Data-Driven Demand Learning and

Dynamic Pricing Strategies in Competitive Markets

Pricing Strategies

Rainer Schlosser, Martin Boissier, Matthias Uflacker
Hasso Plattner Institute (EPIC)
May 9, 2017

Outline

- Goals of today's meeting: Pricing Strategies
- How to set offer prices:

Simple Approaches

- Summarizing Exercise

From data to Pricing

Pricing Competition

A Course in In－Memory Data Management：The Inner Mechanics of In－Memory Databases（Gebundene Ausgabe） von Hasso Plattner（Autor）
Schreiben Sie die erste Bewertung

Optimieren durch Alles	Preis＋Versand（inkl．USt）	Zustand	Verkäufer－Information	Lieferung
Versand ／prime Versandkostenfrei Zustand	EUR 44，90 ＋EUR 3，00 Versandkosten	Gebraucht－Akzeptabel Einband intakt und in sehr gutem Zustand，einige Seiten haben kle．．．» Weitere Informationen	ialvamani 调 100% positiv．（4 alle Bewertungen） Verkäuferinformationen，Impressum， AGB，Widerrufsrecht．	－Ankunft zwischen April 26 －Mai 2. －Versandtarife
ZustandNeuGebrauchtWie neuSehr gutGutAkzeptabel	EUR 45，00 ＋EUR 3，00 Versandkosten	Gebraucht－Sehr gut Versand aus Deutschland／We dispatch from Germany via Air Mail．．．．» Weitere Informationen	lange＿und＿springer＿antiq uariat 用 98% positiv in den letzten 12 Monaten．（28．584 Bewertungen insgesamt） Verkäuferinformationen，Impressum， AGB，Widerrufsrecht．	－Ankunft zwischen April 27 －Mai 2. －Versand aus Deutschland －Versandtarife
	EUR 65，60 ＋EUR 3，00 Versandkosten	Gebraucht－Wie neu New，Excellent customer service．Satisfaction guaranteed！！	Totalbookstore 隹解领 89% positiv in den letzten 12 Monaten．（439 Bewertungen insgesamt） Verkäuferinformationen，Impressum， AGB，Widerrufsrecht．	－Ankunft zwischen Mai 3－20． －Versandtarife
	EUR 79，56 ＋EUR 3，00 Versandkosten	Gebraucht－Sehr gut Publisher：Springer＜br＞Date of Publication： 2014＜br＞Binding：hard．．．＂Weitere Informationen	Herb Tandree Philosophy Books 会解 90% positiv in den latztan 12 Manatan la38	－Ankunft zwischen Mai 2－6． －Versand aus Vereinigtes Königreich －Versandtarife

Observable Data: Market Situations

seller	price	quality	rating	feedback	shipping
k	p_{k}	q_{k}	r_{k}	f_{k}	c_{k}
1	44.90	akzeptabel	100%	4	5 Tage
$\mathbf{2}$	$\mathbf{4 5 . 0 0}$	sehr gut	$\mathbf{9 8 \%}$	$\mathbf{2 8 , 5 8 4}$	6 Tage
3	65.60	wie neu	89%	439	11 Tage
4	79.56	sehr gut	90%	338	10 Tage
\ldots					
K					

Price Adjustments in Market Situations

time	adjusted price	rank	market situation					
t	a_{t}	r_{t}	$p_{t, 1}$	$p_{t, 2}$	$p_{t, 3}$	$p_{t, 4}$	$\ldots p_{t, K}$	
0	$\mathbf{1 9}$	3	13	17	20	25		
1	$\mathbf{1 6}$	2	13	17	20	25		
2	$\mathbf{1 2}$	1	13	15	20	$/$		
3	$\mathbf{1 0}$	1	11	15	20	22		
4	$\mathbf{1 4}$	2	11	15	20	24		
5	$\mathbf{1 9}$	3	11	13	20	24		
\ldots								

Observable Data: Sales within Adjustment Periods

period	sale	price	rank	market situation				
$(t, t+1)$	$y_{t}^{(1)}$	a_{t}	r_{t}	$p_{t, 1}$	$p_{t, 2}$	$p_{t, 3}$	$p_{t, 4}$	\ldots

Extension: Multiple Sales

period	sales	price	rank	competitor's prices						for product i (ISBN)
$(t, t+1)$	$y_{t}^{(1)}$	a_{t}	r_{t}	$p_{t, 1}$	$p_{t, 2}$	$p_{t, 3}$	$p_{t, 4}$	$\ldots p_{t, K}$		
$(0,1)$	$\mathbf{3}$	$\mathbf{1 9}$	3	13	17	20	25			
$(1,2)$	$\mathbf{1 5}$	$\mathbf{1 6}$	2	13	17	20	25			
$(2,3)$	$\mathbf{2 3}$	$\mathbf{1 2}$	1	13	15	20	$/$			
$(3,4)$	$\mathbf{1 9}$	$\mathbf{1 0}$	1	13	15	20	22			
$(4,5)$	$\mathbf{2 1}$	$\mathbf{1 4}$	2	11	15	20	24			
$(5,6)$	$\mathbf{9}$	$\mathbf{1 9}$	3	11	13	20	24			
\ldots										

Simple Approach: Least Squares Regression

- Idea: explain the „dependent variable" by „explanatory variables"
- „Dependent variable": number of sales y (of our firm)
- „Explanatory variables": price rank r
price difference to best competitor's price
time (day time, weekday, month etc.)
ratings, shipping time, ...
- Remember: Derive the β^{*} - coefficients for every explanatory variable by minimizing sum of squared deviations (over all observations)

Example: Expected Sales as Function of Price Rank

- Explanatory variable: $x_{i}^{(1)}(a, \vec{p})=1$, price rank $x_{i}^{(2)}(a, \vec{p})=r_{i}(a, \vec{p})$
- Regression result:
- Expected sales:
- Impact analysis:

Intercept β_{1}^{*}, price rank impact β_{2}^{*}

$$
\hat{y}(a, \vec{p})=\beta_{1}^{*}+\beta_{2}^{*} \cdot r(a, \vec{p})
$$

Each better rank boosts the expected number of sales by β_{2}^{*} units!

- We can estimate expected sales for all prices a and situations \vec{p} !

Let's be creative: Multi Linear Regression

- Invent multiple explanatory variables from the raw data!
- Use transformed variables, e.g., $x^{(3)}=r^{2}$

$$
x^{(4)}=\ln (r)
$$

- Use and combine multiple features (customer ratings, shipping time, etc.).
- Same Model:

$$
y(a, \vec{p}, \ldots) \approx \sum_{m=1}^{M} \beta_{m} \cdot x^{(m)}(a, \vec{p}, \ldots)=\vec{\beta}^{\prime} \vec{x}=\hat{y}(\vec{\beta}, \vec{x}(a, \vec{s}))
$$

- LS Minimization: $\min _{\beta_{1}, \ldots, \beta_{M} \in \mathbb{R}}\left\{\sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\left(\vec{\beta}, \vec{x}_{i}\right)\right)^{2}\right\}$

What is a Good Model?

- Compare "Goodness of Fit" measures
- OLS:

$$
R^{2} \quad(\text { share of explained variance in } y \text {) }
$$

- Model fit: $\quad \hat{y}_{i}=\beta_{1}^{*}+\beta_{2}^{*} \cdot x_{i}^{(2)}+\beta_{3}^{*} \cdot x_{i}^{(3)}+\ldots \approx y_{i}$
- New variance: $\quad V_{A R}=\frac{1}{N} \cdot \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2} \quad \leq \operatorname{VAR}=\frac{1}{N} \cdot \sum_{i=1}^{N}(y_{i}-\underbrace{\bar{y}}_{1 / N \cdot} \sum_{i=1})^{2}$
- Goodness of fit: $\quad R^{2}:=1-\frac{V A R_{n e w}}{V A R} \in[0,1] \quad$ (large is good)

From Forecasts to Sales Probabilities

- We have estimations to sell $\hat{y}^{(h)}(a, \vec{s})$ items at price a within a period of length h which starts with situation \vec{s}
- We look for a probability distribution $\tilde{P}^{(h)}(i, a, \vec{s})$ to sell i items at price a within a period of length h which starts with situation \vec{s}
- Simple Approach: Poisson Probabilities with mean $\hat{y}^{(h)}(a, \vec{s})$

$$
\tilde{P}(i, a, \vec{s})=\tilde{P}(i, a, \vec{p}, \ldots)=\operatorname{Pois}(\hat{y}(\vec{\beta}, \vec{x}(a, \vec{s})))=\frac{\hat{y}^{i}}{i!} \cdot e^{-\hat{y}}, i=0,1,2, \ldots
$$

Summary: Demand Estimation

- Explain dependent variable $y_{t}^{(1)}$ by customized explanatory variables $\vec{x}_{t}(\vec{s})$
- Various Regression/ML techniques can be used
- Result: Probability $\tilde{P}^{(h)}(i, a, \vec{s})$ to sell i items at price a within a period of length h which starts with situation \vec{s}
- Measure the Goodness of fit of your model/result
- Compare your estimated probabilities $\tilde{P}^{(h)}(i, a, \vec{s})$ with true ones $P^{(h)}(i, a, \vec{s})$

What Do We Have Learned?

- We can model:
- We can analyze:
- We can estimate:
- We can verify the: Quality of our estimations
- We want to:

Customer Choice

Sales data \& market situations

Sales probabilities for time intervals

Compute optimized prices

Price Reaction Strategies (Rule-Based)

- Idea:
(1) Observe market situation + (2) Adjust price
- Examples: $a(\vec{s})=a^{(1)}(\vec{p}):=\max \left(c, \min _{k=1, \ldots, K} p_{k}-\varepsilon\right)$

$$
\begin{aligned}
& a(\vec{s})=a^{(n)}(\vec{p}):=\max _{a \in A: \operatorname{rank}(a, \vec{p})=n} a \\
& a(\vec{s})=a^{(\text {random })}(\vec{p}):=\text { if } U(0,1)<0.5 \text { then } a^{(1)}(\vec{p}) \text { else } a^{(2)}(\vec{p})
\end{aligned}
$$

$$
a(\vec{s})=a^{(g a s)}(\vec{p}):=\left\{\begin{array}{cc}
a^{(1)}(\vec{p}) & , p^{\min } \leq \min _{k=1, ., K} p_{k} \leq p^{\max } \\
p^{\max } & , \text { else }
\end{array}\right.
$$

Price Reaction Strategies (Data-Driven)

- Idea: (1) Observe market situation + (2) Adjust price
(3) Use expected sales probabilities
- Use: Probability $\tilde{P}^{(h)}(i, a, \vec{s})$ to sell i items at price a within a period of length h which starts with market situation \vec{s}
- Examples: Maximize short-term profit via

$$
a^{(*)}(\vec{s}):=\underset{a \in A}{\arg \max } \sum_{i=0,1, \ldots} i \cdot(a-c) \cdot \tilde{P}^{(h)}(i, a, \vec{s})
$$

Mandatory Exercise - Combine all Components

(1) Create random market situations with multiple sellers

Choose randomized prices for our firm (exploration phase)
(2) Choose a specific Buying Behavior, e.g., Approach II (with 0.6, 0.3, 0.1)

Simulate our firm's sales for all market situations
(3) Estimate sales probabilities, e.g., Logit model or Poisson via least squares

Use different combinations of explanatory variables

Mandatory Exercise - Combine all Components

(4) Measure the goodness of fit of your models, i.e.,

Compare original and estimated sales probabilities
(5) Create new random market situations with multiple sellers

Evaluate your estimated sales probabilities for potential offer prices
Compute prices that maximize expected short-term profits
(6) Simulate sales for all new market situations and your optimized prices

Compare realized profit for rule-based strategies \& the optimized prices

Overview

2	April 25	Customer Behavior
3	May 2	Demand Estimation
4	May 9	Pricing Strategies I
5	May 16	no Meeting
$\mathbf{6}$	May 23	Pricing Strategies II (Optimal Solution of the Duopoly Game)
7	May 30	Dynamic Pricing Challenge \& Price Wars Platform
8	June 6	Workshop / Group Meetings
9	June 13	Presentations (First Results)
10	June 20	Workshop / Group Meetings
11	June 27	no Meeting
12	July 4	Workshop / Group Meetings
13	July 11	Workshop / Group Meetings
$\mathbf{1 4}$	July 18	Presentations (Final Results), Feedback, Documentation (Aug/Sep)

