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Outline 
 

• Goals of today’s meeting: Demand Estimation 

• How to estimate sales probabilities:  Simple approaches 

• Recommended Exercise: Logistic Regression 
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Customer Choice: Buying Books on Amazon 
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Customer Behavior 
 

seller price quality rating feedback shipping 

k kp  kq  kr  kf  kc  

      

1 44.90 akzeptabel 100% 4 5 Tage 

2 45.00 sehr gut 98% 28,584 6 Tage 

3 65.60 wie neu 89% 439 11 Tage 

4 79.56 sehr gut 90% 338 10 Tage 

. . .      

K   . . .   
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A Seller’s Perspective: Observable Data 
 

period sale price rank competitor’s prices  for product i (ISBN) 
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1 0 19 3 13 17 20 25  

2 0 15 2 13 17 20 25  

3 1 10 1 13 15 20 /  

4 0 10 1 13 15 20 22  

5 1 12 2 11 15 20 24  

6 0 15 3 11 14 20 24  

...         
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Goal 
 

• We have: Market data + Sales data 

• We want: Optimize prices + Maximize expected profits 

• We need: Sales probabilities for our offer prices 

• We use: Regression models, e.g, Logistic regression 
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Approach: Maximum Likelihood Estimation 
 

• Idea: (1)  Choose a model + (2)  Find the best calibration 

• Example: Coin Toss 

• Data: 010111010100010001010010001100000 

• Model: Bernoulli Experiment with success probability p 

• Calibration: Which model, i.e., which p explains our data best? 
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Our Model: Bernoulli Distribution 
 

• Random variable Y   sale occurred (1 yes, 0 no) 

 

• Success probability ( 1)P Y p= =    and   ( 0) 1P Y p= = −  

 

• Bernoulli distribution 
1( ) (1 )k kP Y k p p −= = ⋅ − ,   0,1k =  

 

• (Binomial distribution) ( ) (1 )k n k
n

P Y k p p
k

− 
= = ⋅ ⋅ − 

 
,   0,....,k n=   (n=1) 
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Likelihood Function 
 

• Bernoulli distribution  
1( ) (1 )k kP Y k p p −= = ⋅ − ,  0,1k =  

 

• Consider observed data 1( ,..., )Ny y y=
�

,  {0,1}iy ∈ ,  1,...,i N=  

 

• Probability for our data 
1

( ) (1 )i iy y

i iP Y y p p
−= = ⋅ − ,  {0,1}iy ∈  

 

• Joint probability 1 1

1

( ,..., ) ( )
N

N N i i

i

P Y y Y y P Y y
=

= = = =∏  

 (Likelihood Function) 
1

1

(1 )i i

N
y y

i

p p
−

=

= ⋅ −∏  

 

• Now, maximize the joint probability over the success probability p! 
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Maximize the Likelihood Function 
 

• 1 1max ( ,..., )N NP Y y Y y= =        i.i.d.:  independent, identically distributed 

• 
1

max ( )
N

i i
p

i

P Y y
=

=∏  

• 
1

[0,1]
1

max (1 )i i

N
y y

p
i

p p
−

∈
=

⋅ −∏  

 

Actually, we wanted to find the best p. 

 

• 
1

[0,1] 1

arg max (1 )i i

N
y y

p i

p p
−

∈ =

⋅ −∏  

 

We are interested in First Order Conditions. Hence, we do not like products! 
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Monotone Increasing Transformations 
 

•    
1

[0,1] 1

arg max (1 )i i

N
y y

p i

p p
−

∈ =

 
⋅ − 

 
∏  

 
1

[0,1] 1

arg max 5 (1 ) 17i i

N
y y

p i

p p
−

∈ =

  
= ⋅ ⋅ − +  

  
∏       ?    (linear) 

 

2

1

[0,1] 1

arg max (1 )i i

N
y y

p i

p p
−

∈ =

   
= ⋅ −  

   
∏               ??   (convex) 

 
1

[0,1] 1

arg max ln (1 )i i

N
y y

p i

p p
−

∈ =

  
= ⋅ −  

  
∏            ???  (concave) 
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Log-Likelihood Function 
 

    1 1arg max ( ,..., )N N
p

P Y y Y y= =  

 
1

[0,1] 1

arg max ln (1 )i i

N
y y

p i

p p
−

∈ =

  
= ⋅ −  

  
∏  

 ( )1

[0,1] 1
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N
y y

p i

p p
−

∈ =

 
= ⋅ − 

 
∑  

 ( ) ( )( )1

[0,1] 1

arg max ln ln (1 )i i

N
y y

p i

p p
−

∈ =

 
= + − 

 
∑  

 ( )
[0,1] 1

arg max ln( ) (1 ) ln(1 )
N

i i
p i

y p y p
∈ =

 
= ⋅ + − ⋅ − 

 
∑  
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Optimization 
 

• FOC: 
!

1 1( ,..., ) 0N NP Y y Y y
p

∂
= = =

∂  

  ( )
!

1

ln( ) (1 ) ln(1 ) 0
N

i i

i

y p y p
=

′ ′⋅ + − ⋅ − =∑  

 

• Solve for p. 

 

• 1 Variable, 1 Equation    (Unique solution 
*p ) 

 

• Result:  Our data fits to the model 
*( 1)P Y p= =    and   

*( 0) 1P Y p= = − . 
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Generalization: Demand Estimation On Amazon 
 

• Regular price adjustments  (e.g., time intervals of ca. 2 hours) 

 

• Observation of market conditions (at the time of price adjustments) 

 

 e.g., Competitors’ Prices, Quality, Rating, Shipping Time, etc. 

 

• Sales observations:  Points in time 

 

• Rare events, i.e., 0 or 1 sales between price adjustments (2 hours) 
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A Seller’s Data Set 
 

period sale price rank competitor’s prices  for product i (ISBN) 
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Estimation of Sales Probabilities 
 

• Goal: Quantify sales probabilities as function of our offer price 

 

• Idea: Sales probabilities should depend on market conditions 

 

• Approach: Maximum Likelihood 

 

 

 (1) Choose family of models:  Logistic function 

 

 (2) Define explanatory variables (based on our data) 
 

 (3) Calibrate model: Find model coefficients 
 

 (4) Result: Quantify sales probabilities for any market situation! 
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Explanatory Variables 
 

• Data:  Market situation in t:  1 1 1 1( , ,..., , ,..., , ,..., , ,..., ,...)K K K Ks t p p q p r r f f=
�

 

 

• Define explanatory variables   (What could affect decisions?): 

1( , ) : 1x a s =
�

 (Intercept) 

2 ( , ) :x a s price rank=
�

 (Rank of offer price within competitors’ prices) 

3
1,...,

( , ) : min k
k K

x a s a p
=

= −
�

 (Price difference to best competitor) 

4 ( , ) :x a s quality rank=
�

 (Rank of our product condition) 

5 ( , ) : #x a s commercials=
�

 (Number of competitors with feedback >10000) 

6 ( , ) :x a s combinations=
�

 (Number of comp. with better price + better quality) 

7 { 100 mod 10 9}( , ) : 1 ax a s ⋅ ==
�

 (Psychological Prices) 

. . . 
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One Family of Models:  Logistic Function 
 

• ( )1| ( , ) : / (1 )x xP Y x a s e eβ β′ ′= = +
� �� �� �

 

  
( )
( )

1 1 2 2

1 1 2 2

exp ( , ) ( , ) ...
(0,1)

1 exp ( , ) ( , ) ...

x a s x a s

x a s x a s

β β
β β
⋅ + ⋅ +

= ∈
+ ⋅ + ⋅ +

� �

� �  

 

• There are other families, but this is a good family 

 

• Maximum Likelihood Estimation: 

 Find best β
�

 coefficients for our data , ( , )t t ty x a s
� �

, 1,...,t N=  
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Maximize the Log-Likelihood Function 
 

• Recall:   

 1 1arg max ( ,..., )N N
p

P Y y Y y= = ( )
[0,1] 1

arg max ln( ) (1 ) ln(1 )
N

i i
p i

y p y p
∈ =

 
= ⋅ + − ⋅ − 

 
∑  

 

• Now, we have the conditional probabilities: 

 ( )1 1 1 1arg max | , , . . . , | ,N N N NP Y y a s Y y a s
β

= =
�

� �
 

 

( , ) ( , )

( , ) ( , )
, 1,..., 1

arg max ln (1 ) ln 1
1 1

i i i i

i i i i
m

x a s x a sN
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m M i
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e e
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′ ′

′ ′
∈ = =

      
= ⋅ + − ⋅ −         + +      

∑
� �� � � �

� �� � � �

ℝ
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Optimization 
 

• FOC:   
!

1 1 1 1( | , , . . . , | , ) 0N N N NP Y y a s Y y a s
β
∂

= = =
∂

� �
�  

 

( , ) ( , ) !

( , ) ( , )
1

ln (1 ) ln 1 0
1 1

i i i i

i i i i

x a s x a sN

i ix a s x a s
i m m

e e
y y

e e

β β

β ββ β

′ ′

′ ′
=

    ∂ ∂
⋅ + − ⋅ − =        ∂ ∂+ +    

∑
� �� � � �

� �� � � � , 1,...,m M=  

 

• Solve the system for 1( ,..., )Mβ β β=
�

 

 

• M Variables, M Equations    (Unique solution 
* * *( ,..., )M Mβ β β=
�

) 

 

• Result:  Our data fits to the model ( )
* *( , ) ( , )1| ( , ) : / (1 )x a s x a sP Y x a s e eβ β′ ′= = +
� �� � � �� �
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Application of the Model Obtained 
 

• Observe current market situation for a product:  s
�

 

 

• For any admissible offer prices a we can evaluate ( , )x a s
� �

 and obtain 

 

 ( )
*

*

( , )

( , )
1| ( , ) :

1

x a s

x a s

e
P Y x a s

e

β

β

′

′
= =

+

�� �

�� �

� �
 

 

• Now, we can optimize expected profits (for one time interval): 

 

 

*

*

( , )

( , )0
max ( )

1

x a s

x a sa

e
a c

e

β

β

′

′≥

  
− ⋅ 

+  

�� �

�� �  
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Prediction of Sales Probabilities 
 

 

• Example:   Competitor’s prices   

 

 

 

 

 

 

price
0 5 10 15 20

a

0.05

0.10

0.15

0.20

0 5 10 15 20
a

0.05

0.10

0.15

0.20

( )sales probability P a ( 3) ( )expected profit a P a− ⋅

( )4.26, 5.18, 5.31, 5.55, 5.86, . . .p =
�
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Summary 
 

(+) Logistic Regression is simple and robust 

 

(+) Allows for many observations N and many features M 

 

(+) Plausibility Checks & Closed Form Expressions 

 

(+/–) Definition of Customized Explanatory Variables 

 

(–) No dependencies between variables 

 

(–) Limited to binary dependent variables 
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What is a good Model? 
 

• Compare “Goodness of fit” measures 

• Logit:   AIC (low is good, trade-of between fit and number of variables M) 

 ( )
1

2 ln (1 ) ln(1 ) 2
N

i i i i

i

AIC y p y p M
=

= − ⋅ ⋅ + − ⋅ − + ⋅∑  

 Note, ip  depends on all features ix  and the optimal 
*β  coefficients. 

• Be creative:   Test different variables and find the smallest AIC value. 

  Hint:  Not quantity but quality counts! 
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Recommended Exercise – Demand Estimation 
 

• Create random market situations with multiple sellers 

• Choose a specific Buying Behavior, e.g., Approach II (with 0.6, 0.3, 0.1) 

• Simulate sales events for different market situation  

• Estimate and compare sales probabilities 

• Use different combinations of explanatory variables 

• Compare the Goodness of Fit of the different models 
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Recommended Exercise – Demand Estimation 
 

• Our prices (1, 20)ip U∼ , 1,...,i N= , for N market situations 

• Competitors’ prices 
( )

, (1, 20)c

i kp U∼ , 1,...,5k = , for 5 competitors 

• Observed sales iy ∼ (=1 with 60%, 30%, 10%)  if ( )irank p  = 1, 2, or 3 

• Estimation of sales probabilities 
( ) *( , ; )c

i iP p p β
��

 via logit model 

• Explanatory variables:  intercept, our price, price rank, etc. 

• Compute AIC & compare 
( ) *( , ; )c

i iP p p β
��

 with (60%, 30%, 10%, 0%, 0%, 0%) 
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Overview 
 

2 April 25 Customer Behavior  
 

3 May 2 Demand Estimation 
 

4 May 9 Pricing Strategies I 
 

5 May 16 no Meeting 
 

6 May 23 Pricing Strategies II 
 

7 May 30 Dynamic Pricing Challenge & Price Wars Platform 
 

8 June 6 Workshop / Group Meetings 
 

9 June 13 Presentations (First Results) 
 

10 June 20 Workshop / Group Meetings 
 

11 June 27 no Meeting  
 

12 July 4 Workshop / Group Meetings 
 

13 July 11 Workshop / Group Meetings 
 

14 July 18 Presentations (Final Results), Feedback, Documentation (Aug/Sep) 


