Data-Driven Demand Learning and Dynamic Pricing Strategies in Competitive Markets

Customer Behavior

Rainer Schlosser, Martin Boissier, Matthias Uflacker

Hasso Plattner Institute (EPIC)

April 24, 2017
Outline

• Scheduling & Participation

• Goals of today’s meeting: Customer Behavior

• How to model customer choice: 3 simple approaches

• Recommended Exercise I: Simulation of Customer Choice

• Recommended Exercise II: Dynamic Pricing Duopoly
Motivation

• Big picture: Modelling dynamic pricing competition

• Separable components: Customers, Strategies & Demand Learning

• How to describe Customer Behavior?

• We look for a general model which is simple yet reasonable

• How do you decide?
Example: Buying Books on Amazon

A Course in In-Memory Data Management: The Inner Mechanics of In-Memory Databases (Gebundene Ausgabe)

from Hasso Plattner (Author)

Schreiben Sie die erste Bewertung

<table>
<thead>
<tr>
<th>Preis + Versand (inkl. USt)</th>
<th>Zustand</th>
<th>Verkäufer-Information</th>
<th>Lieferung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 44.90</td>
<td>Gebraucht - Akzeptabel</td>
<td>ialvamani ✪ 100% positiv. (4 alle Bewertungen)</td>
<td>Ankunft zwischen April 26 - Mai 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkäuferinformationen, Impressum, AGB, Widerrufsrecht.</td>
<td>Versandtarife</td>
</tr>
<tr>
<td>EUR 45.00</td>
<td>Gebraucht - Sehr gut</td>
<td>lange_und_springer антиквариат ✪ 98% positiv in den letzten 12 Monaten. (28.584 Bewertungen insgesamt)</td>
<td>Ankunft zwischen April 27 - Mai 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkäuferinformationen, Impressum, AGB, Widerrufsrecht.</td>
<td>Versand aus Deutschland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versandtarife</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkäuferinformationen, Impressum, AGB, Widerrufsrecht.</td>
<td>Vorcondititon</td>
</tr>
<tr>
<td>EUR 79.56</td>
<td>Gebraucht - Sehr gut</td>
<td>Herb Tandree Philosophy Books ✪ 90% positiv in den letzten 12 Monaten. (738)</td>
<td>Ankunft zwischen Mai 2-6.</td>
</tr>
</tbody>
</table>

Data-Driven Demand Learning and Dynamic Pricing Strategies – Customer Behavior
Customer Choice?

<table>
<thead>
<tr>
<th>seller</th>
<th>price</th>
<th>quality</th>
<th>rating</th>
<th>feedback</th>
<th>shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>p_k</td>
<td>q_k</td>
<td>r_k</td>
<td>f_k</td>
<td>c_k</td>
</tr>
<tr>
<td>1</td>
<td>44.90</td>
<td>akzeptabel</td>
<td>100%</td>
<td>4</td>
<td>5 Tage</td>
</tr>
<tr>
<td>2</td>
<td>45.00</td>
<td>sehr gut</td>
<td>98%</td>
<td>28,584</td>
<td>6 Tage</td>
</tr>
<tr>
<td>3</td>
<td>65.60</td>
<td>wie neu</td>
<td>89%</td>
<td>439</td>
<td>11 Tage</td>
</tr>
<tr>
<td>4</td>
<td>79.56</td>
<td>sehr gut</td>
<td>90%</td>
<td>338</td>
<td>10 Tage</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>
Goals of Today’s Meeting

• Task: Description of Customer Behavior

• Assume: Multiple product features/dimensions (price, quality, etc.)

A list of competitors’ offers, i.e., a market situation \(\vec{s} = (\vec{p}, \vec{q},...) \)

Stream of interested customers (heterogeneous)

• Goal: Quantify the probability \(P(k, \vec{s}) \) that an interested customer chooses the offer \(k, k=1,...,K \) in a given market situation \(\vec{s} \)
How to Model Customer Choice?

- Any ideas?

- Approach I: Always choose the cheapest offer

- Approach II: Use distribution of sales and price rank

- Approach III: Use a randomized scoring function

- Other: Combinations, data-driven, etc.
Approach I: Cheapest Offer

• Idea: An interested customer always chooses the cheapest offer

• Formula for \(P(k, \bar{s}) \), \(k = 1, ..., K \)?

• Answer:

\[
P(k, \bar{s}) = P(k, \bar{p}, ...) = \begin{cases}
1 & , k = 1, ..., K : p_k = \min_{i=1,\ldots,K} p_i \\
0 & , k = 1, ..., K : p_k > \min_{i=1,\ldots,K} p_i
\end{cases}
\]
Approach II: Sales vs. Price Rank

- Idea: Relative frequency of sales and price ranks

- Example: 1000 sales → #550 rank 1, #280 rank 2, #100 rank 3, . . .

i.e., \(H \) sales - \(h_1, h_2, h_3, \ldots \)

- Formula for \(P(k, \bar{s}) \), \(k = 1, \ldots, K \) ?

- Answer: \(P(k, \bar{s}) = P(k, \bar{p}, \ldots) = \frac{h_{\text{rank}(p_k, \bar{p})}}{\sum_{i=1, \ldots, K} h_i} \)
Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions

- C1: \[\arg \min_{k=1,...,K} \left\{ p_k - 0.1 \cdot q_k - 0.01 \cdot r_k - 0.01 \cdot f_k^{0.5} + 0.2 \cdot c_k \right\} \]

- C2: \[\arg \min_{k=1,...,K} \left\{ p_k - 0.15 \cdot q_k - 0.005 \cdot r_k - 0.03 \cdot f_k^{0.5} + 0.1 \cdot c_k \right\} \]

- C3: \[\arg \min_{k=1,...,K} \left\{ p_k - 0.2 \cdot q_k - 0.05 \cdot r_k - 0.02 \cdot f_k^{0.5} + 0.5 \cdot c_k \right\} \]

 ...

- We can model the decision of a random customer as follows:

\[\arg \min_{k=1,...,K} \left\{ p_k - U(0, 0.2) \cdot q_k - U(0, 0.1) \cdot r_k - U(0, 0.05) \cdot f_k^{0.5} + U(0.1, 0.5) \cdot c_k \right\} \]
Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions

- Formula for $P(k, \bar{s})$, $k=1,...,K$?

- Answer: $P(k, \bar{s}) = P(k, \bar{p}, \bar{q}, \bar{r}, \bar{f}, \bar{c}, ...)$

$$= P \left[k = \arg \min_{i=1,...,K} \left\{ p_i - U(0,0.2) \cdot q_i - U(0,0.1) \cdot r_i - ... \right\} \right]$$

- Note: Simulation of a customer’s choice is easy!
How to Simulate Customer Choice?

- We need: Realisations of (stochastic) buying behavior for various market situations in our models

- Approach I+II: “Inverse Verteilungsmethode for $P(k, \bar{s})$ via $U(0,1)$”

- Approach III: - simulate random scoring coefficients, e.g., $U(0, 0.05)$
 - compute scores for all K offers
 - choose the offer with the best score

- Do you think you can do this?
Recommended Exercise I – Simulate Sales Events

- Create random market situations
 with multiple sellers and multiple features

- Simulate customer’s selection/choice multiple times
 Check for plausibility

- Extension: Model/simulate an arrival process of interested customers
 Simulate whether an interested customer becomes a buyer
Recommended Exercise II – Duopoly Simulation

- Assume $K=2$ sellers. Assume only one feature: price

- Define different price reaction strategies $a(p)$, i.e.,

 if the competitor’s current price is p, we adjust our price to $a(p)$

 Admissible prices are $a(p) \in \{1, 2, \ldots, 100\}$

- Let the competitor’s response strategy be given by: $p(a) := \max(a - 1, 1)$

- We adjust our prices a at times $t = 1, 2, 3, \ldots$

 The competitor adjusts his prices p at times $t = 0.5, 1.5, 2.5, \ldots$
Recommended Exercise II – Duopoly Simulation

- In every interval \((t, t + 0.5)\), \(t = 0, 0.5, 1.0, \ldots\), a sale occurs with probability \(1 - \min(a_t, p_t)/100\). With probability \(\min(a_t, p_t)/100\) no sale takes place.

- If a sale takes place the customer chooses either our offer \((k=1)\) or the competitor’s offer \((k=2)\) with probability \(P(k, \tilde{p})\) according to Approach I, where \(\tilde{p} = (p^{(1)}, p^{(2)}) = (a, p)\), i.e., \(p^{(1)} = a\) (we) and \(p^{(2)} = p\) (competitor).

- Simulate until time \(T=1000\). Start with \(a_0 = p_0 = 20\) at time \(t = 0\).

- Which strategy \(a(p)\) performs best, i.e., maximizes expected revenues?
Overview

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 April 24/25</td>
<td>Customer Behavior</td>
</tr>
<tr>
<td>3 May 1/2</td>
<td>Demand Estimation</td>
</tr>
<tr>
<td>4 May 8/9</td>
<td>Pricing Strategies I</td>
</tr>
<tr>
<td>5 May 15/16</td>
<td>no Meeting</td>
</tr>
<tr>
<td>6 May 22/23</td>
<td>Pricing Strategies II</td>
</tr>
<tr>
<td>7 May 29/30</td>
<td>Dynamic Pricing Challenge & Price Wars Platform</td>
</tr>
<tr>
<td>8 June 5/6</td>
<td>Workshop / Group Meetings</td>
</tr>
<tr>
<td>9 June 12/13</td>
<td>Presentations (First Results)</td>
</tr>
<tr>
<td>10 June 19/20</td>
<td>Workshop / Group Meetings</td>
</tr>
<tr>
<td>11 June 26/27</td>
<td>no Meeting</td>
</tr>
<tr>
<td>12 July 3/4</td>
<td>Workshop / Group Meetings</td>
</tr>
<tr>
<td>13 July 10/11</td>
<td>Workshop / Group Meetings</td>
</tr>
<tr>
<td>14 July 17/18</td>
<td>Presentations (Final Results), Feedback, Documentation (Aug/Sep)</td>
</tr>
</tbody>
</table>