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Lecture Organization ﬂHasso

. . PI
Topics to be Discussed Inatitut

Q&A
= Questions concerning Jupyter lab or R exercises?
= Open Questions concerning last week’s lecture topics?

Dies Academicus (6th of May, postponed)
= Exercise is happening as intended

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
Perscheid

Slide 4
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Embedding: Causal Inference in a Nutshell




Embedding: Causal Inference in a Nutshell ﬂ Hasso

Plattner
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Traditional Statistical Paradigm of Structural

Inference Paradigm Causal Models

Data Generating

Model

-
Joint Distribution P

G

Aspects of P @(ZP)

Inference Inference Causal Inference
Data 8 Theory and Applications
in Enterprise Computing
E.g., what is the sailors’ E.g., what is the sailors’ Hagedorn, Huegle,
- - i Perscheid
probability of recovery when probability of recovery if
we see a treatment with lemons? we do treat them with lemons? Slide 6

Q(P) = P(recovery|lemons) Q(G) = P(recovery|do(lemons))
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Introduction to Causal Graphical Models
Content

Hasso
Plattner
Institut

Preliminaries

Causal Graphical Models

(Local) Markov Condition

Factorization

Global Markov Condition

Functional Model and Markov Conditions
Faithfulness

Outlook Causal Structure Learning

v O N Ok WwNR

Markov Equivalence Class Causal Inference
Theory and Applications

10. Summary in Enterprise Computing

_ _ Hagedorn, Huegle,
11. Excursion: Maximal Ancestral Graphs Perscheid

Slide 8



1. Preliminaries F'fsﬁo
Notation Ingti?t?tr

m A, B,A; events
m X,Y,Z,W,S,V; sets of random variables

m X value of random variable

m Pr probability measure

m Py probability distribution of X

m p density

m p(X) density of Py (always assume the existence of joint density, w.r.t. a product measure)

i fP I h [
m p(x) density of Py evaluated at the point x Causal Inference

Theory and Applications
in Enterprise Computing

m X 1 Yindependence of X and Y
Hagedorn, Huegle,
m X 1 Y |Z conditional independence of X and Y given Z Perscheid

Slide 9

f, g, f; functions of a function class F



1. Preliminaries ﬂIF-)IIaSSO
Independence of Events Inatmat

= Two events A and B are called independent, if
Pr(An B) = Pr(4) - Pr(B),

or - rewritten in conditional probabilities - if

Pr(A) = # = Pr(4|B),
Pr(B) = A%B = Pr(B|A).

s A4,.., Ay are called (mutually) independent if for every subset S c {1, ..., N} we

have
Pr (ﬂ A; ) = 1_[ Pr(4;). Causal Inference
g . Theory and Applications
LES LES in Enterprise Computing
= Note: Hagedorn, Huegle,
for N > 3, pairwise independence Pr(4; N 4;) = Pr(4;) - Pr(4;) for all i,j where i,j =  Perscheid

1,..,N, and i # j does not imply (mutual) independence. Slide 10



1. Preliminaries ﬂ IF-,IIasso
Independence of Random Variables Inatmat

= Two real-valued random variables X and Y are called independent,
X1LY,

if for every x,y € R, the events {X < x} and {Y < y} are independent,
Or, in terms of densities: for all x,y,
r(x,y) = p(x)p(y).

= Note:
IfX LY, then E[XY] = E[X] E[Y], and cov(X,Y) =E[XY]—-E[X]E[Y] =0, i.e,
XLY = cov(X,Y) =0.

But: cov(X,Y) =0 X 1Y. Causal Inference

Theory and Applications
in Enterprise Computing

No correlation does not imply independence Hagedorn, Huegle,
Perscheid

However, we have, for large F: (vf,g € F: cov(f(X),g(Y)) = O), then X 1L Y. Slide 11



1. Preliminaries ﬂlﬁllasso
Conditional Independence of Random Variables Inatmat

= Two real-valued random variables X and Y are called conditionally independent given Z,
XULY|Z or(XLY|Z)p

p(x,ylz) = p(x|z) p(y|2)
for all x,y and for all z s.t. p(z) > 0.

= Note:
It is possible to find X,Y which are conditionally independent given a variable Z but
unconditionally dependent, and vice versa.
Causal Inference

Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
Perscheid

Slide 12



2. Causal Graphical Models Hasso
Definition (Pearl) f’rliﬁ?&{

= Directed Acyclic Graph (DAG) G = (V,E)
o VerticesV;,i=1,..,N
o Directed edges E = (V;,V}), i.e., Vi = V;
o No cycles
= Use kinship terminology, e.g., for path V; = V; =V
o Vi = Pa(V;) parent of V;
o {V, V]} = Ang(V}) ancestors of Vj, = Vi =N(01)

-V, = N(0,1)
o {V], Vk} = Des(V;) descendants of V; = Vs =3V, +N(0,1)

Causal Inference

. . . . = Theory and Applications
= Directed Edges encode direct causes via Va=4Vit 5V +07Vs+ N (0,1) e o ice Computing

V. = f,(Pa(V)),N;) with ind d ise N: " Vs =Vat NOOL) Hagedorn, Huegle,
o Vi = f;(Pa(V;), N;) with independent noise IV; V=12V, + N(0.1) borecherd

EE——

=) This forms the Causal Graphical Model Slide 13



2. Causal Graphical Models
Connecting ¢ and P

Hasso
Plattner
Institut

= Basic Assumption: Causal Sufficiency

o All relevant variables are included in the DAG G

4

Causal Inference
(XLY|Z)g=> (X LY[Z)p Theary and Applications

Hagedorn, Huegle,
s Key Postulate: (Local) Markov Condition Perscheid

s Essential mathematical concept: d-Separation Slide 14

(describes the conditional independences required by a causal DAG)



3. (Local) Markov Condition ﬂ Hasso

Plattner
Theorem Institut

(Local) Markov Condition:
V; independent of nondescendants ND(V;), given parents Pa(V)), i.e.,

Vil VV/(Des(Vj)UPa(Vj))lp a(V]-).

= l.e., every information exchange with its nondescendants involves its parents
s Example:

Causal Inference
Theory and Applications
in Enterprise Computing

» Ve IL{V,,V,, V3, V3V, Hagedorn, Huegle,
Perscheid
= Vs UL {V1, V5, V3, VeV

Slide 15




3. (Local) Markov Condition
Supplement (Lauritzen 1996)

Hasso
Plattner
Institut

s Assume Vy has no descendants, then ND(Vy) = {V4, ..., Vy_1}.

s Thus the local Markov condition implies
VN 1L {Vlf ...,VN_l}/Pa(VN) | Pa(VN)

= Hence, the general decomposition

p(y, ...,vy) = p(Wnlvy, o, Vy—1) PV, o V1)

becomes
p(vy, ..., vy) = p(vy|Pa(vy)) P({UL ey VN—1}/PG(VN))-
Causal Inference
= Induction over N yields to Theory and Applications
N in Enterprise Computing
_ ) ) Hagedorn, Huegle,
O E[p(vlwa(vl)). Hagedorn
1=
Slide 16

I.e., the graph shows us how to factor the joint distribution P,.



4. Factorization ﬂ Hasso

L Platt
Definition |n§ti?§tr

Factorization:

N
P, ow) = | [p@ilPat).
i=1

= Il.e., conditionals as causal mechanisms generating statistical dependence
» Example:

p(v)
=p(vq, ..., Vg)
_ Causal Inference
= p(vl) ) p(UZ) Theory and Applications
) (1] |v ) . p(v |U S ) in Enterprise Computing
Pivslvz 4tV ¥2, 73 Hagedorn, Huegle,
.p(v5|v4) -p(v6|v4_) Perscheid

= 171 p(wi|Pa(vy)) Slide 17




5. Global Markov Condition ﬂ Hasso
D-Separation (Pearl 1988) [attner

Institut

m Path = sequence of pairwise distinct vertices where consecutive ones are adjacent

= A path q is said to be blocked by a set S if

o q contains a chain V; =» V; = Vi orafork Vy «V; - Vg
such that the middle node is in S, or

o q contains a collider V; = V; <V},
such that the middle node is not in S and such that no descendant of I/} is in S.

D-Separation: Causal Inference
Theory and Applications

S is said to d-separate X and Y in the DAG G, i.e., in Enterprise Computing
XLY|S),, Hagedorn, Huegle,

. . . Perscheid

if S blocks every path from a vertex in X to a vertex in Y.

Slide 18



5. Global Markov Condition
Blocking of Paths (I/1I)

= Example: Blocking of paths

O—W—O—0

o Path from V to Y is blocked by conditioning on W, X, or {W, X}.

= Example: Unblocking of paths

O—W—0—
O

o Path from V to Y is blocked by @.

o Path from V to Y is unblocked by conditioning on W,Y, or {W,Y}.

Hasso
Plattner
Institut

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
Perscheid

Slide 19



5. Global Markov Condition E Hasso
Blocking of Paths (II/II) Plattner

Institut

= Example (Berkson’s Paradox 1946): Unblocking by conditioning on common effects

= The path from X to Y is unblocked by conditioning on Z, i.e.,
- X1Y
- but: XY |Z

= E.g., the false observation of a negative correlation between
two unrelated - or even positive correlated - traits.

= Asymmetry under Inverting Arrows (Reichenbach 1956):

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
- X1IY - XHY Perscheid

- XHY|Z - XL1Y|[Z Slide 20



5. Global Markov Condition
D-Separation

Hasso
Plattner
Institut

= Example (Cooling House Scenario):

« The path from V; to Vi is blocked by V.
V; and Vg are d-separated by V,.

The path V, - V3 - V, — V; is blocked by
V3I V4-I or {Vg,V4.}-
But: V, and V, are d-separated only by V,, or {V3,V,}.

The paths V; —» V, « V, is blocked by @
...but unblocked by conditioning on V, or {V3,V,}. . Causal Inference

Th d Applicati
Note: V; and V, are d-separated by @ or V5. in Enterprise Computing

Hagedorn, Huegle,
V, is aforkin Vs « V, - V. Perscheid

Vs and Vg are d-separated by V,. Slide 21




5. Global Markov Condition ﬂ Hasso

Plattner
Theorem Institut

Global Markov Condition:

For all disjoint subsets of vertices X,Y and Z we have that
X,Y d-separatedby Z = (X LY | Z);,.

» I.e,wehave X LY|Z); =X LY|Z)p

Causal Inference
Theory and Applications

in Enterprise Computing
Hagedorn, Huegle,

Perscheid

[ Data Generating G
Model

Joint Distribution P

Slide 22




6. Functional Model and Markov Conditions ﬂ Hasso
Theorem (Lauritzen 1996, Pearl 2000) [attner

Institut

Theorem:
The following are equivalent:
m EXxistence of a functional causal model G;

m (Local) Markov condition: statistical independence of nondescendants given parents
(i.e.: every information exchange with its nondescendants involves its parents)

m Global Markov condition: d-separation
(characterizes the set of independences implied by local Markov condition)

= Factorization: p(vy, ..., vy) = [1IL, p(v;|Pa(v))).

(subject to technical conditions)

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,

Perscheid
Le, X LY|Z)¢g=> X LY|Z)p Slide 23



7. Causal Faithfulness

The Key-Postulate

Causal Faithfulness:
p is called faithful relative to G if only those independencies hold true

that are implied by the Markov condition, i.e.,
XLY|Dee X LY|Dp

= [.e., we assume that any population P produced by this causal graph G has the
independence relations obtained by applying d-separation to it

s Seems like a hefty assumption, but it really isn't:

It assumes that whatever independencies occur in it arise not from incredible
coincidence but rather from structure, i.e., data generating model G.

s Hence:

Data Generating @\
Model

z

Joint Distribution ZP

\_

/

Hasso
Plattner
Institut

Causal Inference
Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
Perscheid

Slide 24



8. Outlook Causal Structure Learning ﬂHasso
Concept (Spirtes, Glymor, Scheines and Pearl) patner

s Assumptions:
o Causal Sufficiency
o Global Markov Condition
o Causal Faithfulness

= Causal Structure Learning:

o Accept only those DAG’s G as causal hypothesis for which
X LY| D)o X LY|2)p.

o Defines the basis of constraint-based causal structure learning Causal Inference
. . Th d Applicati
o Identifies causal DAG up to Markov equivalence class in Enterprise Computing
(DAGs that imply the same conditional independencies) Hagedorn, Huegle,
Perscheid

Slide 25



9. Markov Equivalence Class ﬂ Hasso

Pl
Theorem (Verma and Pearl) Iniﬁ?ﬂ

Theorem:

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same v-structures

m Skeleton:
corresponding undirected graph

m V-Structure:
substructure X = Y « Z with no edges

between X and Z. Causal Inference

Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
Perscheid

Slide 26



9. Markov Equivalence Class ﬂ Hasso

Plattner
Examples Institut

s Same skeleton, no v-structure s« Same skeleton, same v-structure at W

Theory and Applications
in Enterprise Computing

X 17 | Y Hagedorn, Huegle,

Perscheid

Causal Inference

Slide 27



10. Summary ﬂIF-)IIaSSO
Causal Graphical Models Inatitut

Causal Graphical Models formalized by DAG (directed acyclic graph) G with
random variables V;, i = 1,...,N, as vertices.

Causal Sufficiency, Causal Faithfulness and (Local) Markov Condition imply
X LY| D)o X LY|2)p.

(Local) Markov Condition states that the density p(v4, ..., vy) then factorizes
into

p(vll ...,UN) = §V=1p(vilpa(vi))'
Causal Inference

Theory and Applications
in Enterprise Computing

Causal conditional p(v;|Pa(v;)) represent causal mechanisms.

Hagedorn, Huegle,
Perscheid

Slide 28



11. Excursion: Maximal Ancestral Graphs ﬂ Hasso

. . Pl
Motivating Example Inatitut

Suppose, we are given the following list of dependency properties among X,Y,Z and W:

IXJ_LZ 'X:H>Y
s YLW s Y7
X LW - ZHW

Which DAG could have generated these, and only these, pattern of dependencies?

= The skeleton representing the pattern of dependencies must be:

= And there must be the following colliders:
Causal Inference

@_M Theory and Applications
in Enterprise Computing
Hagedorn, Huegle,
@—-}@1—@ Perscheid
Slide 29
m There is no orientation of Y — Z that is consistent with the independencies.



11. Excursion: Maximal Ancestral Graphs ﬂ Hasso

DAG Models and Marginalization mittti?ftr

s Let’s include an additional variable V/:

(V)
-0 W

= This DAG model generates a probability distribution Py i x v,73 in which:

XU Z - X#Y
-YJ_LW 'Yj:LZ
X LW - ZHW

= The marginal distribution Py x v 723 = Py wx,y,zydv must adhere the same dependencies. causal Inference

. . . . . ! Theory and Applications
= But: this marginal distribution cannot be faithfully generated by any DAG. in Enterprise Computing
Hagedorn, Huegle,
Perscheid

m) DAG models are not closed under marginalization!

Slide 30



12. Excursion: Maximal Ancestral Graphs ﬂ Hasso

) Pl
Ancestral Graphs (informally) |n§ttti?3tr

= Ancestral Graph (AG)

is a graph containing both directed and bi-directed edges, where the
bi-directed edges stand for /latent variables, e.g.,

¢ 00 ¢ @

= m-Separation

If S m-separates X and Y in an ancestral graph M, then X lL Y | S in every
density p that factorizes according to any DAG ¢ that is represented by the AG M.

= Example Causal Inference
U1 U1 U Theory and Applications

/ \ / \ / 1\1\ in Enterprise Computing

X U Y % Up — Y X-—Us Sy Hagedorn, Huegle,

Perscheid

DAG

Y X Y Slide 31

Y X

g X



11. Excursion: Maximal Ancestral Graphs
DAGs vs. AGs

Hasso
Plattner
Institut

= Advantages of AGs
o AGs can faithfully represent more probability distributions than DAGs.
o AG models are closed under marginalization.

o AGs can (implicitly) represent unobserved variables, which exist in many (possibly
almost all) applications.

= Disadvantages of AGs
o Parameterization is difficult in the general case.
o Markov equivalence is difficult.
Causal Inference

Theory and Applications
in Enterprise Computing

Hagedorn, Huegle,
Perscheid

Slide 32
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