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Recap Use Case Nephrology
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m The urinary system
m How the kidneys work

m Kidney diseases

https://edc2.healthtap.com/ht-staging/user_answer/

[ Baye5|an networks for AKl reference_image/3694/large/Kidney.jpeg
m Machine learning in Nephrology ose Resus

https://ceufast.com/course/
urinary-tract-infections-the-unappreciated-giant
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Agenda

m Predictive analytics in healthcare
m Clinical Decision Support Systems (CDSS)
m Clinical Data Repository (CDR)

m Establishing Clinical Prediction Models
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Predictive Analytics in Healthcare

https://i.ytimg.com/vi/xEemneA_qwE/maxresdefault.jpg
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Predictive Analytics in Healthcare Hlasso
Opportunities and Challenges 2 Plattner
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: Precision Risk
Patient safety stratification
| OPPORTUNITIES
Physician and Data Novel algorithms CHALLENGES
patient trust standardization and tools
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Predictive Analytics in Healthcare
Clinical Decision Making

m Huge variety of clinical (increasingly genomic) data
m Questions to be answered?:

o What disease does this patient have?

o Should this patient be treated?

o Should testing be done?

m Accurate, complete, relevant data
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m Re”ance on Dattern recognition and customary practices http://www.mii.ucla.edu/images/research/areas/clinical_decision.png

m Evidence-based medicine (clinical guidelines)

m Medical errors are frequent

[1] http://www.merckmanuals.com/professional/special-subjects/clinical-decision-making/introduction-to-clinical-decision-making
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Clinical Decision Support Systems
Definition
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m According to Kabari et al.:

“Clinical decision support systems (CDSS) provide clinicians, staff,
patients, and other individuals with knowledge and person-specific
information, intelligently filtered and presented at appropriate times,
to enhance health and health care”!

Predictive Modelling

, : Efficiency in for Clinical
Pa’;letnt Quality of R e Applications
sarety care de”\/ery Data Management for

Digital Health, Summer
2017
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[1] L. G.Kabari and E. 0. Nwachukwu (2012). Neural Networks and Decision Trees For Eye Diseases Diagnosis, Advances in Expert Systems, Prof. Petrica
Vizureanu (€d.), InTech, DOI; 10.5772/51380.



Clinical Decision Support Systems Hasso
: : . . attner
Typical Application Scenarios Institut
m Usual scenarios ( - ~ A
) ) Data Results
o Diagnostic support Input Output
. Inference
o Preventive care et *
o Treatment planning / recommendations
m How can this be achieved? Knowledge
Base
o Contextual retrieval of highly relevant information
. N ~ Z / J/
o Patient-specific reminders and recommendations Architecture components of CDSS (Kola, nd)
o Organization and presentation of information Predictive Modelling
for Clinical
m Information logistics / 5 ,rights” Applications
: : Data M f
o Information, person, format, channel, time D?gtﬁal i{;aa?ﬁ]mseﬂ;n?;r
2017
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Berner, E. (2009). Clinical decision support systems: state of the art. AHRQ Publication, (9). Retrieved from
https://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1 .pdf



Clinical Decision Support Systems IF;Ilansso
Contextual Retrieval of Highly Relevant Information acner

Medications + Add -
Selected visit
Scheduled (7) A

albuterol 5 mgé mL NEB Once {
terbinafine 250 mg QD @@

inderal 20 mg1 tab(s) PO BID @
lasix 20 mg1 tab(s) PO Once Daily @

ki
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Clinical Decision Support Systems
Patient-specific Reminders and Recommendations

http://www.ehrscreenshots.com/files/2011/10/rxriter001.jpg

<4 Eyston A. Hunte M.D. P.A. (FP)--abd-rty-23345 DON MCDONALD DOB 05/05/87 A 23 year old Female--Doctor: Eyston A. Hunte M.D. (FP) Opr: Dona...

Front Desk H Patient Account

H Pull Chart ”W

Encounter Date

177965 dfsdfd

History of Present lliness
FollowUp

Refills Management New Prescriptions

fedfedfsdf

y

RxRiter Prior Adverse Reaction Alert!

Patient| DON MCDONALD ] Doctor| Eyston A. Hunte M.D. (FP) |

Medications Lookup Category
amoxicill ‘ lQuinoIonesiderivatives &

Medication 2 [0ar2202010

[Amoxicillin oral capsules 500 mg

Amoxicilin & Clavulanate oral povwder for reconstitution 600 mg + 42.9mg /5t
Amoxicillin & Clavulanate oral tablets 250 mg + 125 mg

Caution! Allergy or Prior Adverse Reaction - Penicillins
There may be a reactionfconflict with Amoxicillin

Family History

1k S —a

] Allow Substitution

Allergies and Prior R

Penicillin ¥ Potassium oral tablets 250 mg+Penicillins

: Renal Failure H Pregnancy H Lactation H Pharmacological Actions |[ Diagnostic Tests H Therapeutic Procedures ‘

Interactions ” Indications l Contraindications H Prescriber Cautions H Toxicity “ Side Effects H Liver Disease ‘

Meds

(@l

Typhoid and paratyphoid fevers Guideline dosage 500mg twice daily
Other salmonella infections Guideline dosage 500mg twice daily
[} ingiti ideline dosage 500mg twice daily
Shigellosis Guideline dosage 500mg twice daily
£l nastrni inal trart i inn_ Guideline dnsane ANNmn twice daily

<
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Clinical Decision Support Systems
Organization and Presentation of Information
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Clinical Data Repository
Heterogeneous Landscape

Winter et al., Architectures of Hospital Information Systems (2010)

Patient
administration

Provider or physician
order entry system

documentation

Medical

Radiology
information system

N =

N~

system (POE) system (RIS)
IR , )
Enterprise resource Picture archiving and
planning system communication
(ERP) system (PACS)
) Laboratory
. Business information system
intelligence system (us)
N &
vy ¥y R Y
QO B
Document archiving Operation Outpatient ursigg managte[[nent Patient gata .
system and documentation management system
v management system management system system (PDMS)

A. Winter, R. Haux, E. Ammenwerth, B. Brigl, N. Hellrung, F. Jahn. Health Information Systems: Architectures and Strategies (2010)
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Clinical Data Repository
Challenges and opportunites

m Difficult and costly to develop a general purpose CDR
m Integration of different data sources is a daunting task
m Data inconsistency, redundancies are frequent

m Difficult to adapt to changing needs of users

m 360° patient view
m Explore patterns in disease progression and management
m Discover unknown patterns in the data

m Faster hypothesis testing -> Clinical studies

De Mul, M., Alons, P., van der Velde, P., Konings, |., Bakker, |, & Hazelzet, J. (2012). Development of a clinical data warehouse from an intensive care
clinical information system. Computer Methods and Programs in Biomedicine, 105(1), 22-30. http://doi.org/10.1016/j.cmpb.2010.07.002
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https://discoverbibIog:Wordpress.com/ZO16/11/08/introduction—for—etl/
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Clinical Data Repository
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Nephrology Use Case (AKI) Institut
e ) Glomerular filtration rate (GFR)
Medical e Blood urea nitrogen (BUN)
deyiees Cystatin C
Creatinine (Cr) e
HL7/LOINC/POCTA-1 Other parameters? Care teams
Communication Server I . . 6 .
Laboratory (e.g. Cloverleaf) Predictive analytics engine &0
Information .,
System (LIS) %
o Clinical Data L
4 Repository
Acute patients (renal) Patient
Management . e L
System Patient base data , Notification system
Patient history Validated , o
Vital parameters (PDMS) Mgchlne- Risk stlratlflcajclon o )
T Laboratory findings learning models Severity scoring Predls:t!ve Modelling
Information Medications taken Early warning for Clinical
(deszrsttrﬁ?nts) Therapy administered 9 Applications
: Y Symptoms (text mining) : Data Management for
Digital Health, Summer
2017
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H. F. Cruz, Irish Nephrology Society Annual Scientific Meeting (2016)



Clinical Data Repository
Nephrology Use Case (AKI): Patient Dashboard
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H. F. Cruz, Irish Nephrology Society Annual Scientific Meeting (2016)

Kidney dashboard
Patient dashboard
Age: 77 @ Acute Kidney Injury Risk
% Risk Q Patient ID
Sex* M ] 25 50 75 100
I I
Ethinicity: WHITE “ ” I

Serum creatine (mg/dL)

A

value
-
o

17 4 1.8 18 o 1.7 1.7 iy
15 0
Predictive Modelling
. for Clinical
Gromerular Filtration Rate (mL/min/1.73 m2) Applications
v A Data Management for
l \ Digital Health, Summer
- a9 49
T ¥y % g 4 32 33 9 S Ry 5, 36 39 Y4 36 36 39 39 2017

19
12 18 18

27

18




Clinical Prediction Models IF-,Ilastio
Z dalther

Occam’s Razor Institut

m Models are an abstraction of reality
m May still be useful depending on the purpose
m Start simple: robust and difficult to break

m As per William of Occam (1287): ontological parsimony

m In diagnostics, not always the case:

http://theleanwayconsulting.com/
occams-razor-in-business-problem-solving/

o Hickam's dictum
o “Patients can have as many diseases as they damn well please”
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for Clinical
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Clinical Prediction Models IF;Ilaisso
. . attner
Supervised or Unsupervised? Institut
m Supervised learning [MAcmNE I.EARNING}
o Labeled data is available f\
o Categorical or numerical responses
o Decision trees, Bayesian nets, ridge regression, etc. LEARNING LEARNING
m Unsupervised learning
= NO Iabe|Ed data {CLASSIFICATION] [ REGRESSION ] [ CLUSTERING ]
o Finding hidden patterns in data
https://de.mathworks.com/help/stats/machine-learning-in-matlab.html
o Hierarchical clustering, k-means, etc. Predictive Modelling
for Clinical
Applications

Data Management for
Digital Health, Summer
2017
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Clinical Prediction Models
Types of Models
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m Classification-based

o Binary or multi-class

o Diagnosis, risk stratification, hospital readmission

m Regression-based

o Optimal drug dosage

o Treatment plan adjustment
m Survival analysis

o Time-to-event models

o Cancer mortality

Cleophas, T.J., & Zwinderman, A. H. (2013). Machine Learning in Medicine (Vol. 53). Springer Berlin Heidelberg.

http://doi.org/10.1017/CB09781107415324.004

Data Algorithm Model
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100100111101110000001111100110100100
100001101101111101010011100001101001
111111010000110111001010111100001011
110011111101111111100100001110110110
010000110100110110000110000100010000
010101110011001111011001110100010111
001000010101100101000001000010011110
011101001111110010111010101010111100
100010000101100010101101010111000101
010010000100101011110011100001010000
010110000010011101010010101110110001
011011111010111100010100010100010000
011010011011011010001000101111001101
000101000001100110001100100010010110

100101010100010011100101010101111101

http://phdp.github.io/posts/2013-07-05-dtl.html
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Clinical Prediction Models Hasso
Establishing a CPM: Preparation and Dataset Selection i hlattner

m Step 1: Preparation

o What is the target outcome?

o What is the target patient? Eva;unadt on Preparation

. Model
o Is the data needed available? Generation

o What is the target user?

m Step 2: Dataset selection

Data
Selection

o Is the data representative?

Variable

Handling Predictive Modelling

for Clinical
Applications

o What is the validation strategy?

Data Management for
Digital Health, Summer
2017
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Lee, Y.-H, Bang, H., & Kim, D. ]. (2016). How to Establish Clinical Prediction Models. Endocrinology and Metabolism, 31(1), 38.
http://doi.org/10.3803/€nM.2016.31.1.38



Clinical Prediction Models Hasso
Establishing a CPM: Preparation and Dataset Selection i hlattner

m Step 1: Preparation

o What is the target outcome?

Evaluation

o What is the target patient? and Preparation

o What is the target user? w /
m Step 2: Dataset selection
Model Data
o Is the data needed available? Generation Selection

o Is the data representative?

Variable

o What is the validation strategy? Handling

Predictive Modelling
for Clinical

Applications
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2017
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Lee, Y.-H, Bang, H., & Kim, D. ]. (2016). How to Establish Clinical Prediction Models. Endocrinology and Metabolism, 31(1), 38.
http://doi.org/10.3803/€nM.2016.31.1.38



Clinical Prediction Models Hasso
Establishing a CPM: Variable Handling [attner

m Expert judgement often necessary

m Previous significant factors should be used
. . . Evaluati

m Avoid predictors that are possible correlated Vaaunadlon Preparation

: . . , Validation
m Merging categorical variables should be considered \ /
m Scale matters in continuous variables: consistency

o . _ Model Data
m Nominalization often needed for continuous variables | Generation Selection

m Consider scale transformation (e.g. log)

N EIEDLIE
m Normalization of values (e.g. from 0-1) Handling Predictive Modelling
. . for Clinical
m |dentify and handle outliers Applications

Data Management for
Digital Health, Summer
2017
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Lee, Y.-H, Bang, H., & Kim, D. ]. (2016). How to Establish Clinical Prediction Models. Endocrinology and Metabolism, 31(1), 38.
http://doi.org/10.3803/€nM.2016.31.1.38



Clinical Prediction Models
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Establishing a CPM: Missing Data Plattner
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m Leaving out the missing ones: complete case analysis
m Single imputation x multiple imputation
o - " Evaluation
o Using “other” or “unknown and Preparation
. . Validation
o Averaging occurances, median or mean \ /
m MICE (Multiple Imputation using Chained Equations)
' o _ Model Data
m Regression model from the existing variables Generation Selection
VELED](S o )
Handling Predictive Modelling
for Clinical
Applications
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Wells, B. ], Chagin, K. M., Nowacki, A. S., & Kattan, M. W. (2013). Strategies for handling missing data in electronic health record derived
data. EGEMS (Washington, DC), 1(3), 1035. http://doi.org/10.13063/2327-9214.1035



Clinical Prediction Models Hasso
Establishing a CPM: Model Generation [attner

m Selecting the proper algorithm

m Performing feature selection
- . luati
o Backward elimination Evaaunadt'on Preparation
. . Validation

o Stepwise selection \ /

m Trade-offs between goodness of fit and complexity
_ ‘ o Model Data
o Akeike Information Criterion Generation Selection

o Bayes Information Criterion

Variable

m Perform parameter tuning Handling

Predictive Modelling
for Clinical

o Optimization of hyperparameters Applications
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2017
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Lee, Y.-H, Bang, H., & Kim, D. ]. (2016). How to Establish Clinical Prediction Models. Endocrinology and Metabolism, 31(1), 38.
http://doi.org/10.3803/€nM.2016.31.1.38



Clinical Prediction Models

Establishing a CPM: Evaluation and Validation
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m Internal validation

o Cross-validation

o Bootstrapping
m External validation

o Using a different data source

o Ensure transportability and generalizability
m Measures of performance

o ROC Curve

o Re, p-values

m True positive rate (TPR) / true negative rate

Evaluation
and
Validation

Model
Generation

Preparation

Variable
Handling

/

Data
Selection

Predictive Modelling
for Clinical
Applications

Data Management for
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2017
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Clinical Prediction Models
Establishing a CPM: Measures of Performance
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Measure

Sensitivity and specificity
Discrimination (ROC/AUC)
Predictive values: positive, negative Evaluation
Likelihood ratio: p(?5|t|ve, n.egatlve Valiadr;%ion
Accuracy: Youden index, Brier score

Number needed to treat or screen

Calibration: Calibration plot, Hosmer-Lemeshow test Model

R2 statistical significance: p-value (e.g. likelihood ratio test) Generation
Magnitude of association, e.g., B coefficients, odds ratio
Model quality: Akeike IC/ Bayes IC

Net reclassification index and integrated discrimination improvement
Net benefit
Cost-effectiveness

Measures of model performance (Lee 2016)

Lee, Y.-H, Bang, H., & Kim, D. ]. (2016). How to Establish Clinical Prediction Models. Endocrinology and Metabolism, 31(1), 38.
http://doi.org/10.3803/€nM.2016.31.1.38

Preparation

Variable
Handling

/

Data
Selection
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What to Take Home?
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m There is lots of potential for health care analytics
m Clinical Decision Support Systems offer a way to tap into that
m Step-by-step process to establishing clinical prediction models
o Preparation
o Data selection
o Model generation
o Evaluation and validation
Predictive Modelling

for Clinical
Applications

Data Management for
Digital Health, Summer
2017
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To Know More

Eta S. Berner £ditor

Clinical Decision
Support Systems

Theory and Practice

Szmmi de on

HEALTH INFORMATICS SERIES

Ton J. Cleophas - Aeilko H. Zwinderman

Machine
Learning in

Medicine -
a Complete
Overview

@ Springer
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I ————————————————————————————————————
What's Coming Next?
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m Applying the step-by-step process with an example and tool (Rapid Miner)

m Instructions for the exercise
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