

Digital Engineering • Universität Potsdan

Causal Inference Theory and Applications in Enterprise Computing

Christopher Hagedorn, Johannes Huegle, Dr. Michael Perscheid May 05, 2020

- Lecture Organization
- Embedding: Causal Inference in a Nutshell
- Introduction to Causal Graphical Models

Digital Engineering • Universität Potsdam

Lecture Organization

Lecture Organization Topics to be Discussed

- Questions concerning Jupyter lab or R exercises?
- Open Questions concerning last week's lecture topics?

Dies Academicus (6th of May, postponed)

Exercise is happening as intended

HPI Hasso Plattner Institut

Causal Inference Theory and Applications in Enterprise Computing

Digital Engineering • Universität Potsdam

Embedding: Causal Inference in a Nutshell

Embedding: Causal Inference in a Nutshell Concept

E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery | lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons? Q(G) = P(recovery|do(lemons)) **Causal Inference** Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Digital Engineering • Universität Potsdam

Introduction to Causal Graphical Models

Introduction to Causal Graphical Models Content

- 1. Preliminaries
- 2. Causal Graphical Models
- 3. (Local) Markov Condition
- 4. Factorization
- 5. Global Markov Condition
- 6. Functional Model and Markov Conditions
- 7. Faithfulness
- 8. Outlook Causal Structure Learning
- 9. Markov Equivalence Class
- 10. Summary
- 11. Excursion: Maximal Ancestral Graphs

Causal Inference Theory and Applications in Enterprise Computing

• A, B, A_i events

- *X*, *Y*, *Z*, *W*, *S*, *V*^{*i*} sets of random variables
- x value of random variable
- Pr probability measure
- P_X probability distribution of X
- p density
- p(X) density of P_X (always assume the existence of joint density, w.r.t. a product measure)
- p(x) density of P_X evaluated at the point x
- $X \perp Y$ independence of X and Y
- $X \perp Y \mid Z$ conditional independence of X and Y given Z
- f, g, f_i functions of a function class $\mathcal F$

Hagedorn, Huegle, Perscheid

1. Preliminaries Notation

1. Preliminaries Independence of Events

- Two events *A* and *B* are called *independent*, if
 - $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$,

or - rewritten in conditional probabilities - if

$$Pr(A) = \frac{A \cap B}{B} = Pr(A|B),$$
$$Pr(B) = \frac{A \cap B}{A} = Pr(B|A).$$

• $A_1, ..., A_N$ are called *(mutually) independent* if for every subset $S \subset \{1, ..., N\}$ we have

$$\Pr\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\Pr(A_i).$$

Note:

for $N \ge 3$, pairwise independence $\Pr(A_i \cap A_j) = \Pr(A_i) \cdot \Pr(A_j)$ for all i, j where i, j = 1, ..., N, and $i \ne j$ does not imply (mutual) independence.

Causal Inference Theory and Applications in Enterprise Computing

```
Hagedorn, Huegle,
Perscheid
```


1. Preliminaries Independence of Random Variables

• Two real-valued random variables X and Y are called *independent*,

if for every $x, y \in \mathbb{R}$, the events $\{X \le x\}$ and $\{Y \le y\}$ are independent,

Or, in terms of densities: for all x, y,

p(x,y) = p(x)p(y).

Note:

If $X \perp Y$, then E[X Y] = E[X] E[Y], and cov(X, Y) = E[X Y] - E[X] E[Y] = 0, i.e., $X \perp Y \Rightarrow cov(X, Y) = 0$. But: $cov(X, Y) = 0 \Rightarrow X \perp Y$.

No correlation does not imply independence

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

However, we have, for large \mathcal{F} : $(\forall f, g \in \mathcal{F}: cov(f(X), g(Y)) = 0)$, then $X \perp Y$.

1. Preliminaries Conditional Independence of Random Variables

• Two real-valued random variables X and Y are called *conditionally independent* given Z,

 $X \perp\!\!\!\perp Y \mid Z$ or $(X \perp\!\!\!\perp Y \mid Z)_P$

if

$$p(x, y|z) = p(x|z) p(y|z)$$

for all x, y and for all z s.t. p(z) > 0.

Note:

It is possible to find X, Y which are conditionally independent given a variable Z but unconditionally dependent, and vice versa.

Causal Inference Theory and Applications in Enterprise Computing

This forms the Causal Graphical Model

2. Causal Graphical Models Definition (Pearl)

- Directed Acyclic Graph (DAG) G = (V, E)
 - Vertices V_i , i = 1, ..., N
 - □ Directed edges $E = (V_i, V_j)$, i.e., $V_i \rightarrow V_j$
 - □ No cycles
- Use kinship terminology, e.g., for path $V_i \rightarrow V_j \rightarrow V_k$
 - $\Box V_i = Pa(V_j) \text{ parent of } V_j$
 - $\Box \{V_i, V_j\} = Ang(V_k) \text{ ancestors of } V_k$
 - $\Box \{V_j, V_k\} = Des(V_i) \text{ descendants of } V_i$
- Directed Edges encode *direct causes* via
 - \Box $V_i = f_i(Pa(V_i), N_i)$ with independent noise N_i

Causal Inference Theory and Applications in Enterprise Computing

2. Causal Graphical Models Connecting *G* and *P*

- Basic Assumption: *Causal Sufficiency*
 - $\hfill\square$ All relevant variables are included in the DAG G

- Key Postulate: (Local) Markov Condition
- Essential mathematical concept: *d-Separation*

(describes the conditional independences required by a causal DAG)

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

3. (Local) Markov Condition Theorem

(Local) Markov Condition: V_j independent of nondescendants $ND(V_j)$, given parents $Pa(V_j)$, i.e., $V_j \perp V_{V/(Des(V_j) \cup Pa(V_j))} | Pa(V_j).$

- I.e., every information exchange with its nondescendants involves its parents
- Example:

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

3. (Local) Markov Condition Supplement (Lauritzen 1996)

- Assume V_N has no descendants, then $ND(V_N) = \{V_1, \dots, V_{N-1}\}$.
- Thus the local Markov condition implies

 $V_N \perp \{V_1, \dots, V_{N-1}\}/Pa(V_N) \mid Pa(V_N).$

Hence, the general decomposition

$$p(v_1, \dots, v_N) = p(v_N | v_1, \dots, v_{N-1}) p(v_1, \dots, v_{N-1})$$

becomes

$$p(v_1, ..., v_N) = p(v_N | Pa(v_N)) p(\{v_1, ..., v_{N-1}\} / Pa(v_N)).$$

Induction over N yields to

$$p(v_1, ..., v_N) = \prod_{i=1}^N p(v_i | Pa(v_i)).$$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Slide 16

• I.e., the graph shows us how to factor the joint distribution P_V .

4. Factorization Definition

Factorization:

$$p(v_1, ..., v_N) = \prod_{i=1}^N p(v_i | Pa(v_i)).$$

- I.e., conditionals as causal mechanisms generating statistical dependence
- Example:

$p(v) = p(v_1, ..., v_6) = p(v_1) \cdot p(v_2) \\ \cdot p(v_3 | v_2) \cdot p(v_4 | v_1, v_2, v_3) \\ \cdot p(v_5 | v_4) \cdot p(v_6 | v_4) = \prod_{i=1}^{6} p(v_i | Pa(v_i))$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

5. Global Markov Condition D-Separation (Pearl 1988)

- *Path* = sequence of pairwise distinct vertices where consecutive ones are adjacent
- A path q is said to be *blocked* by a set S if
 - □ *q* contains a *chain* $V_i \rightarrow V_j \rightarrow V_k$ or a *fork* $V_i \leftarrow V_j \rightarrow V_k$ such that the middle node is in *S*, or
 - □ *q* contains a *collider* $V_i \rightarrow V_j \leftarrow V_k$ such that the middle node is not in *S* and such that no descendant of V_i is in *S*.

D-Separation: *S* is said to **d-separate** *X* **and** *Y* in the DAG *G*, i.e., $(X \perp Y \mid S)_G$, if *S* blocks every path from a vertex in *X* to a vertex in *Y*. **Causal Inference** Theory and Applications in Enterprise Computing

5. Global Markov Condition Blocking of Paths (I/II)

Example: Blocking of paths

- □ Path from V to Y is blocked by conditioning on W, X, or $\{W, X\}$.
- Example: Unblocking of paths

- □ Path from *V* to *Y* is blocked by \emptyset .
- □ Path from V to Y is unblocked by conditioning on W, Y, or $\{W, Y\}$.

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

5. Global Markov Condition Blocking of Paths (II/II)

Example (Berkson's Paradox 1946): Unblocking by conditioning on common effects

- The path from X to Y is unblocked by conditioning on Z, i.e.,
 X ⊥ Y
 - but: X 💺 Y | Z
- E.g., the false observation of a negative correlation between two unrelated or even positive correlated traits.

Asymmetry under Inverting Arrows (Reichenbach 1956):

Causal Inference Theory and Applications in Enterprise Computing

HPI

Hasso Plattner

Institut

Hagedorn, Huegle, Perscheid

5. Global Markov Condition D-Separation

- Example (Cooling House Scenario):
 - The path from V_1 to V_6 is blocked by V_4 .
 - V_1 and V_6 are d-separated by V_4 .
 - The path $V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_6$ is blocked by V_3, V_4 , or $\{V_3, V_4\}$.
 - But: V_2 and V_6 are d-separated only by V_4 , or $\{V_3, V_4\}$.
 - The paths $V_1 \rightarrow V_4 \leftarrow V_2$ is blocked by Ø
 - ...but unblocked by conditioning on V_4 or $\{V_3, V_4\}$.
 - Note: V_1 and V_2 are d-separated by \emptyset or V_3 .
 - V_4 is a fork in $V_5 \leftarrow V_4 \rightarrow V_6$.
 - V_5 and V_6 are d-separated by V_4 .

Causal Inference Theory and Applications in Enterprise Computing

5. Global Markov Condition Theorem

Global Markov Condition: For all disjoint subsets of vertices X, Y and Z we have that X, Y d-separated by $Z \Rightarrow (X \perp Y \mid Z)_P$.

• I.e., we have $(X \perp Y \mid Z)_G \Rightarrow (X \perp Y \mid Z)_P$

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

6. Functional Model and Markov Conditions Theorem (Lauritzen 1996, Pearl 2000)

Theorem:

The following are equivalent:

- Existence of a *functional causal model G*;
- (Local) Markov condition: statistical independence of nondescendants given parents (i.e.: every information exchange with its nondescendants involves its parents)
- Global Markov condition: d-separation (characterizes the set of independences implied by local Markov condition)
- Factorization: $p(v_1, \dots, v_N) = \prod_{i=1}^N p(v_i | Pa(v_i)).$

(subject to technical conditions)

Causal Inference Theory and Applications in Enterprise Computing

7. Causal Faithfulness The Key-Postulate

Causal Faithfulness:

p is called faithful relative to *G* if only those independencies hold true that are implied by the Markov condition, i.e., $(X \perp Y \mid Z)_{C} \leftarrow (X \perp Y \mid Z)_{P}$

- I.e., we assume that any population *P* produced by this causal graph *G* has the independence relations obtained by applying d-separation to it
- Seems like a hefty assumption, but it really isn't: It assumes that whatever independencies occur in it arise not from incredible coincidence but rather from structure, i.e., data generating model G.
- Hence:

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

8. Outlook Causal Structure Learning Concept (Spirtes, Glymor, Scheines and Pearl)

Assumptions:

- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

Causal Structure Learning:

 \Box Accept only those DAG's *G* as causal hypothesis for which

 $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P.$

- Defines the basis of constraint-based causal structure learning
- Identifies causal DAG up to Markov equivalence class (DAGs that imply the same conditional independencies)

Causal Inference Theory and Applications in Enterprise Computing

9. Markov Equivalence Class Theorem (Verma and Pearl)

Theorem:

Two DAGs are Markov equivalent if and only if they have the same skeleton and the same *v*-structures

Skeleton:

corresponding undirected graph

V-Structure:

substructure $X \rightarrow Y \leftarrow Z$ with no edges between X and Z.

Causal Inference Theory and Applications in Enterprise Computing

HPI

Hasso Plattner

Institut

Hagedorn, Huegle, Perscheid

Slide 27

9. Markov Equivalence Class Examples

■ Same skeleton, no *v*-structure

• Same skeleton, same *v*-structure at *W*

 $X \perp Z \mid Y$

Causal Inference Theory and Applications in Enterprise Computing

10. Summary Causal Graphical Models

- Causal Graphical Models formalized by DAG (directed acyclic graph) G with random variables V_i , i = 1, ..., N, as vertices.
- Causal Sufficiency, Causal Faithfulness and (Local) Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P.$
- (Local) Markov Condition states that the density p(v₁,..., v_N) then factorizes into

 $p(v_1, \dots, v_N) = \prod_{i=1}^N p(v_i | Pa(v_i)).$

• Causal conditional $p(v_i|Pa(v_i))$ represent *causal mechanisms*.

Causal Inference Theory and Applications in Enterprise Computing

11. Excursion: Maximal Ancestral Graphs Motivating Example

HPI Hasso Plattner Institut

- Suppose, we are given the following list of dependency properties among *X*, *Y*, *Z* and *W*:
 - X ⊥ Z
 Y ⊥ W
 Y ⊥ W
 X ⊥ W
 Z ⊥ W
- Which DAG could have generated these, and only these, pattern of dependencies?
- The skeleton representing the pattern of dependencies must be:

• And there must be the following colliders:

Causal Inference Theory and Applications in Enterprise Computing

Hagedorn, Huegle, Perscheid

Slide 29

• There is no orientation of Y - Z that is consistent with the independencies.

11. Excursion: Maximal Ancestral Graphs DAG Models and Marginalization

• Let's include an additional variable V:

- This DAG model generates a probability distribution $P_{\{V,W,X,Y,Z\}}$ in which:
 - X ⊥ Z X ⊥ Y
 - Y ⊥L W Y ±L Z
 - *X* ⊥ *W* Z ⊥ *W*
- The marginal distribution $P_{\{W,X,Y,Z\}} = P_{\{V,WX,Y,Z\}} dv$ must adhere the same dependencies.
- But: this marginal distribution cannot be faithfully generated by any DAG.

Causal Inference Theory and Applications in Enterprise Computing

Hasso Plattner

nstitut

Hagedorn, Huegle, Perscheid

DAG models are not closed under marginalization!

12. Excursion: Maximal Ancestral Graphs Ancestral Graphs (informally)

Ancestral Graph (AG)

is a graph containing both directed and bi-directed edges, where the bi-directed edges stand for *latent variables, e.g.,*

m-Separation

If *S* m-separates X and Y in an ancestral graph *M*, then $X \perp Y \mid S$ in every density *p* that factorizes according to any DAG *G* that is represented by the AG *M*.

Example

Causal Inference Theory and Applications in Enterprise Computing

Hasso Plattnei

nstitut

11. Excursion: Maximal Ancestral Graphs DAGs vs. AGs

Advantages of AGs

- □ AGs can faithfully represent more probability distributions than DAGs.
- □ AG models are closed under marginalization.
- AGs can (implicitly) represent unobserved variables, which exist in many (possibly almost all) applications.

Disadvantages of AGs

- Parameterization is difficult in the general case.
- Markov equivalence is difficult.

Causal Inference Theory and Applications in Enterprise Computing

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys, 3:96-146.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference.</u> Cambridge University Press.
- Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. The MIT Press.

Causal Inference Theory and Applications in Enterprise Computing

IT Systems Engineering | Universität Potsdam

Thank you for your attention!