

Where are we?

Real-world Use Cases

Data Management F & Foundations

Predictive Modelling for Clinical Applications

Where are we?

Real-world Use Cases

Predictive Modelling for Clinical Applications

Recap Use Case Nephrology

- The urinary system
- How the kidneys work
- Kidney diseases
- Bayesian networks for AKI
- Machine learning in Nephrology

https://edc2.healthtap.com/ht-staging/user_answer/ reference_image/3694/large/Kidney.jpeg

Ureter

Bladder Neck

Urettra

https://ceufast.com/course/ urinary-tract-infections-the-unappreciated-giant

Architecture components of CDSS (Kola. n.d.)

http://sunlightpharmacy.com/wp-content/uploads/2017/03/CKD.jpg

Predictive Modelling for Clinical Applications

Data Management for Digital Health, Summer 2017

4

Agenda

- Predictive analytics in healthcare
- Clinical Decision Support Systems (CDSS)
- Clinical Data Repository (CDR)
- Establishing Clinical Prediction Models

Predictive Modelling for Clinical Applications

Predictive Analytics in Healthcare

https://i.ytimg.com/vi/xEemneA_qwE/maxresdefault.jpg

Predictive Modelling for Clinical Applications

Predictive Analytics in Healthcare

https://i.ytimg.com/vi/xEemneA_qwE/maxresdefault.jpg

Predictive Modelling for Clinical Applications

Data Management for Digital Health, Summer 2017

7

Predictive Analytics in Healthcare Opportunities and Challenges

Precision medicine

Risk stratification

OPPORTUNITIES

Physician and patient trust

Data standardization

Novel algorithms and tools

CHALLENGES

Predictive Modelling for Clinical Applications

Predictive Analytics in Healthcare Clinical Decision Making

- Huge variety of clinical (increasingly genomic) data
- Questions to be answered¹:
 - What disease does this patient have?
 - Should this patient be treated?
 - Should testing be done?
- Accurate, complete, relevant data
- Reliance on pattern recognition and customary practices
- Evidence-based medicine (clinical guidelines)
- Medical errors are frequent

http://www.mii.ucla.edu/images/research/areas/clinical_decision.png

Predictive Modelling for Clinical Applications

Clinical Decision Support Systems Definition

According to Kabari et al.:

"Clinical decision support systems (CDSS) provide clinicians, staff, patients, and other individuals with **knowledge** and **person-specific information**, intelligently filtered and presented at **appropriate times**, to enhance health and health care"¹

Predictive Modelling for Clinical Applications

Clinical Decision Support Systems Typical Application Scenarios

- Usual scenarios
 - Diagnostic support
 - Preventive care
 - Treatment planning / recommendations
- How can this be achieved?
 - Contextual retrieval of highly relevant information
 - Patient-specific reminders and recommendations
 - Organization and presentation of information
- Information logistics / 5 "rights"
 - □ Information, person, format, channel, time

Architecture components of CDSS (Kola, n.d.)

Predictive Modelling for Clinical Applications

Clinical Decision Support Systems Contextual Retrieval of Highly Relevant Information

https://www.visualdx.com/benefits/recognize-drug-reactions

Predictive Modelling for Clinical Applications

Clinical Decision Support Systems Patient-specific Reminders and Recommendations

Predictive Modelling for Clinical Applications

Clinical Decision Support Systems Organization and Presentation of Information

Predictive Modelling for Clinical Applications

Clinical Data Repository Heterogeneous Landscape

Predictive Modelling for Clinical Applications

Clinical Data Repository Challenges and opportunites

- Difficult and costly to develop a general purpose CDR
- Integration of different data sources is a daunting task
- Data inconsistency, redundancies are frequent
- Difficult to adapt to changing needs of users
- 360° patient view
- Explore patterns in disease progression and management
- Discover unknown patterns in the data
- Faster hypothesis testing -> Clinical studies

Predictive Modelling for Clinical Applications

Clinical Data Repository Nephrology Use Case (AKI)

Clinical Data Repository Nephrology Use Case (AKI): Patient Dashboard

Predictive Modelling for Clinical Applications

Clinical Prediction Models Occam's Razor

- Models are an abstraction of reality
- May still be useful depending on the purpose
- Start simple: robust and difficult to break
- As per William of Occam (1287): ontological parsimony
- In diagnostics, not always the case:
 - Hickam's dictum
 - "Patients can have as many diseases as they damn well please"

http://theleanwayconsulting.com/occams-razor-in-business-problem-solving/

Predictive Modelling for Clinical Applications

Clinical Prediction Models Supervised or Unsupervised?

- Supervised learning
 - □ Labeled data is available
 - Categorical or numerical responses
 - □ Decision trees, Bayesian nets, ridge regression, etc.
- Unsupervised learning
 - No labeled data
 - Finding hidden patterns in data
 - ☐ Hierarchical clustering, k-means, etc.

https://de.mathworks.com/help/stats/machine-learning-in-matlab.html

Predictive Modelling for Clinical Applications

Clinical Prediction Models Types of Models

- Classification-based
 - □ Binary or multi-class
 - Diagnosis, risk stratification, hospital readmission
- Regression-based
 - Optimal drug dosage
 - Treatment plan adjustment
- Survival analysis
 - Time-to-event models
 - Cancer mortality

http://phdp.github.io/posts/2013-07-05-dtl.html

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Preparation and Dataset Selection

- Step 1: Preparation
 - What is the target outcome?
 - What is the target patient?
 - □ What is the target user?
- Step 2: Dataset selection
 - Is the data needed available?
 - Is the data representative?
 - What is the validation strategy?

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Preparation and Dataset Selection

- Step 1: Preparation
 - What is the target outcome?
 - □ What is the target patient?
 - □ What is the target user?
- Step 2: Dataset selection
 - Is the data needed available?
 - Is the data representative?
 - What is the validation strategy?

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Variable Handling

- Expert judgement often necessary
- Previous significant factors should be used
- Avoid predictors that are possible correlated
- Merging categorical variables should be considered
- Scale matters in continuous variables: consistency
- Nominalization often needed for continuous variables
- Consider scale transformation (e.g. log)
- Normalization of values (e.g. from 0-1)
- Identify and handle outliers

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Missing Data

- Leaving out the missing ones: complete case analysis
- Single imputation x multiple imputation
 - Using "other" or "unknown"
 - Averaging occurances, median or mean
- MICE (Multiple Imputation using Chained Equations)
- Regression model from the existing variables

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Model Generation

- Selecting the proper algorithm
- Performing feature selection
 - Backward elimination
 - Stepwise selection
- Trade-offs between goodness of fit and complexity
 - Akeike Information Criterion
 - Bayes Information Criterion
- Perform parameter tuning
 - Optimization of hyperparameters

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Evaluation and Validation

- Internal validation
 - □ Cross-validation
 - Bootstrapping
- External validation
 - Using a different data source
 - Ensure transportability and generalizability
- Measures of performance
 - ROC Curve
 - \square R², p-values
- True positive rate (TPR) / true negative rate

Predictive Modelling for Clinical Applications

Clinical Prediction Models Establishing a CPM: Measures of Performance

Measure

Sensitivity and specificity

Discrimination (ROC/AUC)

Predictive values: positive, negative

Likelihood ratio: positive, negative

Accuracy: Youden index, Brier score

Number needed to treat or screen

Calibration: Calibration plot, Hosmer-Lemeshow test

R² statistical significance: p-value (e.g. likelihood ratio test)

Magnitude of association, e.g., β coefficients, odds ratio

Model quality: Akeike IC/ Bayes IC

Net reclassification index and integrated discrimination improvement

Net benefit

Cost-effectiveness

Measures of model performance (Lee 2016)

Predictive Modelling for Clinical Applications

What to Take Home?

- There is lots of potential for health care analytics
- Clinical Decision Support Systems offer a way to tap into that
- Step-by-step process to establishing clinical prediction models
 - Preparation
 - Data selection
 - Model generation
 - Evaluation and validation

Predictive Modelling for Clinical Applications

To Know More

Predictive Modelling for Clinical Applications

What's Coming Next?

- Applying the step-by-step process with an example and tool (Rapid Miner)
- Instructions for the exercise

Predictive Modelling for Clinical Applications