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Outline

e  Questions regarding last Lecture?

° Problem Classifications & Solvers

e  Today: Basic Regression Models

e Linear & Logistic Regression

° Homework




Problem Classifications & Solvers ﬂ

e Linear Continuous: basically all solvers

e Linear Integer: Cplex, Gurobi (+), Minos (-)

e Nonlinear Continuous: Minos (+), Cplex, Gurobi (-)
e Nonlinear Integer: Bonmin, Baron (+) most solvers (-)

e Use linearizations and/or continuous relaxations

to avoid Nonlinear Integer problems

e Use: option solver './cplex'; Or option solver './minos';



Linear Regression



Example: High Jump

e High Jump Results

e How they can be explained? What are the key factors?
e Data: Results and features of participants (observations)
e  What is a suitable regression model?

e How does it work? What is the idea?

e How can we derive forecasts?

e How good are our forecasts? Is there a measure?




High Jump Data ﬂ

ID Name Result Size Gender Party
1 Keven 160 176 1 0
2 Martin 155 178 1 0
3 Christian 140 172 1 1
4 Matthias 150 175 1 0
5 Ralf 130 160 1 0
6 Stefan 165 190 1 1
7 Markus 165 185 1 0
8 Cindy 130 168 0 0
9 Julia 130 163 0 1
10 Anna 145 170 0 0
11 Viktoria 155 171 0 0
12 Marilena 125 167 0 0



Notations ﬂ

e Number of observations N in the example?

e  Which quantity do we want to explain? (dependent variable y)
e  Which quantities may be factors? (explanatory variables x)

e  What might be missing variables?
. _ 1 &
e Mean of the dependent variable? y= F'ZJ@
i=1
. . 1 & _
e Variance of the dependent variable? VAR = A > -y
i=1

e Plausibility checks: Expectations? Hypotheses?

e How do we quantify the impact/dependencies?



Least Squares Regression H

e Idea: Use explanatory variables x to explain dependent variable y.

e Approach: Try to reconstruct y by linear parts of x
- . 0 () NE) o - _
Y, = p J&_J"‘,Bz TP+ with given data X;,);, i=1,.,N
=1

B, - coefficients have to be chosen such that the fit is “good”.

e Whatisa “good” fit? We need a measure.

e Answer: Minimize, e.g., the sum of squared deviations, i.e.,

N

- 2 3 4 2
min Z(ﬁl"‘ﬁz'xi()+ﬁ3'xi()+184'xi() - yi)

ﬂl ’ﬂZ 7ﬂ3 ’ﬂ4 €R i=1



Solution & Forecasts ﬂ

e We obtain optimal coefficients 3, 5,.5;.5; (via a quadratic solver)

e  What can we do with the coefficients £ =(-102, 1.43, 3.05, —5.43)?

e (1) We can quantify the impact of factors x,x9 %Y on y!

e (2) We can compute smart forecasts!

e Example: We have a new participant (179 tall, male, party: yes)

e TForecast: Estimated/expected result= £ +179-5, +0- 5, +1- S, =151.74



How reliable 1s our Model?

e We can use various combinations of explanatory variables.
e  We will always obtain a result and some optimal B coefficients!

e How to measure the quality of a model? There is a measure: R’.
e Idea: How much of the variance in y can be explained by the model.
e  Model fit: Po=B+B xP+ B xPV . xy
1 & 1 &
e New variance: VAR, = A D= < VAR = A D=7
i=l i=l1

VAR
T €[0,1]  (large is good)

e Goodness of fitt R =1



Logistic Regression
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Estimation of Probabilities H

sale 1.0; .
0.8 Y(x)=1.06-032x
0.6 |
04 1
02!
no sale 00
02

X price

Can the relation/prediction y(x) =1.06—-0.32-x be used as sales probability?
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Second Approach: Logistic Regression ﬂ

e Binary 0/1 y observations, explanatory variable x, and probabilities P(x)

sale 1.0 -

P(y=1]x)= XL g 395 5 o4

08 T+exp(f,—f, )

0.6 "

04| 1 . X price
02}
no sale 00 e

e What is the idea behind logistic regression?
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Approach: Maximum Likelihood Estimation H

o Idea: (1) Choose a model + (2) Find the best calibration

Toy Example: Coin Toss

Data: 010111010100010001010010001100000

Model: Bernoulli Experiment with success probability p

e Calibration: =~ Which model, i.e., which p explains our data best?
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Our Model: Bernoulli Distribution ﬂ

e Random variable Y sale occurred (1 yes, 0 no)
e Success probability PY=1)=p and PY=0)=1-p
e Bernoulli distribution P(Y =k)=p"-(1-p)'™*, k=0,1

h k n—k
e (Binomial distribution) (Y =%k) =£ k]'p (I=-p)"" |

for multiple sales £ =0,....,n (cf. n=1)
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Likelihood Function

e Bernoulli distribution

e C(Consider observed data

e Probability for one obs.

o Joint probability

(Likelihood Function)

P(Y=k)=p"-(1-p"", k=0,

)_}z(yla--'ay]\/), yie{o,l}, izl,...,N

P(Yz zyi) zpyi '(l_p)liyi , Vi€ {O,l}

N

P(Yl = Viseens Uy :yN):‘ P(Yl =)

=[[p"-a-p"™

i=1

e Now, maximize the joint probability over the success probability p!
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Maximize the Likelihood Function ﬂ

max P(Y; = y;,...Y, = yy) i.i.d. (independent, identically distributed)
N
— P(Y =y,
- max[ [P )

pel0,1

N
_ i, 1_ 1-y;
— max]];[ p"-(1-p)
Actually, we wanted to find the best p.

N
arg maXpr" 1=p)™

pel0.1] =

We are interested in First Order Conditions. Hence, we do not like products!
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Monotone Increasing Transformations ﬂ

N
arg max H p-(1- }

pe[0.1] i=1

N
= arg max<5- [ p-(1- j+ 17} ?  (linear)
i=1

pel0,1]

pel0,1]

_argmax{ H p"-(1-p)” y} } ?? (convex)

= arg max 1 H p-(1-p)™ J} 77?7 (concave)
=1

pel0,1]
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Log-Likelihood Function

argmax P(Y, = y,,.... Yy, =»y)

p

pel0,1]

:argmax{ln(ﬁpy' (1-p)™ J}

M=

= arg max

ln Y(1- p)ly’)}

)+In((1-p)~ ))}

= argmax? Y (3, - In(p) +(1- yl-)-ln(l—p))}

pel[0,1] i=1

pel0,1] 1

i

Mz

pel0.1] 1

i

{
{
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Optimization ﬂ

0 !
® FOC: gp()jl :y19°°°9YN :yN) = O

!

> (3,-In(p)' +(1=y,)-In(1- p)') =

=

& i[p =L j -0 o Z[Slp)-yﬁp-(lyi}} = 0

1 i=1 v
l g =yi+(1=2y;)p

—_

Solve for p.

e 1 Variable, 1 Equation (Unique solution p")

Result: Our data fits to the model P(Y =1)=p and PY =0)=1-p .
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Generalization & Pricing Use Case
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Use Case: Demand Estimation on Amazon H

e Regular price adjustments (e.g., time intervals of ca. 2 hours)

e Observation of market conditions (at the time of price adjustments)

e.g., Competitors’ prices, quality, rating, shipping time, etc.
e Sales observations: Points in time (within certain intervals)

e Rare events, i.e., 0 or 1 sales between price adjustments (2 hours)
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A Seller’s Data Set ﬂ

period sale price rank | competitor’s prices for product i (ISBN)
t yOoad K0 pl o ph pl pd Pk
1 0 19 3 13 17 20 25
2 0 15 2 13 17 20 25
3 1 10 1 13 15 20 /
4 0 10 1 13 15 20 22
5 1 12 2 11 15 20 24
6 0 15 3 11 14 20 24
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Estimation of Sales Probabilities H

o Goal: Quantify sales probabilities as function of our offer price
e Idea: Sales probabilities should depend on market conditions

e Approach: Maximum Likelihood

(1)  Choose family of models: Logistic function
(2)  Define explanatory variables (based on our data)

3) Calibrate model:  Find model coefficients

(4)  Result: Quantify sales probabilities for any market situation!
23



Explanatory Variables H

e Data: Market situation in t: S =, Pireees PicsQrses Pico FseeosFics J1oeees frcoeer)

e Define explanatory variables (What could affect decisions?):

x,(a,s) =1 (Intercept)
x,(a,s) = price rank (Rank of offer price within competitors’ prices)
xy(a,s)=a— kfzrllan P (Price difference to best competitor)

x,(a,s) = quality rank (Rank of our product condition)
xs(a,s) = #commercials (Number of competitors with feedback >10000)
X¢(a,s) = combinations  (Number of comp. with better price + better quality)

%,(a,8) = 1,100 moa 10 = 9y (Psychological Prices)
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One Family of Models: Logistic Function

o P(Y=1|%(a,5))=e"/1+e"7)

~ exp( B, - x,(a,8)+ f, - x,(a,5) +...)
1+exp(B, - x,(a,5)+ B, x,(a,5) +...)

e (0,1)

e There are other families, but this is a good family

e Maximum Likelihood Estimation:

Find best B coefficients for our data y,,x(a,,s,), t=1,...,N
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Maximize the Log-Likelihood Function ﬂ

e Recall:

N
argmax P(Y, = y,,.... Y, yN)—argmax{Z 9 -1n<p)+<1—y,.)-1n(1—p))}
i=1

P pel0,1]

e Now, we have the conditional probabilities:

argmax P(Y, =y, |a,,5,, ..., Yy =yy|ay.5y)
B

N ef(aiai)'ﬁ ef(ani)'ﬁ
= argmax E EEEEE— —i—(l—yl.)-ln 1_4—4,4
B, cRm=1,..M | ‘- 1+ex(aissi)ﬂ 1+ex(ai’si)ﬂ
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Optimization

|

a R R !
e FOC: a_BP(Yl:yl|a1’S1’ Yy =yylay,sy) =0

N o efc(a,.,i,.)'/? o efc(a,-,i,-)’[f !
. In —— |+ (l-y) —h|]l-—————= || = 0 —
2| op [ a7 |TU=5) Y TRy , m=1,...M

i=1

N ef(afﬁi)'ﬁ |
> e | £ o
< - yi )—C(aiji)'ﬁ i b for all m = 19'°°:M

i=l1
e Solve the nonlinear system for 8=(8,,...,5,)
e M Variables, M Equations  (Unique solution 8" = (B, 51))

e Result: Our data fits to the model P(¥ =1|3(a,5))=e" "7 /(1 +“7)
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Check Proof
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Application of the Model Obtained ﬂ

e Observe current market situation for a product: s

e For any admissible offer prices a we can evaluate x(a,s) and obtain
P(Y =1]X(a,5))=———

e Now, we can optimize expected profits (for one time interval):

(a,5) B
e
max (a — C) N —
a>0 14 5@S)F
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Prediction of Sales Probabilities ﬂ

e Example: Competitor’s prices p=(4.26, 5.18, 5.31, 5.55, 5.86, ... )

0.20 |
0.15
0.10 |

0.05 |

sales probability P(a)

0.20

0.15

0.10

0.05

expected profit (a—3)-P(a)
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Summary ﬂ

(t) Logistic Regression is simple and robust

(+) Allows for many observations N and many features M

(+) Plausibility Checks & Closed Form Expressions

(+/-) Definition of Customized Explanatory Variables

(-)  No dependencies between variables

(-) Limited to binary dependent variables
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What is a good Model? H

e Use “Goodness of fit” measures (for MLE models)

o AIC (low is good, trade-of between fit and number of variables M)

N
AIC:=-2-> (y,-Inp,+(1-y,)-In(l-p,))+2-M

i=1

Note, P, depends on all features ¥, and the optimal S coefficients.

e Normalized (McFadden Pseudo R*2): R”:=1—AIC/ AIC, (vs.Null-model)

e Be creative: Test different variables and find the smallest A/C value.

Hint: Not quantity but quality counts!
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Next Lecture (May 16) H

Homework: Solve at least 2 out of 4 of the following problems

e The latest version of the HPI Master Project Assignment Problem
e A model to solve Sudoku examples
e Soccer line-up with several constraints

e A model to solve logistic regressions

Hand in (May 23): (i) written key formulas/model & (i1) executable (Ampl) files
Teams of at most two students are allowed. Questions per Mail.

For further details take a look at the course website.
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Overview

2 April 25 Linear Programming [

3 April 29 Linear Programming I1

4 May 2 Linear/Logistic Regression + Homework (3 weeks time)
5 May 16 Exercise Implementations

6 May 20 Dynamic Programming

7 May 23 Response Strategies / Game Theory

8 May 27 Project Assignments

9 June 3 Robust Optimization

10 June 13 Workshop / Group Meetings

11 June 20 Presentations (First Results)

12/13 June 24/27 Workshop / Group Meetings
14/15 July 1/4 Workshop / Group Meetings
16 July 11 Presentations (Final Results), Feedback, Documentation (Aug 31)
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