Data Management for Digital Health
Kick-off

Dr. Matthieu-P. Schapranow
Data Management for Digital Health
Summer 2017
Agenda

- Lecture organization
 - Structure
 - Schedule
 - Contents
- Facts you should know
Lecture Organization
Administrative Details

- Location: HPI Campus II, D-E.9/10
- Tuesdays 9.15am-10.45 am (s.t.)
- Thursdays 11.00am-12.30pm (s.t.)

- Enroll for the lecture until Apr 28, 2017 (firm deadline)
Lecture Organization
Grading

- Credit points: 6 ECTS

- Grading will be determined by the following individual parts, each part must be passed individually:
 - Intermediate exercises
 - Exam

http://www.hpi.uni-potsdam.de/fileadmin/hpi/presse/Fotos/campus_und_gebaeude/20111017_HPI_Hoersaal.jpg

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
4
Lecture Organization
What you can expect from us

- Broaden your horizons in the fields of
 - Digital Health,
 - Life sciences, as well as
 - Data challenges and opportunities
- Work with real-world data, real-world use cases
- Hands-on experiments of selected tools
- Invited talks by key experts in the field
- Get experience in collaborative project work
Lecture Organization
What we expect from you

- Commitment to the lecture and exercises
- Attend lectures regularly
- Participate in group discussions, expert talks, and excursions
- Perform autonomous research to dig deeper into the topics
- Contribute with your expertise also to your colleagues
- Update supervisors on any issues you might encounter
Hands-on work with DNA

Discover the reality

Discuss with experts
Lecture Structure

Real-world Use Cases
- Oncology
- Nephrology
- Heart Insufficiency
- Additional Topics

Data Management Foundation
- Biology Recap
- Data Sources
- Data Formats
- Business Processes
- Processing and Analysis

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
Schedule

April
- Biology recap
- Lecture Kickoff
- Data sources and data formats
- Introduction
- Use Case Oncology
- Expert talks
- On site visits

May
- RNAseq processing
- Unsupervised learning
- Use Case Heart Insufficiency
- Special topics
- Exams
- Clinical prediction models
- Supervised learning
- Use Case Nephrology
- Exercises

June

July

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
Lecture Contents
Biology Recap

- Discovery of the Human Genome
- Components of cells
- How does DNA look like
- DNA/RNA sequencing technologies
Lecture Contents
Use Case Oncology

- Personalized, stratified, and precision medicine
- Clinical oncology process
- Identifying options for cancer treatment
- Retrieving information on cancer biomarkers
- Data formats and properties of data
- Distributed computing, process workflows (BPMN)
- Application examples: Genome Browser, Medical Knowledge Cockpit
- Expert talk oncology
Clinical prediction models

Acute vs. chronic kidney diseases

Supervised learning, e.g. SVM, Bayesian networks

Developing a clinical model

Intensive care data: MIMIC III database

Data analysis: RapidMiner

Expert talk nephrology
Lecture Contents
Use Case Heart Insufficiency

- Systems medicine
- Use Case Heart Failure
- Unsupervised learning: clustering techniques
- Differential expression
- Discriminate healthy and diseased hearts based on RNAseq data
- Multiple factor analysis
- Expert talk cardiology
Lecture Contents
Special Topics

- Imaging and image data analysis
 - State-of-the-art tools
 - Building deep learning models
 - Segmentation and classification of brain CT scans
- Text analytics
 - Automated discharge letter generation
 - Template filling
 - Summary generation
 - Question answering systems
Any Questions?
Hype of Hope?

- The volume, velocity, and variety of health data is exponentially increasing.
- Health data is scattered in silos, with limited benefits for individuals and society.
- Patients want to control their healthcare data and understand them.
- Thousands of health applications are targeting specific diseases whilst lacking a holistic view on the patient.
- Advances in hardware and software (e.g., machine learning, in-memory databases) enables data processing at large scale.
Numbers You Should Know

Comparison of Costs

![Graph showing the decline in costs for Main Memory per Megabyte and Sequencing Costs per Megabase from January 2002 to January 2016. The costs are shown on a logarithmic scale, decreasing significantly over time.](image-url)
Intelligent Healthcare Networks in the 21st Century?
Intelligent Healthcare Networks in the 21st Century?

- Hospital
- Research Center
- Laboratory
- Researcher
- Clinician
- Patient
- Pharmaceutical Company
- Healthcare Providers
- Patient Advocacy Group

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
Intelligent Healthcare Networks in the 21st Century!

Diagram showing interactions between:
- Hospital
- Research Center
- Laboratory
- Researcher
- Clinician
- Patient
- Pharmaceutical Company
- Healthcare Providers
- Patient Advocacy Group

Indirect Interaction vs. Direct Interaction

Intelligent Healthcare Networks in the 21st Century!
The Setting

- **Patients**
 - Individual anamnesis, family history, and background
 - Require fast access to individualized therapy

- **Clinicians**
 - Identify root and extent of disease using laboratory tests
 - Evaluate therapy alternatives, adapt existing therapy

- **Researchers**
 - Conduct laboratory work, e.g. analyze patient samples
 - Create new research findings and come-up with treatment alternatives
The Challenge
Distributed Heterogeneous Data Sources

- **Human genome/biological data**
 - 600GB per full genome
 - 15PB+ in databases of leading institutes

- **Human proteome**
 - 160M data points (2.4GB) per sample
 - >3TB raw proteome data in ProteomicsDB

- **Hospital information systems**
 - Often more than 50GB

- **Prescription data**
 - 1.5B records from 10,000 doctors and 10M Patients (100 GB)

- **Cancer patient records**
 - >160k records at NCT

- **PubMed database**
 - >23M articles

- **Medical sensor data**
 - Scan of a single organ in 1s creates 10GB of raw data

- **Clinical trials**
 - Currently more than 30k recruiting on ClinicalTrials.gov

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
Our Vision
Interdisciplinary Tumor Board
Our Goal
Informed Decision Making

- Can we enable doctors to:
 - Select best treatment options for their patients,
 - Analyze latest diagnostic data about patient’s status, and
 - Exchange knowledge with patients to improve quality of living.
Our Technology
In-Memory Database Technology

- Combined column and row store
- Map/Reduce
- Single and multi-tenancy
- Lightweight compression
- Insert only for time travel
- Real-time replication
- Working on integers
- SQL interface on columns and rows
- Active/passive data store
- Minimal projections
- Group key
- Reduction of software layers
- Dynamic multi-threading
- Bulk load of data
- Object-relational mapping
- Text retrieval and extraction engine
- No aggregate tables
- Data partitioning
- Any attribute as index
- No disk
- On-the-fly extensibility
- Analytics on historical data
- Multi-core/parallelization

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
25
In-Memory Database Technology

Use Case: Analysis of Genomic Data

Analysis of Genomic Data

<table>
<thead>
<tr>
<th></th>
<th>Alignment and Variant Calling</th>
<th>Analysis of Annotations in Worldwide DBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bound To</td>
<td>CPU Performance</td>
<td>Memory Capacity</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours - Days</td>
<td>Weeks</td>
</tr>
<tr>
<td>HPI</td>
<td>Minutes</td>
<td>Real-time</td>
</tr>
<tr>
<td>In-Memory Technology</td>
<td>Multi-Core</td>
<td>Partitioning & Compression</td>
</tr>
</tbody>
</table>

Introduction to Digital Health

Data Management for Digital Health, Summer 2017

26
From University to Market
Oncolyzer

- Research initiative for exchanging relevant tumor data to improve personalized treatment
- Real-time analysis of tumor data in seconds instead of hours
- Information available at your fingertips: In-memory technology on mobile devices, e.g. iPad
- Interdisciplinary cooperation between clinicians, clinical researchers, and software engineers
- Honored with the 2012 Innovation Award of the German Capitol Region

Unified access to formerly disjoint oncological data sources
Flexible analysis on patient's longitudinal data
Combines patient’s longitudinal time series data with individual analysis results.

Real-time analysis across hospital-wide data using always latest data when details screen is accessed.

https://we.analyzegenomes.com/apps/oncolyzer-mobile-app/
From University to Market
Oncolyzer: Patient Analysis Screen

- Allows real-time analysis on complete patient cohort
- Supports identification of clinical trial participants based on their individual anamnesis
- Flexible filters and various chart types allow graphical exploration of data on mobile devices
From University to Market
SAP EMR: Patient Overview Screen

- Shows all patients the logged-in clinician is assigned for
- Provides overview about most recent results and treatments for each patient
 Displays time series data, e.g. temperature or BMI

 Allows graphical exploration of time series data
From University to Market
SAP Medical Research Insights

- Flexible combination of medical data
- Enables interactive and graphical exploration
- Easy to use even without specific IT background
Software Requirements in Life Sciences

- Requirements
 - Managed services
 - Reproducibility
 - Real-time data analysis

- Restrictions
 - Data privacy
 - Data locality
 - Volume of big medical data

http://stevedempsen.blogspot.de/2013/08/agile-software-requirements-comic.html
Where are all those Clouds go to?
Federated In-Memory Database (FIMDB) Incorporating Local Compute Resources

Federated In-Memory Database (FIMDB) Incorporating Local Compute Resources

Master Data Managed by Service Provider

Sensitive Data Reside at Site B

Federated In-Memory Database Instances

Cloud Service Provider

Federated In-Memory Database Instance, Algorithms, and Applications Managed by Service Provider

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
App Example: From Raw DNA to Variants

- Control center for processing of raw DNA data, such as FASTQ, SAM, and VCF
- Personal user profile guarantees privacy of uploaded and processed data
- Supports reproducible research process by storing all relevant process parameters
- Implements prioritized data processing and fair use, e.g. per department or per institute
- Supports additional service, such as data annotations, billing, and sharing for all Analyze Genomes services
- Honored by the 2014 European Life Science Award

Standardized Modeling and runtime environment for analysis pipelines
App Example: Identification of Optimal Chemotherapy

Real-time Data Analysis and Interactive Exploration

- Smoking status, tumor classification and age (1MB - 100MB)
- Raw DNA data and genetic variants (100MB - 1TB)
- Medication efficiency and wet lab results (10MB - 1GB)

Patient-specific Data

Tumor-specific Data

Compound Interaction Data

Honored by the 2015 PerMediCon Award
App Example: Latest Medical Knowledge for Patients and Clinicians

- Query-oriented search interface
- Seamless integration of patient specifics, e.g. from EMR
- Parallel search in international knowledge bases, e.g. for biomarkers, literature, cellular pathway, and clinical trials
App Example: GesundheitsCloud
Combining Distributed Health Care Data Sources

Hospitals
Wearables
Practices
Patient
Genomics

Data Insights

Research

Data donation

GesundheitsCloud

Data integration
In-memory analytics
Machine learning

Applications

Secure cloud data storage

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
App Example: GesundheitsCloud
Combining Distributed Health Care Data Sources

Patients
- Improved individualized healthcare provisioning
- Access to personal healthcare data
- Education through domain-specific expert apps
- Data donation

Medical Doctors
- Holistic view on patient anamnesis
- Advanced support for decision making, e.g., machine learning and real-time data analysis
- Improved clinical trial participation

Researchers
- Access to large real-world cohort data for research
- Exploration of society-wide effects

App providers
- Access to secure data processing, analysis, and storage infrastructure
- Use of donated data for improvement and testing of apps
- Access to specific user groups per app

Society: Improved healthcare at lower costs
Do Not Forget to Enroll for the Lecture!

We want you!

April 28, 2017

Introduction to Digital Health
Data Management for Digital Health, Summer 2017
41
Contacts

- Milena Kraus
- Harry Freitas da Cruz
- Dr.-Ing. Matthieu-P. Schapranow
- Dr. Matthias Uflacker

Email: <Name>.<Surname>@hpi.de

Enterprise Platform and Integration Concepts (EPIC)
Hasso Plattner Institute
August-Bebel-Str. 88
14482 Potsdam, Germany

https://we.analyzegenomes.com/