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Biology Recap: Class of 2017. 
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■  Examples for data acquisition 

□  Sequencing technologies 

□  Longitudinal data 

□  Sensor data 

□  Text documents 

■  Data processing examples 

Agenda 
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■  Can we enable clinicians to take their therapy decisions: 

□  Incorporating all available patient specifics, 

□  Referencing latest lab results and worldwide medical knowledge, and 

□  In an interactive manner during their ward round? 

Our Motivation 
Turn Precision Medicine Into Clinical Routine 
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Numbers You Should Know 
Comparison of Costs 
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IT Challenges 
Distributed Heterogeneous Data Sources 
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Human genome/biological data 
600GB per full genome 
15PB+ in databases of leading institutes 

Prescription data 
1.5B records from 10,000 doctors and 
10M Patients (100 GB) 

Clinical trials 
Currently more than 30k 
recruiting on ClinicalTrials.gov 

Human proteome 
160M data points (2.4GB) per sample 
>3TB raw proteome data in ProteomicsDB 

PubMed database 
>23M articles 

Hospital information systems 
Often more than 50GB 

Medical sensor data 
Scan of a single organ in 1s 
creates 10GB of raw data  Cancer patient records 

>160k records at NCT 

Data Acquisition 
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Text Documents 
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■  Unstructured data, i.e. not directly machine-readable / -processable 

■  Examples 

□  Discharge / doctor letters 

□  Pathology or radiology reports 

□  Medical literature (PubMed, The Lancelet, etc) 



Discharge Letter 
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Pathology Report 
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Prescriptions 
German Muster 16 
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■  Data points := Acquired once or multiple times in (non-)equidistant 
times 

■  Provides a single point in time impression  

■  Examples: Lab results 

■  Pros: Can provide just-in-time insights 

■  Cons: Does not provide holistic view 

Categories of Data 
Data Points 
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■  Longitudinal data := Multiple measurements 
over (equidistant) time spans 

■  Examples: 

□  Lab values  

□  Clinical studies 

□  Observational studies 

■  Pros: Can provide a more holistic view on 
changes of data over time 

■  Cons: Requires time to acquire 

Categories of Data 
Longitudinal Data 
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Laboratory Tests (German Muster 10A) 
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■  List of medical 
attributes and their 
“normal” thresholds 

■  Exceeded values are 
highlighted 

■  Standardized encoding 
using Logical 
Observation Identifiers 
Names and Codes 
(LOINC) 

■  LOINC was initiated 
1994 in the U.S. 

Laboratory Values 
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■  Data acquired by medical equipment in equidistant time 

■  Examples 

□  Patient bedside monitoring 

□  Electrocardiogram (ECG) monitors, pulse oximetry, blood pressure 

□  Wearables, e.g. blood pressure, accelerator 

Sensor Data 
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Sensor Data  
Intensive Care Unit 
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Source: Armed Forces Institute of Cardiology & National Institute of Heart Diseases (Pakistan) 
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Sensor Data 
Intensive Care Unit: Physiologic Monitors 
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■  Main functions 

□  Monitor vital signs 

□  Provide alarms 

■  Main components 

□  Central Station 

□  Bedside Monitor 

□  Telemetry Transmitter and Receiver 

■  ICU Patient Scores (monitoring) 

□  APACHE (Acute Physiology And Chronic Health Evaluation) 

□  SOFA (Sepsis-related organ failure assessment)  

Sensor Data 
Intensive Care Unit: Physiologic Monitors 
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■  Assumptions 

□  Capacity of Intensive Care Unit (ICU) per hospital: avg. 20 patients 

□  Sensors per patient: avg. 8 signals 

□  Data points per sensor: avg. 125 Hz 

■  Estimated data volume per ICU if all data would be persisted 

□  72M data points per hour 

□  1.7T data points per day 

Sensor Data  
Intensive Care Unit: Data Volume 
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Real-time Processing of Event Data from Medical Sensors 

■  Processing of sensor data, e.g. from Intensive Care 
Units (ICUs) or wearable sensor devices  

□  Multi-modal real-time analysis to detect indicators 
for severe events 

■  Incorporates machine-learning algorithms to detect 
severe events and to  
inform clinical 
personnel in time 

■  Successfully tested 
with  100 Hz event 
rate, i.e. sufficient 
for ICU use 

 

Data Acquisition 
Comparison of waveform data 

with history of similar patients 
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Heart Beat Segmentation 
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Heart Beat Segmentation 
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■  Split data into single heartbeat segments 

■  Calculate heart rate from the number of segments per time span 

■  Extract minimum, maximum, and average amplitude 

■  Identification of change in slope 

s1 s2 s3 

max2 

max3 

 

max1 ■  Arrhythmia 

■  Tachycardia 

■  Bradycardia 



MIMIC III Database 

■  Clinical data of Hospital Information System (HIS) 

■  High-resolution waveform data incl. severe event annotations 

■  More than 42,000 patients and 58,000 ICU admissions 

■  Available data 

□  Physiologic data 

□  Demographics 

□  Medications 

□  Lab values 

□  And more… 

Access: https://mimic.physionet.org/ 
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From Raw Genome Data to Analysis 

Data Management for 
Digital Health, Summer 
2017 

Data Acquisition 

■  DNA Sequencing: Transformation of 
analogues DNA into digital format 

■  Alignment: Reconstruction of complete 
genome with snippets 

■  Variant Calling: Identification of genetic 
variants 

■  Data Annotation: Linking genetic variants 
with research findings 

27 



■  Biopsy := Extraction of tissue from body 

■  Purpose: Obtain tissue sample for analysis, e.g. abnormal vs. 
normal tissue 

■  Typically: Sample is processed by department of pathology and a 
report is created (duration: from minutes to days) 

■  Foundation for treatment decision 

■  Sample can be used for further tests, e.g. genome sequecing 

Biopsy 
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■  Purpose: Transformation of analogous DNA into digital format (A/D converter) 

■  Input: Chunks of DNA 

■  Output: DNA reads in digital form, e.g. in FASTQ format 

DNA Sequencing 
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■  2002: Sanger sequencing provides very high accuracy 

■  Accuracy: > 99.999% 

■  Throughput: 100 kbp / run (3hrs) 

■  Read length: 0.6-1 kbp 

■  Issues: time-intensive 

ABI Sequencing (1st gen) 
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■  2006: Sequencing by Oligonucleotide Ligation and Detection (SOLiD) 

■  Accuracy: > 99.99% 

■  Throughput: 60 Gbp / run (5-10 days) 

■  Read length: 35-100 bp 

■  Issues: time-intensive 

 

ABI Sequencing (2nd gen) 
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■  2005-2013: Roche-454 Life Sciences launched first NGS device using 
pyrosequencing / sequencing by synthesis approach 

■  Accuracy: >99.9%  

■  Throughput: 400-600 Mbp / run 

■  Read length: 200-400 bp (2009) later up to 700 bp 

■  Issues: Homopolymer repeat regions 

Roche-454 Sequencing 
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http://454.com/products/gs-flx-system/ 



■  2006: Solexa introduced Genome Analyzer 

■  2007: Illumina acquired Solexa 

■  Accuracy: >99.9% 

■  Throughput: 

□  2006: 1 Gbp / run (2006), 

□  2016: up to 1 Tbp / run (6 days) 

■  Read length: 200-600 bp 

■  Issues: cheap but less accurate 

Illumina Sequencing 
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http://www.illumina.com/systems/hiseq-x-sequencing-system/system.html 



■  Vision: Very cheap and mobile long-read alternative 

■  Accuracy: up to 99% 

■  Throughput: approx. 10 Gbp / run (<48hrs) 

■  Read length: 230-300 kbp 

■  Issues: still early phase and behind expectations 

Oxford Nanopore 
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■  2013: PacBio introduces long-read sequencer supporting 
innovative sequence assembling 

■  Accuracy: >99% (at high coverage) 

■  Throughput: 0.5-1 Gbp/run 

■  Read length: up to 60 kbp (à DeNovo Alignment) 

■  Issues: still comparable slow and lacks precision 

Pacific Biosciences 
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■  Double-stranded DNA is split into 
chunks of 200-800 bp 

■  Adapters are ligated to chunks 

Illumina Sequencing Process 
1. Preparation 
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■  Polymerase Chain Reaction (PCR) is 
used for amplification of DNA chunks 

Illumina Sequencing Process 
2. Amplification 
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■  pos = 0 

■  While (pos < read length) do 

□  pos++ 

□  Wash-off terminators 

□  Add primers with fluorescently terminators, 
i.e. A, C, G, T + stop codon 

□  Record laser light reflection image 

□  Process image to write textual output 

■  Done 

Illumina Sequencing Process 
3. Sequencing 
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■  Double-stranded DNA is split into chunks of 200-800 bp length 

■  Adaptors attached to DNA chunks 

■  Separation of double-strand into two strands using sodium hydroxide  

■  DNA chunks are washed across flowcell, i.e. DNA not binding to primers is removed 

■  Polymerase Chain Reaction (PCR) is used for amplification of DNA chunks 

■  Nucleotide bases and DNA polymerase are added to build bridges b/w primers 

■  Double strand is split-up using heat à dense clusters of identical DNA sequences 

■  Primers with fluorescently terminators are added, e.g. A, C, G, T + stop codon 

■  Primers attach to DNA chunks and DNA polymerase attaches to terminator 

■  Laser passes flowcell, i.e. each terminator type emits unique light 

■  Terminators are removed and new terminators are added to next DNA position 

Illumina Sequencing Process 
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■  FASTQ format used for further processing 

■  One read is a quart-tuple of: 

1.  Sequence identifier / description 

2.  Raw sequence 

3.  Strand / direction 

4.  Quality values per sequenced base  

Output of Sequencing 
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■  Sample preparation results in chunks of DNA 

■  DNA sequencing is highly automated and results in FASTQ file 

■  Throughput increased over the past decade 

What to take Home? 
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Year Method Read Length Accuracy Throughput (per day) 

2002 Sanger ABI 3730xl Up to 1 kbp >99.999 % 400 kbp 

2008 Roche 454 GS FLX+ 700 bp >99.9 % 700 Mbp 

2012 Illumina 2500 
(throughput mode) 

2x125 kbp 
(paired) 

>99.9 % 800 Gbp (paired) 

2013 Pac Bio RS II 
 

Up to 15 kbp >90% / >99 % 
(multi-pass) 

6.75 Tbp 

2014 Oxford Nanopore 
MinION 

Up to 5 kbp Up to 99% 
(multi-pass) 

115 Mbp 



From Raw Genome Data to Analysis 
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■  DNA Sequencing: Transformation of 
analogues DNA into digital format 

■  Alignment: Reconstruction of complete 
genome with snippets 

■  Variant Calling: Identification of genetic 
variants 

■  Data Annotation: Linking genetic variants 
with research findings 
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■  Purpose: Mapping of DNA reads to a reference 

■  Input: 

□  DNA reads := Sequence of nucleotides with a length of 100 bp up to some 1 kbp 

□  Reference genome := Blueprint for alignment of DNA reads 

■  Output: Mapped DNA reads 

■  Bear in mind: 

□  Less fraction in DNA reads, i.e. longer reads, allows more precise alignment 

□  Reference from same origin improves mapping quality 

Alignment 
Overview 
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■  Global alignment strategy 

■  Alignment score is defined by the value in the most lower right cell of the matrix 

■  Needleman, S. B. and Wunsch, C. D. (1970). "A general method applicable to the 
search for similarities in the amino acid sequence of two proteins” in “Molecular 
Biology”, 48(3): 443–53 

Selected Alignment Algorithms 
Needleman-Wunsch Algorithm 
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■  What is the best global alignment for sequences CTG and ACTGC? 

 

Needleman-Wunsch Algorithm 
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■  M(0,0) = 0 

Needleman-Wunsch Algorithm 
Matrix Initialization 
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■  M(0,0) = 0 

■  M(i,0) = M(i-1,0) + gap(), 1 ≤ i ≤ m 

■  M(0,j) = M(0,j-1) + gap(), 1 ≤ j ≤ n 

■  gap() := -1, i.e. gap cost function 

Needleman-Wunsch Algorithm 
Matrix Initialization 
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■  Weight function w(a,b) := { +1 if a == b, -1 else 

■  D(i,j) defines value of matrix at coordinates (i,j) 

Needleman-Wunsch Algorithm 
Fill Matrix 
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■  Weight function w(a,b) := { +1 if a == b, -1 else 

■  D(1,1) := maximum of 

�  D(0,0) + w(A,C) = 0 + (-1) = -1 

�  D(1,0) + gap() = -1 + (-1) = -2 

�  D(0,1) + gap() = -1 + (-1) = -2 

Needleman-Wunsch Algorithm 
Fill Matrix 
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■  Weight function w(a,b) := { +1 if a == b, -1 else 

■  D(1,1) := maximum of 

�  D(0,0) + w(A,C) = 0 + (-1) = -1 

�  D(1,0) + gap() = -1 + (-1) = -2 

�  D(0,1) + gap() = -1 + (-1) = -2 

Needleman-Wunsch Algorithm 
Fill Matrix 
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■  Repeat for all D(i,j) until matrix is filled  

■  Bear in mind: Filling the matrix can be performed in parallel 

Needleman-Wunsch Algorithm 
Fill Matrix 
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■  Repeat for all D(i,j) until matrix is filled  

■  Bear in mind: Filling the matrix can be performed in parallel 

Needleman-Wunsch Algorithm 
Fill Matrix 

Data Management for 
Digital Health, Summer 
2017 

Data Acquisition 

52 

- A C T G C 
- 0 -1 -2 -3 -4 -5 
C -1 -1 0 -1 -2 -3 
T -2 -2 -1 1 0 -1 
G -3 -3 -2 0 2 1 



■  Trace path back from D(m,n) to origin D(0,0) 

Needleman-Wunsch Algorithm 
Determine Best Global Alignment 
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Match (diag) 

Mismatch (up) 

Gap (left) 

■  Reference: ACTGC 

■  Alignment: -CTG- 

■  Score of the alignment is: 1 

■  Bear in mind: Backtracing can be performed in parallel 

 

Needleman-Wunsch Algorithm 
Determine Best Global Alignment 
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■  Determine optimal local alignments 

■  Adaption of Needleman-Wunsch algorithm  

□  Initialize all cells within first row and column with zero 

□  Alignment score is defined by highest value somewhere in the matrix 

□  Backtracing from cell with alignment score to first cell containing zero 

■  Smith, T. F. and Waterman, M. S. (1981). "Identification of Common Molecular 
Subsequences" in “Molecular Biology”, 147: 195–7. 

Selected Alignment Algorithms 
Smith-Waterman Algorithm 
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■  What is the best local alignment for sequences CTG and ACTGC? 

 

Smith-Waterman Algorithm 
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■  M(0,0) = M(i,0) = M(0,j) = 0 | 0 ≤ i ≤ m, 0 ≤ j ≤ n 

 

Smith-Waterman Algorithm 
Matrix Initialization 
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■  Weight function w(a,b) := { +1 if a == b, -1 else 

■  gap() := -1, i.e. gap cost function 

■  D(i,j) defines value of matrix at coordinates (i,j) 

Smith-Waterman Algorithm 
Fill Matrix 
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■  D(1,1) := maximum of 

�  D(0,0) + w(A,C) = 0 + (-1) = -1 

�  D(1,0) + gap() = 0 + (-1) = -1 

�  D(0,1) + gap() = 0 + (-1) = -1 

�  0 

Smith-Waterman Algorithm 
Fill Matrix 
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■  D(1,1) := maximum of 

�  D(0,0) + w(A,C) = 0 + (-1) = -1 

�  D(1,0) + gap() = 0 + (-1) = -1 

�  D(0,1) + gap() = 0 + (-1) = -1 

�  0 

Smith-Waterman Algorithm 
Fill Matrix 
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■  Repeat for all D(i,j) until matrix is filled  

■  Bear in mind: Filling the matrix can be performed in parallel 

Smith-Waterman Algorithm 
Fill Matrix 
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■  Trace path back from max(D(i.j)) to first D(i,j) = 0 

Smith-Waterman Algorithm 
Determine Local Alignments 
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- A C T G C 
- 0 0 0 0 0 0 
C 0 0 1 0 0 1 
T 0 0 0 2 1 0 
G 0 0 0 1 3 2 

Match 

Mismatch 

Gap 

■  Reference: ACTGC 

■  Local alignment: CTG 

■  Score of the alignment is: 3 

■  Bear in mind: Backtracing can be performed in parallel for multiple local optima 

Smith-Waterman Algorithm 
Determine Local Alignments 
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■  Alignment of short read against long reference sequence 

■  Uses Burrows-Wheeler Transform (BWT) to optimize search 

■  BWT (aka block-sorting compression) := Rearrangement of character string, which 
tends to group similar characters by rotation and lexicographic ordering 

■  Output of BWT supports compression as it contains repeated characters 

■  Li, H. and Durbin, R. (2009). “Fast and accurate short read alignment with Burrows–
Wheeler transform” in “Bioinformatics”, 25(14): 1754-60 

Selected Alignment Algorithms 
Burrows-Wheeler Aligner 
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■  BWT of character string: *ENGINEERING# 

Burrows-Wheeler Transform  
Example 
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■  *ENGINEERING# 

Burrows-Wheeler Transform  
1. Create all Rotations 
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1 *ENGINEERING# 

2 ENGINEERING#* 

3 NGINEERING#*E 

4 GINEERING#*EN 

5 INEERING#*ENG 

6 NEERING#*ENGI 

7 EERING#*ENGIN 

8 ERING#*ENGINE 

9 RING#*ENGINEE 

10 ING#*ENGINEER 

11 NG#*ENGINEERI 

12 G#*ENGINEERIN 

13 #*ENGINEERING 



■  *ENGINEERING# 

Burrows-Wheeler Transform  
2. Sort Rotations 
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7 EERING#*ENGIN 

2 ENGINEERING#* 

8 ERING#*ENGINE 

4 GINEERING#*EN 

12 G#*ENGINEERIN 

5 INEERING#*ENG 

10 ING#*ENGINEER 

6 NEERING#*ENGI 

3 NGINEERING#*E 

11 NG#*ENGINEERI 

9 RING#*ENGINEE 

1 *ENGINEERING# 

13 #*ENGINEERING 



■  *ENGINEERING# 

■  N*ENNGRIEIE#G 

■  N*EN2GR(IE) 2#G (compressed after applying RLE) 

Burrows-Wheeler Transform  
3. Assemble Output from Last Character  
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7 EERING#*ENGIN 

2 ENGINEERING#* 

8 ERING#*ENGINE 

4 GINEERING#*EN 

12 G#*ENGINEERIN 

5 INEERING#*ENG 

10 ING#*ENGINEER 

6 NEERING#*ENGI 

3 NGINEERING#*E 

11 NG#*ENGINEERI 

9 RING#*ENGINEE 

1 *ENGINEERING# 

13 #*ENGINEERING 



■  *DIGITAL# 

Burrows-Wheeler Transform  
1. Create all Rotations 
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1 *DIGITAL# 
2 DIGITAL#* 
3 IGITAL#*D 
4 GITAL#*DI 
5 ITAL#*DIG 
6 TAL#*DIGI 
7 AL#*DIGIT 
8 L#*DIGITA 
9 #*DIGITAL 



■  *DIGITAL# 

Burrows-Wheeler Transform  
2. Sort Rotations 

Data Management for 
Digital Health, Summer 
2017 

Data Acquisition 

70 

7 AL#*DIGIT 
2 DIGITAL#* 
4 GITAL#*DI 
3 IGITAL#*D 
5 ITAL#*DIG 
8 L#*DIGITA 
6 TAL#*DIGI 
1 *DIGITAL# 
9 #*DIGITAL 



■  T*IDGAI#L 

■  Does not always improve compressibility! 

 

Burrows-Wheeler Transform  
3. Assemble Output from Last Character  
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7 AL#*DIGIT 
2 DIGITAL#* 
4 GITAL#*DI 
3 IGITAL#*D 
5 ITAL#*DIG 
8 L#*DIGITA 
6 TAL#*DIGI 
1 *DIGITAL# 
9 #*DIGITAL 



■  BWA: Smith-Waterman + BWT to keep memory footprint low 

■  Bowtie: Similar to Smith-Water/Needleman-Wunsch + BWT 

■  HANA Aligner (based on IMDB): BWA + FM index/BWT to speed-up match detection 

■  Isaac (commercialized by Illumina): Smith-Waterman 

■  Torrent Mapping Alignment Program (TMAP) (commercialized by IonTorrent): Smith-
Waterman + FM index/BWT 

 

Selected Alignment Tools 
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From Raw Genome Data to Analysis 

Data Management for 
Digital Health, Summer 
2017 

Data Acquisition 

■  DNA Sequencing: Transformation of 
analogues DNA into digital format 

■  Alignment: Reconstruction of complete 
genome with snippets 

■  Variant Calling: Identification of genetic 
variants 

■  Data Annotation: Linking genetic variants 
with research findings 

73 



■  Purpose: Variant Calling := Detect variations within a genome 

■  Input: 

□  Mapped DNA reads, i.e. output of alignment process 

□  Reference genome 

■  Output: List of variants 

■  Bear in mind: 

□  Read depth at posi:= Number of nucleotides storing information about pos i 

Variant Calling 
Overview 
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Variant Calling 
Process 
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1. Quality 
Filtering 

2. Base 
Pile-up 

3. Genotype 
Calling 

Aligned Reads Aligned Reads 

4. Results 
Assembly 

Reference 



■  Extract locations from mapped reads where mapping issues were detected 

■  Reference 

■  Read 

■  CIGAR 

1. Quality Filtering 
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A C G C R A G A T A 

- - G C A T G A T A 

2D 8M 



■  Reference (FASTA) 

■  Aligned read 1 

2. Base Pile-up 
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A C G C R A G A T A 

G C A T G A T A 



■  Reference (FASTA) 

■  Aligned read 1 

 

… 

■  Aligned read 8 

■  Alleles 

2. Base Pile-up 
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A C G C R A G A T A 

G C A T G A T A 

A C G C G T G A T A 

A T G C G T G A 

A C G C G A G 

C G C A T G A T A 

A C G C G T 

C A T G A T A 

C G C A T G A T A 

a 4 5 7 8 4 1 7 6 5 5 

b 0 1 0 0 4 7 0 0 0 0 

bb ab 

SNP or Read Error 

aa 



■  Error(s) in the wet lab process 

Reasons for Mismatches? 
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■  Error during alignment phase, i.e. incorrect mapping of DNA chunk 

■  Error during base calling, i.e. algorithm only indicates probability 

■  Incorrect reference 

■  Bear in mind: Better references and algorithms may reduce the error! 
 

Reasons for Mismatches?  
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■  Single Nucleotide Polymorphism (SNP) on the DNA strand 

■  Example: Worldwide distribution of blood types 

 A              B              0 

Reasons for Mismatches? 
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http://anthro.palomar.edu/vary/vary_3.htm 



■  When: May 9, 2017 (10.30am – 3.30pm) 

■  Where: HPI building A, 2nd floor 

 

Friendly Reminder: 
Donate Blood to Save Lives 
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■  Purpose: Eliminate impact of noise and poor reading quality 

■  How: Compute probability for a genotype G given read context data D per sample 

■  Uses Bayes’ theorem 

■  Recap Bayes’ theorem: 

■  Given are two events A and B 

■  P(A|B) defines the conditional probability for event A after event B 

■  P(B|A) defines the conditional probability for event B after event A 

■  Relates conditional probability P(A|B) to P(B|A) for events A and B and P(B) > 0. 

3. Genotype Calling 
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■  Which genotype G has the highest posterior probability given the data D? 

■  Therefore, calculate posterior probability P(G|D). 

■  Bayes’ Theorem: 

□  D: All observation about current position i {Dj, …, Dn} 

□  P(G): Genotype probability {AA, AC, AG, AT, CC, CG, CT, GG, GT, TT} 

□  P(Gi): Prior probability 

□  P(D|Gi): Genotype likelihood 

 
■  Heng Li (2011): “A statistical framework for SNP calling, mutation discovery, 

association mapping and population genetical parameter estimation from seq. data” 

3. Genotype Calling 
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■  Affected by: 

□  Number of (known) SNPs across the complete genome 

□  Distribution of SNPs 

□  Allele frequency 

3. Genotype Calling 
Computation of Prior Probability P(Gi) 
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■  Genotype likelihood depends on the surrounding data at position i 

■  Includes present values and base quality scores from sequencing 

■  Where to find base quality score? 

■  Recap FASTQ file format 

■  Line 4 describes base quality score 

3. Genotype Calling 
Computation of Genotype Likelihood P(D|Gi) 
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■  Select the genotype with the highest probability, i.e. 

■  gi = argmax P(gi|D) for gi in (<a,a>, <a,b>, <b,b>) 

■  Assembly results for all positions i. 

■  Bear in mind:  Variant calling can be performed in parallel for multiple loci. 

3. Genotype calling 
Genotype consensus 
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■  Results are stored in Variant Calling Format (VCF) 

■  VCF is extensible, i.e. can store an arbitrary number of attribute/value pairs 

■  Result consists of:  

□  Header defining attributes 

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype”> 

□  One entry per variant (fixed number of attributes) 

4. Results Assembly 
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CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE 

chr7 140753336 rs113488022 T A 61 PASS NS=1 GT 0/1 



■  Li H, Ruan J, Durbin R (2008) Mapping short DNA 
sequencing reads and calling variants using 
mapping quality scores Genome Research 
18:1851–1858  

■  Maq was the first widely used variant caller 

■  Latest examples: 
Broad’s Genome Analysis Tool Kit 

□  Unified Genotyper 

□  Haplotype Caller 

□  … 

Variant Callers 
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http://maq.sourceforge.net/ 



■  Procedure: 

□  Pass online questionnaire on 

□  Conduct the exercise whenever it fits your schedule 

□  However, complete the exercise prior to its scheduled deadline (tba) 

■  Content you should review: 

□  Biology recap, 

□  Sequencing technology, and 

□  Alignment and variant calling algorithms. 

What’s next? 
1st Exercise 
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