

Exercise II

Real-world Use Cases

Data Management R & Foundations

Walk-through Exercise II

Exercise II Topics

- Nephrology fundamentals
- Clinical Decision Support Systems
- Clinical Data Repository
- Clinical Prediction Models

Building a CPM with RapidMiner

https://edc2.healthtap.com/ht-staging/user_answer/ reference_image/3694/large/Kidney.jpeg

Architecture components of CDSS (Kola, n.d.)

Lee, Y.-H., Bang, H., & Kim, D. J. (2016)

Walk-through Exercise II

Exercise II Key Stats

20 Questions 35 Points 32 Students 32 Passed Average score 28.91 / 83%

Average time 105min

Walk-through Exercise II

Exercise II Key Stats

Walk-through Exercise II

Q2. What are possible reasons for acute kidney disease at the renal level? Please choose all that apply:

- Physical damage to the kidneys
- Blockage in the urethra
- Inflammation of the glomeruli, i.e. glomerulitis
- Bladder cancer

Walk-through Exercise II

Kidney Disease(s) Acute Kidney Injury (AKI)

- Sudden and severe drop of renal function
- Increased levels of urea and creatinine
- May or may not be reversible
- Leads to poor patient outcomes
- Affects between 7 and 18% of hospital patients¹
- Etiology
 - □ Pre-renal
 - □ Renal
 - Post-renal

Q6. With respect to a Clinical Data Repository (CDR) and its implementation, please choose all correct alternatives:

- The integration of heterogenous data sources into a CDR is often timeconsuming, e.g. as it requires the combination and harmonization of different data formats.
- CDRs are planned on top of existing distributed clinical data sources to harmonize data formats and improve data quality.
- Medical researchers usually have clear requirements for CDR that remain stable over time.
- Extract Transform Load (ETL) methods known from business warehouses cannot be used in a clinical context due to privacy regulations.

Walk-through Exercise II

ETL can also be used in a medical context

https://wiki.transmartfoundation.org/display/transmartwiki/5+Clinical+Data

Walk-through Exercise II

Privacy issues concerning medical data (and others)

- EU General Data Protection Regulation
- Unification of privacy regulations in Europe
- Cross-border health research stands to be facilited
- GDPR comes into force in mid 2018
- Secondary use of medical data
- Little impact on biomedical data research

EU General Data Protection Regulation

Walk-through Exercise II

Q11. A critical step in the development of a CPM is its validation. Please choose all alternatives that apply:

- A ROC curve is an analysis instrument suitable for comparing the performance of different regression models with each other.
- In the absence of external validation data sets, performance can be measured by cross-validation using subsets of the training data.
- A model presenting a ROC AUC = 0.5 is no better than using a random predictor, i.e. dicing.
- A complex model is to be preferred over a simpler model since the former usually presents higher precision than the latter.

Walk-through Exercise II

Q15. A new biomarker-based test to diagnose glomerulitis can correctly classify 80% of sick patients...

- The test presents an accuracy of 0.8 and precision of 0.4.
- The test has a recall of 80% and a precision of 40%.
- The test has a higher specificity than sensitivity.
- Specificity and true negative rate of the test is 70%.

Walk-through Exercise II

The Biomarker-based Test for Glomerulitis

Specificity = TNR = TN / (TN + FP)
TN = 80 (all negatives)
$$-24$$
 (false positives) = 56
= 56 / (56 + 24) = 56 / 80 = 0.7

Walk-through **Exercise II**

Q17. Now, we want to examine the performance of the clinical model just created...

- The model as such performs overwhelmingly better at classifying patients as not having AKI.
- A simple split 50:50 is often not sufficient as validation strategy.
- Accuracy for AKI=no is around 99,99%
- In total, the model classified 100 surgery patients as having AKI

Walk-through Exercise II

Q17. Now, we want to examine the performance of the clinical model just created...

Walk-through Exercise II