Data-Driven Demand Learning and Dynamic Pricing Strategies in Competitive Markets

Customer Behavior

Rainer Schlosser, Martin Boissier, Matthias Uflacker

Hasso Plattner Institute (EPIC)
April 24, 2017

Outline

- \quad Scheduling \& Participation
- Goals of today's meeting: Customer Behavior
- How to model customer choice: 3 simple approaches
- Recommended Exercise I: Simulation of Customer Choice
- Recommended Exercise II: Dynamic Pricing Duopoly

Motivation

- Big picture: Modelling dynamic pricing competition
- Separable components: Customers, Strategies \& Demand Learning
- How to describe Customer Behavior?
- We look for a general model which is simple yet reasonable
- How do you decide?

Example：Buying Books on Amazon

A Course in In－Memory Data Management：The Inner Mechanics of In－Memory Databases（Gebundene Ausgabe） von Hasso Plattner（Autor）
Schreiben Sie die erste Bewertung

Optimieren durch Alles löschen

Versand
Vrime
Versandkostenfrei

Zustand

\checkmark Gebraucht
Wie neu
σ Sehr gut
\checkmark Gut －Akzeptabel

Preis＋Versand（inkl．USt）

EUR 44，90

＋EUR 3，00 Versandkosten

EUR 45，00

＋EUR 3，00 Versandkosten

EUR 65，60
＋EUR 3，00 Versandkosten

EUR 79，56
＋EUR 3，00 Versandkosten

Zustand

Gebraucht－Akzeptabel

Einband intakt und in sehr gutem Zustand，einige Seiten haben kle．．．» Weitere Informationen

Gebraucht－Sehr gut

Versand aus Deutschland／We dispatch from Germany via Air Mail．．．．» Weitere Informationen

Gebraucht－Wie neu

New，Excellent customer service．Satisfaction guaranteed！！

Gebraucht－Sehr gut

Publisher：Springer＜br＞Date of Publication： 2014＜br＞Binding：hard．．．» Weitere Informationen

Verkäufer－Information

ialvamani

 Bewertungen）
Verkäuferinformationen，Impressum AGB，Widerrufsrecht．
lange＿und＿springer＿antiq uariat
जिकित 98% positiv in den letzten 12 Monaten．（28．584 Bewertungen insgesamt）
Verkäuferinformationen，Impressum， AGB．Widerrufsrecht．

Totalbookstore
领领领结 89% positiv in den letzten 12 Monaten．（439 Bewertungen insgesamt）
Verkäuferinformationen，Impressum， AGB，Widerrufsrecht．

Herb Tandree Philosophy Books
 latztan 10 Mnnaten（ 338

Lieferung
－Ankunft zwischen April 26 －Mai 2.
－Versandtarife
－Ankunft zwischen April 27 －Mai 2.
－Versand aus Deutschland
－Versandtarife
－Ankunft zwischen Mai 3－20．
－Versandtarife
－Ankunft zwischen Mai 2－6．
－Versand aus Vereinigtes Königreich
－Versandtarife

Customer Choice?

seller	price	quality	rating	feedback	shipping
k	p_{k}	q_{k}	r_{k}	f_{k}	c_{k}
1	$\mathbf{4 4 . 9 0}$	akzeptabel	$\mathbf{1 0 0 \%}$	4	5 Tage
2	45.00	sehr gut	98%	$\mathbf{2 8 , 5 8 4}$	6 Tage
3	65.60	wie neu	$\mathbf{8 9 \%}$	439	11 Tage
4	79.56	sehr gut	90%	338	10 Tage
\ldots					
K			\ldots		

Goals of Today's Meeting

- Task: Description of Customer Behavior
- Assume: Multiple product features/dimensions (price, quality, etc.)

A list of competitors' offers, i.e., a market situation $\vec{s}=(\vec{p}, \vec{q}, \ldots)$

Stream of interested customers (heterogeneous)

- Goal: Quantify the probability $P(k, \vec{s})$ that an interested customer chooses the offer $\boldsymbol{k}, k=1, \ldots, K$ in a given market situation \vec{s}

How to Model Customer Choice?

- Any ideas?
- Approach I: Always choose the cheapest offer
- Approach II: Use distribution of sales and price rank
- Approach III: Use a randomized scoring function
- Other: Combinations, data-driven, etc.

Approach I: Cheapest Offer

- Idea: An interested customer always chooses the cheapest offer
- Formula for $P(k, \vec{s}), k=1, \ldots, K$?
- Answer:

$$
P(k, \vec{s})=P(k, \vec{p}, \ldots)=\left\{\begin{array}{cl}
\frac{1}{\left|\left\{k=1, \ldots, K: p_{k}=\min _{i=1, \ldots K} p_{i}\right\}\right|} & , k=1, \ldots, K: p_{k}=\min _{i=1, \ldots K} p_{i} \\
0 & , k=1, \ldots, K: p_{k}>\min _{i=1, \ldots K} p_{i}
\end{array}\right.
$$

Approach II: Sales vs. Price Rank

- Idea: Relative frequency of sales and price ranks
- Example: 1000 sales \rightarrow \#550 rank 1, \#280 rank 2, \#100 rank 3, ...

$$
\text { i.e., } H \text { sales - } h_{1}, h_{2}, h_{3}, \ldots
$$

- Formula for $P(k, \vec{s}), k=1, \ldots, K$?
- Answer: $P(k, \vec{s})=P(k, \vec{p}, \ldots)=\frac{h_{\operatorname{rank} k\left(p_{k}, \vec{p}\right)}}{\sum_{i=1, \ldots, K} h_{i}}$

Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions
- C1: $\quad \arg \min _{k=1, \ldots, K}\left\{p_{k}-0.1 \cdot q_{k}-0.01 \cdot r_{k}-0.01 \cdot f_{k}^{0.5}+0.2 \cdot c_{k}\right\}$
- C2: $\quad \arg \min _{k=1, \ldots, K}\left\{p_{k}-0.15 \cdot q_{k}-0.005 \cdot r_{k}-0.03 \cdot f_{k}^{0.5}+0.1 \cdot c_{k}\right\}$
- C3: $\arg \min _{k=1, \ldots K}\left\{p_{k}-0.2 \cdot q_{k}-0.05 \cdot r_{k}-0.02 \cdot f_{k}^{0.5}+0.5 \cdot c_{k}\right\}$
- We can model the decision of a random customer as follows:
$\arg \min _{k=1, \ldots, K}\left\{p_{k}-U(0,0.2) \cdot q_{k}-U(0,0.1) \cdot r_{k}-U(0,0.05) \cdot f_{k}^{0.5}+U(0.1,0.5) \cdot c_{k}\right\}$

Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions
- Formula for $P(k, \vec{s}), k=1, \ldots, K$?
- Answer: $\quad P(k, \vec{s})=P(k, \vec{p}, \vec{q}, \vec{r}, \vec{f}, \vec{c}, \ldots)$

$$
=P\left[k=\arg \min _{i=1, \ldots, K}\left\{p_{i}-U(0,0.2) \cdot q_{i}-U(0,0.1) \cdot r_{i}-\ldots\right\}\right]
$$

- Note: Simulation of a customer's choice is easy!

How to Simulate Customer Choice?

- We need: Realisations of (stochastic) buying behavior for various market situations in our models
- Approach I+II: "Inverse Verteilungsmethode for $P(k, \vec{s})$ via $\mathrm{U}(0,1)$ "
- Approach III: - simulate random scoring coefficients, e.g., $\mathrm{U}(0,0.05)$
- compute scores for all K offers
- choose the offer with the best score
- Do you think you can do this?

Recommended Exercise I - Simulate Sales Events

- Create random market situations
with multiple sellers and multiple features
- Simulate customer's selection/choice multiple times

Check for plausibility

- Extension: Model/simulate an arrival process of interested customers Simulate whether an interested customer becomes a buyer

Recommended Exercise II - Duopoly Simulation

- Assume $K=2$ sellers. Assume only one feature: price
- Define different price reaction strategies $a(p)$, i.e., if the competitor's current price is p, we adjust our price to $a(p)$ Admissible prices are $a(p) \in\{1,2, \ldots, 100\}$
- Let the competitor's response strategy be given by: $p(a):=\max (a-1,1)$
- We adjust our prices a at times $t=1,2,3, \ldots$

The competitor adjusts his prices p at times $t=0.5,1.5,2.5, \ldots$

Recommended Exercise II - Duopoly Simulation

- In every interval $(t, t+0.5), t=0,0.5,1.0, \ldots$, a sale occurs with probability $1-\min \left(a_{t}, p_{t}\right) / 100$. With probability $\min \left(a_{t}, p_{t}\right) / 100$ no sale takes place
- If a sale takes place the customer chooses either our offer $(k=1)$ or the competitor's offer ($k=2$) with probability $P(k, \vec{p})$ according to Approach I, where $\vec{p}=\left(p^{(1)}, p^{(2)}\right)=(a, p)$, i.e., $p^{(1)}=a$ (we) and $p^{(2)}=p$ (competitor)
- Simulate until time $T=1000$. Start with $a_{0}=p_{0}=20$ at time $t=0$
- Which strategy $a(p)$ performs best, i.e., maximizes expected revenues?

Overview

2 April 24/25 Customer Behavior
3 May 1/2 Demand Estimation
4 May 8/9 Pricing Strategies I
5 May 15/16 no Meeting
6 May 22/23 Pricing Strategies II
7 May 29/30 Dynamic Pricing Challenge \& Price Wars Platform
8 June 5/6 Workshop / Group Meetings
9 June 12/13 Presentations (First Results)
10 June 19/20 Workshop / Group Meetings
11 June 26/27 no Meeting
12 July 3/4 Workshop / Group Meetings
13 July 10/11 Workshop / Group Meetings
14 July 17/18 Presentations (Final Results), Feedback, Documentation (Aug/Sep)

