the mechanism that generates the data
- Predict results of interventions


Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

1. Causal Inference in a Nutshell

Recap: Concept

E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

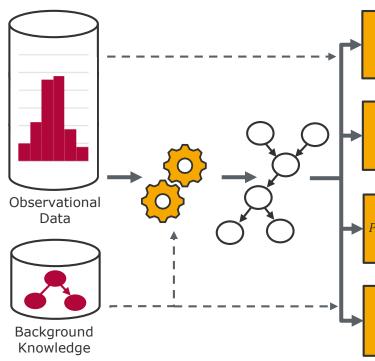
Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle,


Slide **5**

Schmidt

1. Causal Inference in a Nutshell

Recap: Inference Procedure

Causal Relationships Ca

Causal Structure:

"What are the causal relationships in the system?"

"How is lung cancer related to smoking and genetics?"

Probabilistic Inference

$$P(X_3 | X_1 = x_1, X_2 = x_2)$$

 $P(X_4 | X_2 = x_2)$

Association:

"What is a certain probability if we find the system how it is?" "How likely do smoking people get lung cancer?"

Causal Inference

$$P(X_3|do(X_1 = x_1), do(X_2 = x_2))$$

$$P(X_4|do(X_2 = x_2))$$

Intervention:

"What is a certain probability if we manipulate the system?" "What if we ban cigarettes?

Functional Systems

$$f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$$

 $f_2(x_3, x_4) = \dots$

Counterfactuals:

"What if the system would have been different?"

"What if I had not been smoking the past 2 years?"

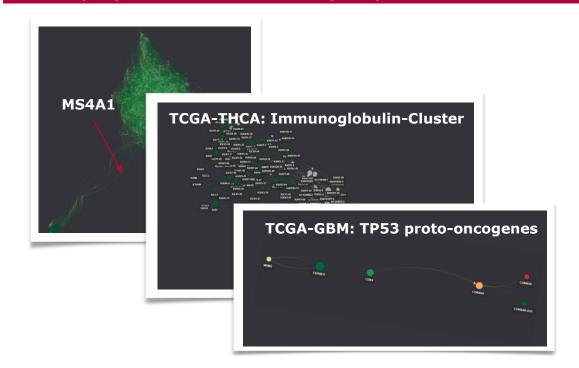
Data

Causal Structure Learning

Opportunities

Examples

Causal Relationships (I/II)


"What are the principal structural properties of genetic control programs of the cell's biological processes?"

Probabilistic Inference $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$

Causal Inference $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4 | do(X_2 = x_2))$

Functional Systems $f_1(x_1,x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3,x_4) = \dots$

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Causal Relationships (II/II)


"What are causes or effects of errors in a complex automotive production process?"

Probabilistic Inference $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$

Causal Inference $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4 | do(X_2 = x_2))$

Functional Systems $f_1(x_1,x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3,x_4) = \dots$

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Probabilistic Inference (I/II)


"Given current error occurring in an automotive production process, what effect is likely?"

Probabilistic Inference $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$

Causal Inference $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4 | do(X_2 = x_2))$

Functional Systems $f_1(x_1,x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3,x_4) = \dots$

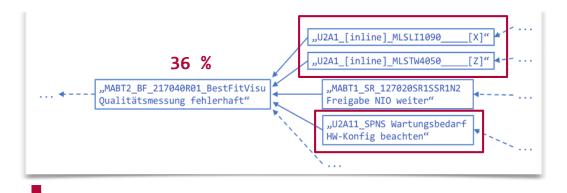
Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Probabilistic Inference (II/II)

"How to leverage knowledge about likely effects given errors in the current production situation?"

Probabilistic Inference


 $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$

Causal Inference

 $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4 | do(X_2 = x_2))$

Functional Systems

 $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3, x_4) = \dots$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

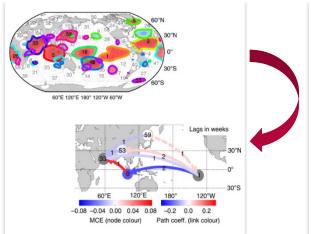
Causal Inference

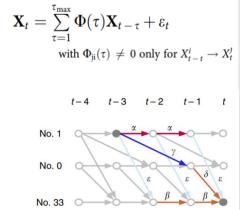
"What is the causal effect behind the complex causal structures in a production process?"

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Functional Systems


"What are the time lags within climate processes that generate local air pressures ?"



Probabilistic Inference $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$

Causal Inference $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4 | do(X_2 = x_2))$

Functional Systems $f_1(x_1,x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3,x_4) = \dots$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Slide 13

Runge et. al. (2015). <u>Identifying causal gateways and mediators in complex spatio-temporal systems.</u>

2. Causal Inference in Application Lecture Example

Scope

- Mathematical concepts determine a conceptual causal inference procedure
- A simple example accompanies our lecture
 - o will be extended when needed
 - o you are invited to work in a personal notebook

Scenario: The causal relationships in a cooling house

Content

- 1. Introduction to R
- 2. Use Case
- 3. Causal Graphical Models
- 4. Conditional Independence Testing
- 5. Constraint-based Causal Structure Learning
- 6. Causal Inference on Causal Graphs
- 7. Further Opportunities of Causal Structures

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Causal Inference in Application Jupyter Notebook

Causal Inference - Theory and Applications

In our lecture Causal Inference - Theory and Applications, we look at the mathematical concepts that build the basis of causal inference.

Causal Inference in Application

We now look how these concepts are applied on observational data to derive causal relationships and how to use the do-operator to receive an estimation of the causal effect. In order to give you an overview on therelated procedure, this notebook gives a step by step approach in the context of a simple cooling house example.

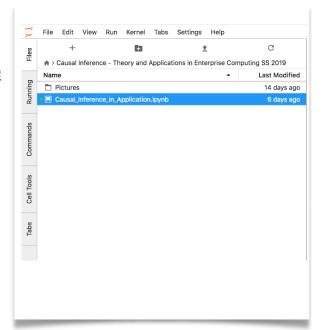
Table of Contents

- 1. Introduction to R
 - A. Getting Started
 - B. Some Examples
- 2. Use Case
 - A. Description

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Access Information



System

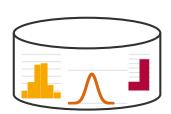
http://vm-k8s-ctrl.eaalab.hpi.uni-potsdam.de:31157/

Procedure

- 1. Login via LDAP (standard HPI credentials)
- 2. Send email to christopher.schmidt@hpi.de
- 3. We copy you the Master Notebook into your user space for you to work with
- 4. Adapt and work in your own notebooks
- 5. Let us know if you require new packages or if anything does not work, as intended

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt



3. Introduction to Research TopicsOverview on Topics

■ Data, Distributions, Independence

Work on topics in the application of learnt techniques beyond the examples given in this lecture (e.g., heterogeneous data distributions)

Causal Structure-Learning

Work on topics in the context of performance improvements of causal structure learning algorithms

(e.g., hardware acceleration)

Applications Scenarios

Work on challenges and opportunities in the application of causal inference techniques on real-world data (e.g., industrial manufacturing)

Causal Inference
Theory and Applications
in Enterprise Computing

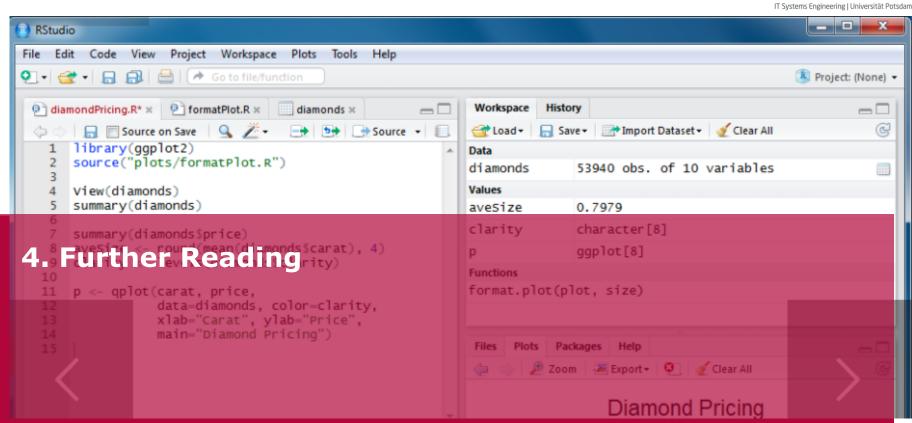
Uflacker, Huegle, Schmidt

3. Introduction to Research Topics

Topic Application

■ How to work on a topic?

- 1. Understand theoretic basis and your selected topic
- 2. Work on implementation
- Present results
- 4. Write scientific report in a review process


How to apply for a topic?

- Build groups of around three students
- □ Send prioritized list of top 3 topics to <u>Johannes Huegle</u> until: *Fri April 26, 11.59 PM*
- □ Topic Assignments: *Tue April 30, 9:00 AM*

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Further Reading

Programming

R

- Torfs et. al. (2014), A (very) short introduction to R.
- Venables et. al. (2018), <u>An Introduction to R- Notes on R: A Programming Environment for Data Analysis and Graphics</u>.
- Kalisch et. al. (2017), Package 'pcalg'.
- Kalisch et. al. (2017), <u>Causal Inference using Graphical Models with the Package pcalq</u>, Journal of Statistical Software.
- Scutari (2007), <u>Learning Bayesian Networks with the bnlearn R Package</u>.

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Thank you for your attention!