Data-Driven Demand Learning and Dynamic Pricing Strategies in Competitive Markets

Customer Behavior

Rainer Schlosser, Martin Boissier, Matthias Uflacker

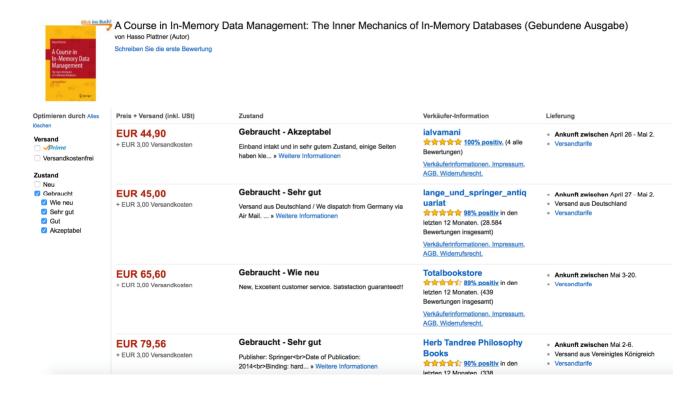
Hasso Plattner Institute (EPIC)

April 24, 2017

HPI

Outline

- Scheduling & Participation
- Goals of today's meeting: Customer Behavior
- How to model customer choice: 3 simple approaches
- Recommended Exercise I: Simulation of Customer Choice
- Recommended Exercise II: Dynamic Pricing Duopoly


HPI

Motivation

- Big picture: Modelling dynamic pricing competition
- Separable components: Customers, Strategies & Demand Learning
- How to describe Customer Behavior?
- We look for a general model which is simple yet reasonable
- How do you decide?

Example: Buying Books on Amazon

Customer Choice?

seller	price	quality	rating	feedback	shipping
k	$p_{\scriptscriptstyle k}$	$q_{\scriptscriptstyle k}$	r_k	f_{k}	C_k
1	44.90	akzeptabel	100%	4	5 Tage
2	45.00	sehr gut	98%	28,584	6 Tage
3	65.60	wie neu	89%	439	11 Tage
4	79.56	sehr gut	90%	338	10 Tage
K					

Goals of Today's Meeting

• Task: Description of Customer Behavior

• Assume: Multiple product features/dimensions (price, quality, etc.)

A list of competitors' offers, i.e., a market situation $\vec{s} = (\vec{p}, \vec{q}, ...)$

Stream of interested customers (heterogeneous)

• Goal: Quantify the probability $P(k, \vec{s})$ that an interested customer chooses the offer k, k=1,...,K in a given market situation \vec{s}

How to Model Customer Choice?

• Any ideas?

- Approach I: Always choose the cheapest offer
- Approach II: Use distribution of sales and price rank
- Approach III: Use a randomized scoring function

• Other: Combinations, data-driven, etc.

Approach I: Cheapest Offer

- Idea: An interested customer always chooses the cheapest offer
- Formula for $P(k, \vec{s})$, k = 1,...,K?
- Answer:

$$P(k, \vec{s}) = P(k, \vec{p}, ...) = \begin{cases} \frac{1}{\left| \left\{ k = 1, ..., K : p_k = \min_{i=1, ..., K} p_i \right\} \right|}, k = 1, ..., K : p_k = \min_{i=1, ..., K} p_i \end{cases}$$

$$0, k = 1, ..., K : p_k = \min_{i=1, ..., K} p_i$$

Approach II: Sales vs. Price Rank

- Idea: Relative frequency of sales and price ranks
- Example: 1000 sales \rightarrow #550 rank 1, #280 rank 2, #100 rank 3, . . . i.e., H sales h_1 , h_2 , h_3 , . . .
- Formula for $P(k, \vec{s})$, k = 1,...,K?
- Answer: $P(k, \vec{s}) = P(k, \vec{p}, ...) = \frac{h_{rank(p_k, \vec{p})}}{\sum_{i=1,...,K} h_i}$

Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions
- C1: $\arg\min_{k=1,\dots,K} \left\{ p_k 0.1 \cdot q_k 0.01 \cdot r_k 0.01 \cdot f_k^{0.5} + 0.2 \cdot c_k \right\}$
- C2: $\arg\min_{k=1,\dots,K} \left\{ p_k 0.15 \cdot q_k 0.005 \cdot r_k 0.03 \cdot f_k^{0.5} + 0.1 \cdot c_k \right\}$
- C3: $\arg\min_{k=1,\dots,K} \{ p_k 0.2 \cdot q_k 0.05 \cdot r_k 0.02 \cdot f_k^{0.5} + 0.5 \cdot c_k \}$
- We can model the decision of a random customer as follows:

$$\arg\min_{k=1,\dots,K} \left\{ p_k - U(0,0.2) \cdot q_k - U(0,0.1) \cdot r_k - U(0,0.05) \cdot f_k^{0.5} + U(0.1,0.5) \cdot c_k \right\}$$

Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions
- Formula for $P(k, \vec{s})$, k = 1,...,K?
- Answer: $P(k, \vec{s}) = P(k, \vec{p}, \vec{q}, \vec{r}, \vec{f}, \vec{c}, ...)$ = $P\left[k = \arg\min_{i=1,...,K} \left\{p_i - U(0, 0.2) \cdot q_i - U(0, 0.1) \cdot r_i - ...\right\}\right]$
- Note: Simulation of a customer's choice is easy!

How to Simulate Customer Choice?

• We need: Realisations of (stochastic) buying behavior

for various market situations in our models

• Approach I+II: "Inverse Verteilungsmethode for $P(k, \vec{s})$ via U(0,1)"

• Approach III: - simulate random scoring coefficients, e.g., U(0,0.05)

- compute scores for all *K* offers

- choose the offer with the best score

Do you think you can do this?

Recommended Exercise I – Simulate Sales Events

- Create random market situations
 with multiple sellers and multiple features
- Simulate customer's selection/choice multiple times
 Check for plausibility
- Extension: Model/simulate an arrival process of interested customers

 Simulate whether an interested customer becomes a buyer

Recommended Exercise II – Duopoly Simulation

- Assume K=2 sellers. Assume only one feature: price
- Define different price reaction strategies a(p), i.e.,
 if the competitor's current price is p, we adjust our price to a(p)
 Admissible prices are a(p) ∈ {1,2,...,100}
- Let the competitor's response strategy be given by: $p(a) = \max(a-1,1)$
- We adjust our prices a at times t = 1, 2, 3, ...The competitor adjusts his prices p at times t = 0.5, 1.5, 2.5, ...

Recommended Exercise II – Duopoly Simulation

- In every interval (t, t + 0.5), t = 0, 0.5, 1.0, ..., a sale occurs with probability $1 \min(a_t, p_t) / 100$. With probability $\min(a_t, p_t) / 100$ no sale takes place
- If a sale takes place the customer chooses either our offer (k=1) or the competitor's offer (k=2) with probability $P(k, \vec{p})$ according to Approach I, where $\vec{p} = (p^{(1)}, p^{(2)}) = (a, p)$, i.e., $p^{(1)} = a$ (we) and $p^{(2)} = p$ (competitor)
- Simulate until time T=1000. Start with $a_0 = p_0 = 20$ at time t=0
- Which strategy a(p) performs best, i.e., maximizes expected revenues?

Overview

2	Aprıl 24/25	Customer Behavior

- 3 May 1/2 Demand Estimation
- 4 May 8/9 Pricing Strategies I
- 5 May 15/16 no Meeting
- 6 May 22/23 Pricing Strategies II
- 7 May 29/30 Dynamic Pricing Challenge & Price Wars Platform
- 8 June 5/6 Workshop / Group Meetings
- 9 June 12/13 Presentations (First Results)
- 10 June 19/20 Workshop / Group Meetings
- 11 June 26/27 no Meeting
- 12 July 3/4 Workshop / Group Meetings
- 13 July 10/11 Workshop / Group Meetings
- 14 July 17/18 Presentations (Final Results), Feedback, Documentation (Aug/Sep)