Data-Driven Decision-Making In Enterprise Applications

Dynamic Pricing in Competitive Markets

Rainer Schlosser

Hasso Plattner Institute (EPIC)

May 23, 2019

Outline

- Homework: Solution
- Goals of today's meeting: Market Simulations
- How to model customer choice: First approaches
- Simulation of Customer Decisions
- Simulation of Pricing Adjustments

Motivation

- Big picture: Modelling dynamic pricing competition
- Separable components: Customers, Markets, Merchants
- How to describe Customer Behavior?
- We look for a general model which is simple yet reasonable
- How do you decide?

Example: Buying Books on Amazon

Customer Choice based on a given Market Situation

seller	price	quality	rating	feedback	shipping
k	$p_{_k}$	$q_{\scriptscriptstyle k}$	r_k	f_{k}	\mathcal{C}_k
1	44.90	akzeptabel	100%	4	5 Tage
2	45.00	sehr gut	98%	28,584	6 Tage
3	65.60	wie neu	89%	439	11 Tage
4	79.56	sehr gut	90%	338	10 Tage
K			• • •		

Goals of Today's Meeting

• Task: Understand & describe Customers' Decisions over time

• Assume: A product with multiple features (price, quality, ratings)

A list of competitors' offers (market situation)

Stream of interested customers + buying decisions

• Goal: Simulate arriving customer and their buying decision given a simulated set of competitors' offers

(1) Stream of Arriving Customer

• Any ideas?

• Simulate random delays (waiting times) between two customers

- Use, e.g., Uniform distributions or Exponential distributions
- Is this doable?

(2) Merchants' Offers & Market Situations

• Simulate offers, i.e., random numbers for prices, quality, ratings

seller	price	quality	rating	
k	$p_{_k}$	${q}_{\scriptscriptstyle k}$	r_k	
1	44.90	akzeptabel (4)	100%	
2	45.00	sehr gut (2)	98%	
3	65.60	wie neu (1)	89%	
4	79.56	sehr gut (2)	90%	
K				

(3) Customers' Decision

• Assume: A customer arrives at time t – how does he/she decide?

- Approach I: Always choose the cheapest offer
- Approach II: Use distribution of sales and price rank
- Approach III: Use (randomized) scoring functions

• Other: Combinations, data-driven, etc.

Approach I: Cheapest Offer

- Idea: An interested customer always chooses the cheapest offer
- Easy / deterministic?
- In case of identical prices use probabilities:

$$P(k, \vec{s}) = P(k, \vec{p}, ...) = \begin{cases} \frac{1}{\left| \left\{ k = 1, ..., K : p_k = \min_{i=1, ..., K} p_i \right\} \right|}, k = 1, ..., K : p_k = \min_{i=1, ..., K} p_i \end{cases}$$

$$0, k = 1, ..., K : p_k = \min_{i=1, ..., K} p_i$$

$$0, k = 1, ..., K : p_k > \min_{i=1, ..., K} p_i$$

Approach II: Sales vs. Price Rank

- Idea: Relative frequency of sales and price ranks
- Example: 100 sales \rightarrow #60 rank 1, #30 rank 2, #10 rank 3, . . . i.e., H sales $h_1 = 60$, $h_2 = 30$, $h_3 = 10$, . . .
- Simulate the buying probability $P(k, \vec{s})$ that rank k is chosen, k = 1,...,K

where
$$P(k, \vec{s}) = P(k, \vec{p}, ...) = \frac{h_{rank(p_k, \vec{p})}}{\sum_{i=1,...,K} h_i}$$

Approach III: Randomized Scoring

- Idea: Different customers use different scoring functions
- Customer Type1: $\arg\min_{k=1,...,K} \{ p_k + 0.1 \cdot q_k 0.01 \cdot r_k 0.01 \cdot f_k^{0.5} \}$
- Customer Type 2: $\arg\min_{k=1,\dots,K} \{ p_k + 0.15 \cdot q_k 0.005 \cdot r_k 0.03 \cdot f_k^{0.5} \}$
- Customer Type 3: $\arg\min_{k=1,...,K} \{ p_k + 0.2 \cdot q_k 0.05 \cdot r_k 0.02 \cdot f_k^{0.5} \}$
- We can model the decision of a random customer as follows:

$$\arg\min_{k=1,\dots,K} \left\{ p_k + U(0,0.2) \cdot q_k - U(0,0.1) \cdot r_k - U(0,0.05) \cdot f_k^{0.5} \right\}$$

How to Simulate Customer Choice?

• We need: Realisations of (stochastic) buying behavior

for various market situations in our models

• Approach I+II: "Inverse Verteilungsmethode for $P(k, \vec{s})$ via U(0,1)"

• Approach III: - simulate random scoring coefficients, e.g., U(0,0.05)

- compute scores for all *K* offers

- choose the offer with the best score

Do you think you can do this?

(4) Combination: Arriving and Buying Customers

• Assume a generated market situation

• Simulate arriving customers over time

• Simulate customers' individual decisions

• Doable?

(5) Extensions: Changing Market Situations

- (i) Entry / Exit of firms
- (ii) Price adjustments
- Simulate streams of points in time of a merchant's actions ("arrivals")
- Doable?

(6) Demand Learning

- Idea: explain the ,,dependent variable" by ,,explanatory variables"
- "Dependent variable": number of sales y (of our firm within periods)
- "Explanatory variables": price rank r price difference to best competitor's price ratings, shipping time, . . .
- Remember: Derive the β^* coefficients for every explanatory variable by linear/logistic regression
- Doable?

(7) Response Strategies

- Assume a merchant can place his/her action at time t
- Apply a rule-based price reaction strategy
 - (i) Use a random price
 - (ii) Undercut the cheapest competitor price
 - (iii) Undercut others or raise the price if prices are too cheap
 - (iii) Maximize short-term profit
- Doable?

Overview

2	April 25	Linear Programming I
3	April 29	Linear Programming II
4	May 2	Linear/Logistic Regression + Homework (3 weeks time)
5	May 16	Exercise Implementations
6	May 20	Dynamic Programming
7	May 23	Pricing in Competitive Markets
8	May 27	Project Assignments + Homework 2 (until June 13)
9	June 3	Robust Optimization
10	June 13	Workshop / Group Meetings
11	June 20	Presentations (First Results)
12/13	June 24/27	Workshop / Group Meetings
14/15	July 1/4	Workshop / Group Meetings
16	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)