WEEK 5

BYOD
AGENDA

- Relational Model
 - based on “Database Systems - The Complete Book” (H. Garcia-Molina, J. D. Ullman, J. Widom)
- Sprint 3
 - Operators in Opossum
- Organization
MOTIVATION FOR THE RELATIONAL MODEL

- Previously, databases tightly coupled logical and physical layers which impeded maintainability
- No conceptual idea of which operators are required
- Ted Codd proposed the *relational model* in the 1970s
 - Abstraction model using simple data structures and high-level operators
 - Implementation and physical storage is up to vendor
RELATIONAL DATABASES

- Database - organized collection of data
- Database Management System (DBMS) - the program that manages the database
- Relational database is based on relational **data model**
 1. Structure of the data
 - Physical model
 - Conceptual model
 2. Operations on the data
 - Modifications - change the database
 - Queries - retrieve information
 3. Constraints on the data
RELATIONAL MODEL – CONCEPTUAL DATA MODEL

- Data - two-dimensional table, called relation
 - Set or bag (multiset)
- Attribute - name of a column
- Schema - name of relation and set of attributes
- Tuple - row (except header) of a relation

Further concepts:
 equality, relation instance, domain/data type, NULL
RELATIONAL MODEL – OPERATIONS

- Relational algebra is the basis for how the relational model is implemented in practice
 - Theoretical foundation for relational databases and SQL

- Operations
 - Take one or more relations as input(s) and output new relation
 - Can be chained to form more complex queries

- Classes of traditional operations:
 - Operations that remove parts of a relation: selection, and projection
 - Operations that combine tuples of two relations: cartesian product, and join
 - Renaming: relations and attributes
 - Set operations: union, intersection, and difference
RELATIONAL MODEL - OPERATIONS THAT REMOVE PARTS OF A RELATION

- Projection of R produces a new relation with a subset of R’s columns
 - In the relational algebra of sets, duplicate tuples are eliminated
- Selections of R produces a new relation with a subset of R’s tuples (those that satisfy a condition C)
RELATIONAL MODEL – OPERATIONS THAT COMBINE TUPLES OF TWO RELATIONS

- Cartesian product ((cross-)product) of R and S is the set of pairs formed by choosing the first element to be any element of R and the second any element of S
 - The schema of the new relation is the union of schemas for R and S (Exception: R and S have attribute A in common -> use new name R.A and S.A)
- Join of R and S pairs tuples that match in some way
 - **Dangling tuple**: tuple with no match
 - Natural join: match in common attributes of R and S
 - Theta join: match based on arbitrary condition C
 - Product of R and S, filtered by condition C
 - Schema of new relation: see cartesian product
- Semi join of R and S is the set of tuples in R that match the join condition
RELATIONAL MODEL - SET OPERATIONS

- Union of R and S is the set of elements that are in R or S or both
- Intersection of R and S is the set of elements that are in both R and S
- Difference of R and S is the set of that are in R but not in S
 - R - S is different from S - R

- Conditions for R and S:
 - R and S must have schemas with identical attributes and domains
RELATIONAL MODEL – MINIMAL RELATIONAL ALGEBRA?

- Union, intersection, difference, projection, selection, cartesian product, natural join, theta join, semi join, renaming
RELATIONAL MODEL - MINIMAL RELATIONAL ALGEBRA

- Union, intersection, difference, projection, selection, cartesian product, natural join, theta join, semi join, renaming
RELATIONAL MODEL – WHAT IS MISSING

- Bag semantic (+ duplicate elimination)
- Aggregation (and grouping)
- Sort
- Extended projection
- Outer join
RELATIONAL MODEL - BAG SEMANTIC

- Bags are multi sets (allow duplicates)
 - Redefinition of set operations necessary
- Some relational operations are more efficient with the bag model (without duplicate elimination)
 - Union
 - Projection
- Duplicate-elimination operator turns bag into set by eliminating all but one copy of each tuple
RELATIONAL MODEL - AGGREGATION

- Aggregations summarize or “aggregate” the values in one column
 - Examples: SUM, AVG, MIN, MAX, COUNT
- Groupings allow aggregations of tuple groups that correspond to the value of one or multiple columns
RELATIONAL MODEL - SORT

- Turns unordered container, e.g., set, bag, into an ordered one, e.g., list

- Only useful as last operator of a relational query (and its logical query plan), because following operators turn list into set or bag

- Of importance for physical query plans (an operator implementation may require sorted inputs)
Besides renamings, extended projections allow arbitrary expressions

- Constants
- Arithmetic operators
- String operators
RELATIONAL MODEL - OUTER JOIN

- Outer join is the union of the natural join and all dangling tuples from R and S; dangling tuples of R and S must be padded with NULLs for missing attributes
 - Full, left, and right outer join
 - Theta join versions of outer join operate analogous
 - Inner join is a synonym of “normal” join
SQL – THE DATABASE LANGUAGE

- Structured Query Language
 - Express queries of relational algebra (declaratively)
 - Statements for modifying the database
 - Declaring the database schema
 - Further concepts: constraints, views, indexes, …
OPOSSUM’S OPERATOR CONCEPT

- Opossum implements the relational algebra with operators
 - Queries are formulated as graphs by chaining operators
 - Usually, the first operator is the GetTable operator
 - Each operator takes up to two operators as input
 - After its execution, an operator’s result table is set
- The hard part
 - We have to deal with multiple table representations
 - While doing that, we have to keep an eye on efficiency
ORGANISATION

- Deadline Sprint 3
 - 3 December 2017
- Instructions for Code Review of Sprint 2 will follow
- Next Week
 - Sprint 2 Feedback
 - NULL Values
 - Virtual Method Call Overhead
THAT’S IT.