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▪ Lecture Organization

▪ Embedding: Causal Inference in a Nutshell

▪ Introduction to Causal Graphical Models



Lecture Organization



Q&A

▪ Questions concerning Jupyter lab or R exercises?

▪ Open Questions concerning last week’s lecture topics?

Dies Academicus (6th of May, postponed)

▪ Exercise is happening as intended
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Embedding: Causal Inference in a Nutshell



Embedding: Causal Inference in a Nutshell
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Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ 
probability of recovery when 
we see a treatment with lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ 
probability of recovery if 
we do treat them with lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)



Introduction to Causal Graphical Models



1. Preliminaries

2. Causal Graphical Models

3. (Local) Markov Condition

4. Factorization

5. Global Markov Condition

6. Functional Model and Markov Conditions

7. Faithfulness

8. Outlook Causal Structure Learning

9. Markov Equivalence Class

10.Summary

11.Excursion: Maximal Ancestral Graphs

Introduction to Causal Graphical Models
Content
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■ 𝐴, 𝐵, 𝐴𝑖 events

■ 𝑋, 𝑌, 𝑍,𝑊, 𝑆, 𝑉𝑖 sets of random variables

■ 𝑥 value of random variable

■ Pr probability measure 

■ 𝑃𝑋 probability distribution of 𝑋

■ 𝑝 density

■ 𝑝 𝑋 density of 𝑃𝑋 (always assume the existence of joint density, w.r.t. a product measure)

■ 𝑝 𝑥 density of 𝑃𝑋 evaluated at the point 𝑥

■ 𝑋 ⫫ 𝑌 independence of 𝑋 and 𝑌

■ 𝑋 ⫫ 𝑌 | 𝑍 conditional independence of 𝑋 and 𝑌 given 𝑍

■ 𝑓, 𝑔, 𝑓𝑖 functions of a function class ℱ

1. Preliminaries
Notation
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■ Two events 𝐴 and 𝐵 are called independent, if

Pr 𝐴 ∩ 𝐵 = Pr 𝐴 ⋅ Pr 𝐵 ,

or - rewritten in conditional probabilities - if

Pr A =
𝐴 ∩ 𝐵

𝐵
= Pr 𝐴 𝐵 ,

Pr B =
𝐴 ∩ 𝐵

𝐴
= Pr 𝐵 𝐴 .

■ 𝐴1, … , 𝐴𝑁 are called (mutually) independent if for every subset 𝑆 ⊂ {1,… ,𝑁} we 

have

Pr ሩ

𝑖∈𝑆

𝐴𝑖 =ෑ

𝑖∈𝑆

Pr 𝐴𝑖 .

■ Note: 

for 𝑁 ≥ 3, pairwise independence Pr 𝐴𝑖 ∩ 𝐴𝑗 = Pr 𝐴𝑖 ⋅ Pr 𝐴𝑗 for all 𝑖, 𝑗 where 𝑖, 𝑗 =

1,… ,𝑁, and 𝑖 ≠ 𝑗 does not imply (mutual) independence.

1. Preliminaries
Independence of Events
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1. Preliminaries
Independence of Random Variables

Hagedorn, Huegle, 
Perscheid

Causal Inference 
Theory and Applications 
in Enterprise Computing

Slide 11

■ Two real-valued random variables X and 𝑌 are called independent,

𝑋 ⫫ 𝑌,

if for every x, 𝑦 ∈ ℝ, the events 𝑋 ≤ 𝑥 and {𝑌 ≤ 𝑦} are independent,

Or, in terms of densities: for all 𝑥, 𝑦,

𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦 .

■ Note: 

If 𝑋 ⫫ 𝑌, then E X Y = E X E[Y], and 𝑐𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 𝑌 − 𝐸 𝑋 𝐸 𝑌 = 0, i.e., 

𝑋 ⫫ 𝑌 ⇒ 𝑐𝑜𝑣 𝑋, 𝑌 = 0.

But: 𝑐𝑜𝑣 𝑋, 𝑌 = 0 ⇏ 𝑋 ⫫ 𝑌.

However, we have, for large ℱ: ∀𝑓, 𝑔 ∈ ℱ: 𝑐𝑜𝑣 𝑓 𝑋 , 𝑔 𝑌 = 0 , then 𝑋 ⫫ 𝑌.

No correlation does not imply independence 



1. Preliminaries
Conditional Independence of Random Variables
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■ Two real-valued random variables X and 𝑌 are called conditionally independent given 𝑍,

𝑋 ⫫ 𝑌 | 𝑍 or (𝑋 ⫫ 𝑌 | 𝑍)𝑃

if 

𝑝 𝑥, 𝑦 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑦|𝑧)

for all 𝑥, 𝑦 and for all 𝑧 s.t. 𝑝 𝑧 > 0.

■ Note: 

It is possible to find 𝑋, 𝑌 which are conditionally independent given a variable 𝑍 but 

unconditionally dependent, and vice versa.



2. Causal Graphical Models
Definition (Pearl)
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■ Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸)

□ Vertices 𝑉𝑖, 𝑖 = 1,… ,𝑁

□ Directed edges 𝐸 = (𝑉𝑖 , 𝑉𝑗), i.e., 𝑉𝑖 → 𝑉𝑗

□ No cycles

■ Use kinship terminology, e.g., for path 𝑉𝑖 → 𝑉𝑗 → 𝑉𝑘

□ 𝑉𝑖 = 𝑃𝑎(𝑉𝑗) parent of 𝑉𝑗

□ 𝑉𝑖 , 𝑉𝑗 = 𝐴𝑛𝑔 𝑉𝑘 ancestors of 𝑉𝑘

□ 𝑉𝑗 , 𝑉𝑘 = 𝐷𝑒𝑠(𝑉𝑖) descendants of 𝑉𝑖

■ Directed Edges encode direct causes via

□ 𝑉𝑖 = 𝑓𝑖 𝑃𝑎 𝑉𝑖 , 𝑁𝑖 with independent noise 𝑁𝑖

Cooling House Example:

▪ 𝑉1 = 𝒩 0,1

▪ 𝑉2 = 𝒩 0,1

▪ 𝑉3 = 3 𝑉2 +𝒩(0,1)

▪ 𝑉4 = 4 𝑉1 + 5 𝑉2 + 0.7 𝑉3 +𝒩(0,1)

▪ 𝑉5 = 𝑉4 +𝒩(0,1)

▪ 𝑉6 = 1.2 𝑉4 +𝒩(0,1)

This forms the Causal Graphical Model

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6



2. Causal Graphical Models
Connecting 𝐺 and 𝑃
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■ Basic Assumption: Causal Sufficiency

□ All relevant variables are included in the DAG 𝐺

■ Key Postulate: (Local) Markov Condition

■ Essential mathematical concept: d-Separation

(describes the conditional independences required by a causal DAG)

Joint Distribution   

Data Generating     
Model

𝑿 ⫫ 𝒀 𝒁 𝑮 ⇒ 𝑿 ⫫ 𝒀 𝒁 𝑷



■ I.e., every information exchange with its nondescendants involves its parents

■ Example:

3. (Local) Markov Condition
Theorem
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(Local) Markov Condition:

𝑉𝑗 independent of nondescendants 𝑁𝐷(𝑉𝑗), given parents 𝑃𝑎(𝑉𝑗), i.e.,

𝑽𝒋 ⫫ 𝑽𝑽/ 𝑫𝒆𝒔(𝑽𝒋)∪𝑷𝒂(𝑽𝒋)
|𝑷𝒂 𝑽𝒋 .

▪ 𝑉6 ⫫ 𝑉1, 𝑉2, 𝑉3, 𝑉5 |𝑉4

▪ 𝑉5 ⫫ 𝑉1, 𝑉2, 𝑉3, 𝑉6 |𝑉4

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6



3. (Local) Markov Condition
Supplement (Lauritzen 1996)
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■ Assume 𝑉𝑁 has no descendants, then 𝑁𝐷(𝑉𝑁) = {𝑉1, … , 𝑉𝑁−1}.

■ Thus the local Markov condition implies

𝑉𝑁 ⫫ 𝑉1, … , 𝑉𝑁−1 /𝑃𝑎 𝑉𝑁 | 𝑃𝑎 𝑉𝑁 .

■ Hence, the general decomposition

𝑝 𝑣1, … , 𝑣𝑁 = 𝑝 𝑣𝑁 𝑣1, … , 𝑣𝑁−1 𝑝(𝑣1, … , 𝑣𝑁−1)

becomes

𝑝 𝑣1, … , 𝑣𝑁 = 𝑝 𝑣𝑁 𝑃𝑎(𝑣𝑁 ) 𝑝 𝑣1, … , 𝑣𝑁−1 /𝑃𝑎 𝑣𝑁 .

■ Induction over 𝑁 yields to

𝑝 𝑣1, … , 𝑣𝑁 =ෑ

𝑖=1

𝑁

𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 .

■ I.e., the graph shows us how to factor the joint distribution 𝑃𝑉.



4. Factorization
Definition
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■ I.e., conditionals as causal mechanisms generating statistical dependence

■ Example:

Factorization:

𝑝 𝑣1, … , 𝑣𝑁 =ෑ

𝑖=1

𝑁

𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 .

𝑝 𝑣

= 𝑝 𝑣1, … , 𝑣6

= 𝑝 𝑣1 ⋅ 𝑝 𝑣2

⋅ 𝑝 𝑣3 𝑣2 ⋅ 𝑝 𝑣4 𝑣1, 𝑣2, 𝑣3

⋅ 𝑝 𝑣5 𝑣4 ⋅ 𝑝 𝑣6 𝑣4

= ς𝑖=1
6 𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6



5. Global Markov Condition
D-Separation (Pearl 1988)
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■ Path = sequence of pairwise distinct vertices where consecutive ones are adjacent

■ A path 𝑞 is said to be blocked by a set 𝑆 if

□ 𝑞 contains a chain 𝑉𝑖 → 𝑉𝑗 → 𝑉𝑘 or a fork 𝑉𝑖 ← 𝑉𝑗 → 𝑉𝑘
such that the middle node is in 𝑆, or

□ 𝑞 contains a collider 𝑉𝑖 → 𝑉𝑗 ← 𝑉𝑘
such that the middle node is not in 𝑆 and such that no descendant of 𝑉𝑗 is in S.

D-Separation:

𝑆 is said to d-separate 𝑿 and 𝒀 in the DAG 𝐺, i.e.,

𝑋 ⫫ 𝑌 𝑆 𝐺 ,
if 𝑆 blocks every path from a vertex in 𝑋 to a vertex in 𝑌.



■ Example: Blocking of paths

□ Path from 𝑉 to 𝑌 is blocked by conditioning on 𝑊,𝑋, or {𝑊, 𝑋}.

■ Example: Unblocking of paths

□ Path from 𝑉 to 𝑌 is blocked by ∅.

□ Path from 𝑉 to 𝑌 is unblocked by conditioning on 𝑊, 𝑌, or {𝑊, 𝑌}.

5. Global Markov Condition
Blocking of Paths (I/II)
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𝑉 W 𝑋 𝑌

𝑉 W 𝑋 𝑌

𝑌



■ Example (Berkson’s Paradox 1946): Unblocking by conditioning on common effects

■ Asymmetry under Inverting Arrows (Reichenbach 1956):

5. Global Markov Condition
Blocking of Paths (II/II)
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𝑋

𝑍

𝑌
▪ The path from 𝑋 to 𝑌 is unblocked by conditioning on 𝑍, i.e.,

▫ 𝑋 ⫫ 𝑌

▫ but: 𝑋 𝑌 | 𝑍

▪ E.g., the false observation of a negative correlation between 
two unrelated – or even positive correlated - traits.

⊭
𝑋

𝑍

𝑌 𝑋

𝑍

𝑌
▪ 𝑋 ⫫ 𝑌

▪ 𝑋 𝑌 | 𝑍⊭

▪ 𝑋 𝑌

▪ 𝑋 ⫫ 𝑌 | 𝑍

⊭



■ Example (Cooling House Scenario):
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5. Global Markov Condition
D-Separation

▪ The path from 𝑉1 to 𝑉6 is blocked by 𝑉4.

▪ 𝑉1 and 𝑉6 are d-separated by 𝑉4.

▪ The path 𝑉2 → 𝑉3 → 𝑉4 → 𝑉6 is blocked by

𝑉3, 𝑉4, or {𝑉3, 𝑉4}.

▪ But: 𝑉2 and 𝑉6 are d-separated only by 𝑉4, or {𝑉3, 𝑉4}. 

▪ The paths 𝑉1 → 𝑉4 ← 𝑉2 is blocked by ∅

▪ …but unblocked by conditioning on 𝑉4 or {𝑉3, 𝑉4}. .

▪ Note: 𝑉1 and 𝑉2 are d-separated by ∅ or 𝑉3.

▪ 𝑉4 is a fork in 𝑉5 ← 𝑉4 → 𝑉6.

▪ 𝑉5 and 𝑉6 are d-separated by 𝑉4.

Causal Inference 
Theory and Applications 
in Enterprise Computing

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6



5. Global Markov Condition
Theorem
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■ I.e., we have 𝑋 ⫫ 𝑌 𝑍 𝐺 ⇒ 𝑋 ⫫ 𝑌 𝑍 𝑃

Global Markov Condition:

For all disjoint subsets of vertices 𝑋, 𝑌 and 𝑍 we have that

𝑋, 𝑌 d-separated by 𝑍 ⇒ (𝑋 ⫫ 𝑌 | 𝑍)𝑃 .

Joint Distribution   

Data Generating     
Model



6. Functional Model and Markov Conditions
Theorem (Lauritzen 1996, Pearl 2000)
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Theorem:

The following are equivalent:

■ Existence of a functional causal model 𝐺;

■ (Local) Markov condition: statistical independence of nondescendants given parents 
(i.e.: every information exchange with its nondescendants involves its parents)

■ Global Markov condition: d-separation 
(characterizes the set of independences implied by local Markov condition)

■ Factorization: 𝑝 𝑣1, … , 𝑣𝑁 = ς𝑖=1
𝑁 𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 .

(subject to technical conditions)

I.e., 𝑿 ⫫ 𝒀 𝒁 𝑮 ⇒ 𝑿 ⫫ 𝒀 𝒁 𝑷



7. Causal Faithfulness
The Key-Postulate
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■ I.e., we assume that any population 𝑃 produced by this causal graph 𝐺 has the 

independence relations obtained by applying d-separation to it

■ Seems like a hefty assumption, but it really isn’t: 
It assumes that whatever independencies occur in it arise not from incredible 
coincidence but rather from structure, i.e., data generating model 𝐺.

■ Hence:

Causal Faithfulness:

𝑝 is called faithful relative to 𝐺 if only those independencies hold true 
that are implied by the Markov condition, i.e., 

𝑋 ⊥ 𝑌 𝑍 𝐺 ⇐ 𝑋 ⊥ 𝑌 𝑍 𝑃



8. Outlook Causal Structure Learning
Concept (Spirtes, Glymor, Scheines and Pearl)
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■ Assumptions:

□ Causal Sufficiency

□ Global Markov Condition

□ Causal Faithfulness

■ Causal Structure Learning:

□ Accept only those DAG’s 𝐺 as causal hypothesis for which

𝑋 ⊥ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⊥ 𝑌 𝑍 𝑃 .

□ Defines the basis of constraint-based causal structure learning

□ Identifies causal DAG up to Markov equivalence class 
(DAGs that imply the same conditional independencies)



9. Markov Equivalence Class
Theorem (Verma and Pearl)
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■ Skeleton: 
corresponding undirected graph

■ 𝑉-Structure: 
substructure 𝑋 → 𝑌 ← 𝑍 with no edges 

between 𝑋 and 𝑍.

Theorem:

Two DAGs are Markov equivalent if and only if they have the same 
skeleton and the same 𝑣-structures

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6



9. Markov Equivalence Class
Examples
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■ Same skeleton, no 𝑣-structure

𝑋 𝑌 𝑍

𝑋 𝑌 𝑍

𝑋 𝑌 𝑍

𝑿 ⊥ 𝒁 | 𝒀

𝑊

𝑌

𝑍

𝑋

■ Same skeleton, same 𝑣-structure at 𝑊

𝑊

𝑌

𝑍

𝑋



■ Causal Graphical Models formalized by DAG (directed acyclic graph) 𝐺 with 
random variables 𝑉𝑖, 𝑖 = 1,… ,𝑁, as vertices.

■ Causal Sufficiency, Causal Faithfulness and (Local) Markov Condition imply

𝑋 ⊥ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⊥ 𝑌 𝑍 𝑃 .

■ (Local) Markov Condition states that the density 𝑝(v1, … , 𝑣𝑁) then factorizes 
into

𝑝 𝑣1, … , 𝑣𝑁 = ς𝑖=1
𝑁 𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 .

■ Causal conditional 𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 represent causal mechanisms.

10. Summary
Causal Graphical Models
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11. Excursion: Maximal Ancestral Graphs
Motivating Example
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■ Suppose, we are given the following list of dependency properties among 𝑋, 𝑌, 𝑍 and 𝑊:

■ Which DAG could have generated these, and only these, pattern of dependencies?

■ The skeleton representing the pattern of dependencies must be:

■ And there must be the following colliders:

■ There is no orientation of 𝑌 − 𝑍 that is consistent with the independencies.

▪ 𝑋 ⫫ 𝑍

▪ Y ⫫ 𝑊

▪ 𝑋 ⫫ 𝑊

▪ 𝑋 𝑌

▪ Y 𝑍

▪ Z 𝑊⊭
⊭

⊭

𝑋 𝑌 𝑍 𝑊

𝑋 𝑌 𝑍

𝑌 𝑍 𝑊



11. Excursion: Maximal Ancestral Graphs
DAG Models and Marginalization

Hagedorn, Huegle, 
Perscheid

Causal Inference 
Theory and Applications 
in Enterprise Computing

Slide 30

■ Let’s include an additional variable 𝑉:

■ This DAG model generates a probability distribution 𝑃{𝑉,𝑊,𝑋,𝑌,𝑍} in which: 

■ The marginal distribution 𝑃{𝑊,𝑋,𝑌,𝑍} = 𝑃 𝑉,𝑊𝑋,𝑌,𝑍 𝑑𝑣 must adhere the same dependencies. 

■ But: this marginal distribution cannot be faithfully generated by any DAG.

DAG models are not closed under marginalization!

𝑋 𝑌 𝑍 𝑊

𝑉

▪ 𝑋 ⫫ 𝑍

▪ Y ⫫ 𝑊

▪ 𝑋 ⫫ 𝑊

▪ 𝑋 𝑌

▪ Y 𝑍

▪ Z 𝑊⊭
⊭

⊭



12. Excursion: Maximal Ancestral Graphs
Ancestral Graphs (informally)
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■ Ancestral Graph (AG) 

is a graph containing both directed and bi-directed edges, where the 
bi-directed edges stand for latent variables, e.g.,

■ m-Separation
If 𝑆 m-separates X and Y in an ancestral graph 𝑀, then 𝑋 ⫫ 𝑌 | 𝑆 in every

density 𝑝 that factorizes according to any DAG 𝐺 that is represented by the AG 𝑀.

■ Example

𝑋 𝑌 𝑍 𝑊

𝑉

𝑋 𝑌 𝑍 𝑊
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■ Advantages of AGs

□ AGs can faithfully represent more probability distributions than DAGs.

□ AG models are closed under marginalization.

□ AGs can (implicitly) represent unobserved variables, which exist in many (possibly 
almost all) applications.

■ Disadvantages of AGs

□ Parameterization is difficult in the general case.

□ Markov equivalence is difficult.
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Thank you
for your attention!


