

Agenda

- Lecture organization
 - Structure
 - Schedule
 - Contents
- Facts you should know

Introduction to Digital Health

Lecture Organization Administrative Details Time / Dates

- Location: HPI Campus II, D-E.9/10
- Tuesdays 9.15am-10.45 am (s.t.)
- Thursdays 11.00am-12.30pm (s.t.)
- Enroll for the lecture until Apr 28, 2017 (firm deadline)
- Website and further details: https://hpi.de/plattner/teaching/summer-term-2017/ data-management-for-digital-health.html

Introduction to Digital Health

Lecture Organization Grading

- Credit points: 6 ECTS
- Grading will be determined by the following individual parts, each part must be passed individually:
 - Intermediate exercises
 - Exam

http://www.hpi.uni-potsdam.de/fileadmin/hpi/presse/Fotos/campus_und_gebaeude/20111017_HPI_Hoersaal.jpg

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Lecture Organization What you can expect from us

- Broaden your horizons in the fields of
 - Digital Health,
 - □ Life sciences, as well as
 - Data challenges and opportunities
- Work with real-world data, real-world use cases
- Hands-on experiments of selected tools
- Invited talks by key experts in the field
- Get experience in collaborative project work

http://i.kinja-img.com/gawker-media/image/upload/s--cREIB5AZ--/1865smw5hbbt6jpg.jpg

Introduction to Digital Health

Lecture Organization What we expect from you

- Commitment to the lecture and exercises
- Attend lectures regularly
- Participate in group discussions, expert talks, and excursions
- Perform autonomous research to dig deeper into the topics
- Contribute with your expertise also to your colleagues
- Update supervisors on any issues you might encounter

http://i.kinja-img.com/gawker-media/image/upload/s--cREIB5AZ--/1865smw5hbbt6jpg.jpg

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Lecture Organization Sneak Preview

■ Hands-on work with

Credit: Caine et al. A 3D-DNA Molecule Made of PlayMais. 2015

■ Discover the reality

Credit: Delaware State News/Dave Chambers

Discuss with experts

Credit: Acuitus Medical

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Lecture Structure

Real-world Use Cases **Additional** Heart Oncology Nephrology Insufficiency **Topics** Data Management Foundation **Biology** Data Data Business Processing Recap Sources **Formats** and Analysis **Processes**

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Schedule

Lecture Contents Biology Recap

- Discovery of the Human Genome
- Components of cells
- How does DNA look like
- DNA/RNA sequencing technologies

Introduction to Digital Health

Lecture Contents Use Case Oncology

- Personalized, stratified, and precision medicine
- Clinical oncology process
- Identifying options for cancer treatment
- Retrieving information on cancer biomarkers
- Data formats and properties of data
- Distributed computing, process workflows (BPMN)
- Application examples: Genome Browser, Medical Knowledge Cockpit
- Expert talk oncology

Introduction to Digital Health

Lecture Contents Use Case Nephrology

- Clinical prediction models
- Acute vs. chronic kidney diseases
- Supervised learning, e.g. SVM, Bayesian networks
- Developing a clinical model
- Intensive care data: MIMIC III database
- Data analysis: RapidMiner
- Expert talk nephrology

Introduction to Digital Health

Lecture Contents Use Case Heart Insufficiency

- Systems medicine
- Use Case Heart Failure
- Unsupervised learning: clustering techniques
- Differential expression
- Discriminate healthy and diseased hearts based on RNAseq data
- Multiple factor analysis
- Expert talk cardiology

Introduction to Digital Health

Lecture Contents Special Topics

- Imaging and image data analysis
 - □ State-of-the-art tools
 - Building deep learning models
 - Segmentation and classification of brain CT scans
- Text analytics
 - Automated discharge letter generation
 - Template filling
 - Summary generation
 - Question answering systems

Introduction to Digital Health

Any Questions?

Introduction to Digital Health

Hype of Hope?

- The volume, velocity, and variety of health data is exponentially increasing
- Health data is scattered in silos, with limited benefits for individuals and society
- Patients want to control their healthcare data and understand them
- Thousands of health applications are targeting specific diseases whilst lacking a holistic view on the patient
- Advances in hardware and software (e.g., machine learning, in-memory databases) enables data processing at large scale

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Numbers You Should Know Comparison of Costs

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Intelligent Healthcare Networks in the 21st Century?

Introduction to Digital Health

Intelligent Healthcare Networks in the 21st Century?

Introduction to Digital Health

Intelligent Healthcare Networks in the 21st Century!

Introduction to Digital Health

The Setting

Patients

- Individual anamnesis, family history, and background
- Require fast access to individualized therapy

Clinicians

- Identify root and extent of disease using laboratory tests
- Evaluate therapy alternatives, adapt existing therapy

Researchers

- Conduct laboratory work, e.g. analyze patient samples
- Create new research findings and come-up with treatment alternatives

Introduction to Digital Health

The Challenge Distributed Heterogeneous Data Sources

Human genome/biological data

600GB per full genome 15PB+ in databases of leading institutes

Human proteome

160M data points (2.4GB) per sample > 3TB raw proteome data in ProteomicsDB

Hospital information systems

Often more than 50GB

PubMed database

>23M articles

Cancer patient records

>160k records at NCT

Medical sensor data

Scan of a single organ in 1s creates 10GB of raw data

Prescription data

1.5B records from 10,000 doctors and 10M Patients (100 GB)

Clinical trials

Currently more than 30k recruiting on ClinicalTrials.gov

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

Our Vision Interdisciplinary Tumor Board

Our Goal Informed Decision Making

- Can we enable doctors to:
 - □ Select <u>best treatment options</u> for their patients,
 - Analyze <u>latest diagnostic data</u> about patient's status, and
 - □ <u>Exchange knowledge</u> with patients to improve quality of living.

Introduction to Digital Health

Our Technology In-Memory Database Technology

Single and multi-tenancy

Lightweight compression

Insert only for time travel

Real-time replication

Working on integers

SQL interface on columns and rows

Active/passive

Minimal projections

Group key

Reduction of software layers

Dynamic multithreading

Objectrelational mapping

Text retrieval and extraction engine

No aggregate tables

Data partitioning _ 🛮 🗷

Any attribute as index

No disk

On-the-fly extensibility

Analytics on historical data

Multi-core/ parallelization **Introduction to Digital** Health

In-Memory Database Technology Use Case: Analysis of Genomic Data

	Alignment and Variant Calling	Analysis of Annotations in World- wide DBs
Bound To	CPU Performance	Memory Capacity
Duration	Hours - Days	Weeks
HPI	Minutes	Real-time
In-Memory Technology	Multi-Core	Partitioning & Compression →

Introduction to Digital Health

From University to Market Oncolyzer

Unified access to formerly disjoint oncological data sources

Flexible analysis on patient's longitudinal data

- Research initiative for exchanging relevant tumor data to improve personalized treatment
- Real-time analysis of tumor data in seconds instead of hours
- Information available at your fingertips: Inmemory technology on mobile devices, e.g. iPad
- Interdisciplinary cooperation between clinicians, clinical researchers, and software engineers
- Honored with the 2012 Innovation Award of the German Capitol Region

Introduction to Digital Health

From University to Market Oncolyzer: Patient Details Screen

- Combines patient's longitudinal time series data with individual analysis results
- Real-time analysis across hospital-wide data using always latest data when details screen is accessed
- https:// we.analyzegenomes.com/ apps/oncolyzer-mobile-app/

Introduction to Digital Health

From University to Market Oncolyzer: Patient Analysis Screen

- Allows real-time analysis on complete patient cohort
- Supports identification of clinical trial participants based on their individual anamnesis
- Flexible filters and various chart types allow graphical exploration of data on mobile devices

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

From University to Market SAP EMR: Patient Overview Screen

- Shows all patients the loggedin clinician is assigned for
- Provides overview about most recent results and treatments for each patient
- http://global.sap.com/ germany/solutions/ technology/enterprisemobility/healthcare-apps/ mobile-patient-record-app.epx

Introduction to Digital Health

From University to Market SAP EMR: Patient Detail Screen

- Displays time series data, e.g. temperature or BMI
- Allows graphical exploration of time series data

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

From University to Market SAP Medical Research Insights

- Flexible combination of medical data
- Enables interactive and graphical exploration
- Easy to use even without specific IT background

Introduction to Digital Health

Software Requirements in Life Sciences

- Requirements
 - Managed services
 - Reproducibility
 - □ Real-time data analysis
- Restrictions
 - Data privacy
 - Data locality
 - Volume of big medical data

http://stevedempsen.blogspot.de/2013/08/agile-software-requirements-comic.html

Introduction to Digital Health

Where are all those Clouds go to?

Introduction to Digital Health

Federated In-Memory Database (FIMDB) Incorporating Local Compute Resources

Introduction to Digital Health

App Example: From Raw DNA to Variants

 Control center for processing of raw DNA data, such as FASTQ, SAM, and VCF

- Supports reproducible research process by storing all relevant process parameters
- Implements prioritized data processing and fair use, e.g. per department or per institute
- Supports additional service, such as data annotations, billing, and sharing for all Analyze Genomes services
- Honored by the 2014 European Life Science Award

Introduction to Digital Health

App Example: Identification of Optimal Chemotherapy

Tumor-specific

Data

■ Honored by the 2015 PerMediCon Award

Patient-specific

Data

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

37

Compound

Interaction Data

App Example: Latest Medical Knowledge for Patients and Clinicians

- Query-oriented search interface
- Seamless integration of patient specifics, e.g. from EMR
- Parallel search in international knowledge bases, e.g. for biomarkers, literature, cellular pathway, and clinical trials

Introduction to Digital Health

App Example: GesundheitsCloud Combining Distributed Health Care Data Sources

Introduction to Digital Health

App Example: GesundheitsCloud Combining Distributed Health Care Data Sources

Patients

- Improved individualized healthcare provisioning
- Access to personal healthcare data
- Education through domain-specific expert apps
- Data donation

Medical Doctors

- Holistic view on patient anamnesis
- Advanced support for decision making, e.g. machine learning and realtime data analysis
- Improved clinical trial participation

Researchers

- Access to large real-world cohort data for research
- Exploration of society-wide effects

App providers

- Access to secure data processing, analysis, and storage infrastructure
- Use of donated data for improvement and testing of apps
- Access to specific user groups per app

Society: Improved healthcare at lower costs

Introduction to Digital Health

Do Not Forget to Enroll for the Lecture!

Introduction to Digital Health

Contacts

Hasso

- Milena Kraus
- Harry Freitas da Cruz
- Dr.-Ing. Matthieu-P. Schapranow
- Dr. Matthias Uflacker

✓ Name>.<Surname>@hpi.de

Enterprise Platform and Integration Concepts (EPIC)

August-Bebel-Str. 88 14482 Potsdam, Germany

Hasso Plattner Institute

https://we.analyzegenomes.com/

Introduction to Digital Health

Data Management for Digital Health, Summer 2017