Data-Driven Decision-Making In Enterprise Applications

Linear & Logistic Regression

Rainer Schlosser

Hasso Plattner Institute (EPIC)

May 2, 2019

Outline

- Questions regarding last Lecture?
- Problem Classifications & Solvers
- Today: Basic Regression Models
- Linear & Logistic Regression
- Homework

Problem Classifications & Solvers

• Linear Continuous: basically all solvers

• Linear Integer: Cplex, Gurobi (+), Minos (-)

• Nonlinear Continuous: Minos (+), Cplex, Gurobi (-)

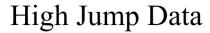
• Nonlinear Integer: Bonmin, Baron (+) most solvers (-)

- Use linearizations and/or continuous relaxations to avoid Nonlinear Integer problems
- Use: option solver './cplex'; or option solver './minos';

Linear Regression

Example: High Jump

- High Jump Results
- How they can be explained? What are the key factors?
- Data: Results and features of participants (observations)
- What is a suitable regression model?
- How does it work? What is the idea?
- How can we derive forecasts?
- How good are our forecasts? Is there a measure?



Name	Result	Size	Gender	Party
Keven	160	176	1	0
Martin	155	178	1	0
Christian	140	172	1	1
Matthias	150	175	1	0
Ralf	130	160	1	0
Stefan	165	190	1	1
Markus	165	185	1	0
Cindy	130	168	0	0
Julia	130	163	0	1
Anna	145	170	0	0
Viktoria	155	171	0	0
Marilena	125	167	0	0
	Keven Martin Christian Matthias Ralf Stefan Markus Cindy Julia Anna Viktoria	Keven 160 Martin 155 Christian 140 Matthias 150 Ralf 130 Stefan 165 Markus 165 Cindy 130 Julia 130 Anna 145 Viktoria 155	Keven160176Martin155178Christian140172Matthias150175Ralf130160Stefan165190Markus165185Cindy130168Julia130163Anna145170Viktoria155171	Keven 160 176 1 Martin 155 178 1 Christian 140 172 1 Matthias 150 175 1 Ralf 130 160 1 Stefan 165 190 1 Markus 165 185 1 Cindy 130 168 0 Julia 130 163 0 Anna 145 170 0 Viktoria 155 171 0

Notations

- Number of observations *N* in the example?
- Which quantity do we want to explain?

(dependent variable y)

Which quantities may be factors?

(explanatory variables x)

- What might be missing variables?
- Mean of the dependent variable?

$$\overline{y} = \frac{1}{N} \cdot \sum_{i=1}^{N} y_i$$

• Variance of the dependent variable?

$$VAR = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \overline{y})^2$$

- Plausibility checks: Expectations? Hypotheses?
- How do we quantify the impact/dependencies?

Least Squares Regression

- Idea: Use explanatory variables x to explain dependent variable y.
- Approach: Try to reconstruct y by linear parts of x

$$y_i \approx \beta_1 \cdot \underbrace{x_i^{(1)}}_{:=1} + \beta_2 \cdot x_i^{(2)} + \beta_3 \cdot x_i^{(3)} + \dots$$
 with given data $\vec{x}_i, y_i, i = 1,..., N$

 β_k - coefficients have to be chosen such that the fit is "good".

- What is a "good" fit? We need a measure.
- Answer: Minimize, e.g., the sum of squared deviations, i.e.,

$$\min_{\beta_1,\beta_2,\beta_3,\beta_4 \in \mathbb{R}} \sum_{i=1}^{N} \left(\beta_1 + \beta_2 \cdot x_i^{(2)} + \beta_3 \cdot x_i^{(3)} + \beta_4 \cdot x_i^{(4)} - y_i \right)^2$$

Solution & Forecasts

- We obtain optimal coefficients $\beta_1^*, \beta_2^*, \beta_3^*, \beta_4^*$ (via a quadratic solver)
- What can we do with the coefficients $\vec{\beta}^* = (-102, 1.43, 3.05, -5.43)$?
- (1) We can quantify the impact of factors $x^{(2)}, x^{(3)}, x^{(4)}$ on y!
- (2) We can compute smart forecasts!
- Example: We have a new participant (179 tall, male, party: yes)
- Forecast: Estimated/expected result = $\beta_1^* + 179 \cdot \beta_2^* + 0 \cdot \beta_3^* + 1 \cdot \beta_4^* = 151.74$

How reliable is our Model?

- We can use various combinations of explanatory variables.
- We will always obtain a result and some optimal β^* coefficients!
- How to measure the quality of a model? There is a measure: R^2 .
- Idea: How much of the variance in y can be explained by the model.

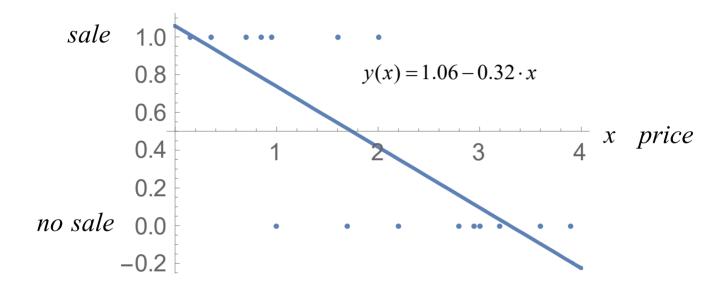
• Model fit:
$$\hat{y}_i = \beta_1^* + \beta_2^* \cdot x_i^{(2)} + \beta_3^* \cdot x_i^{(3)} + \dots \approx y_i$$

• New variance:
$$VAR_{new} = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \leq VAR = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \overline{y})^2$$

• Goodness of fit:
$$R^2 = 1 - \frac{VAR_{new}}{VAR} \in [0,1]$$
 (large is good)

Logistic Regression

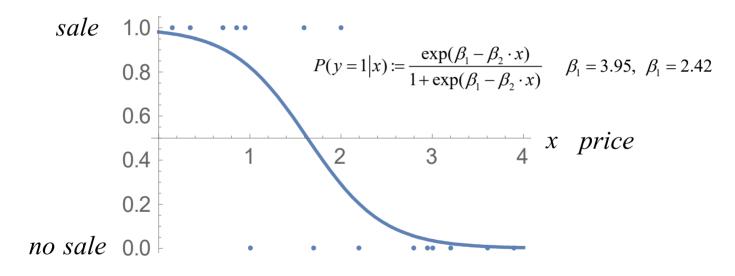
Estimation of Probabilities



Can the relation/prediction $y(x) = 1.06 - 0.32 \cdot x$ be used as sales probability?

Second Approach: Logistic Regression

• Binary 0/1 y observations, explanatory variable x, and **probabilities** P(x)



• What is the idea behind logistic regression?

Approach: Maximum Likelihood Estimation

• Idea: (1) Choose a model + (2) Find the best calibration

• Toy Example: Coin Toss

• Data: 010111010100010001010010001100000

• Model: Bernoulli Experiment with success probability *p*

• Calibration: Which model, i.e., which *p* explains our data best?

Our Model: Bernoulli Distribution

Random variable

Y sale occurred (1 yes, 0 no)

Success probability
$$P(Y=1) = p$$
 and $P(Y=0) = 1 - p$

Bernoulli distribution
$$P(Y = k) = p^k \cdot (1-p)^{1-k}, k = 0,1$$

• (Binomial distribution)
$$P(Y = k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$
,

for multiple sales k = 0,...,n (cf. n=1)

Likelihood Function

$$P(Y = k) = p^{k} \cdot (1 - p)^{1 - k}, \quad k = 0, 1$$

$$\vec{y} = (y_1, ..., y_N), \quad y_i \in \{0,1\}, \quad i = 1, ..., N$$

Probability for one obs.
$$P(Y_i = y_i) = p^{y_i} \cdot (1-p)^{1-y_i}, y_i \in \{0,1\}$$

• Joint probability

$$P(Y_1 = y_1, ..., Y_N = y_N) = \prod_{i=1}^N P(Y_i = y_i)$$
$$= \prod_{i=1}^N p^{y_i} \cdot (1-p)^{1-y_i}$$

• Now, maximize the joint probability over the success probability *p*!

Maximize the Likelihood Function

$$\max P(Y_1 = y_1, ..., Y_N = y_N)$$
 i.i.d. (independent, identically distributed)

$$= \max_{p} \prod_{i=1}^{N} P(Y_i = y_i)$$

$$= \max_{p} \prod_{i=1}^{N} P(Y_i = y_i)$$

$$= \max_{p \in [0,1]} \prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i}$$

Actually, we wanted to find the best p.

$$\underset{p \in [0,1]}{\operatorname{arg\,max}} \prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i}$$

We are interested in First Order Conditions. Hence, we do not like products!

Monotone Increasing Transformations

$$\underset{p \in [0,1]}{\operatorname{arg\,max}} \left\{ \prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i} \right\}$$

$$= \underset{p \in [0,1]}{\operatorname{arg\,max}} \left\{ 5 \cdot \left(\prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i} \right) + 17 \right\} \qquad ? \quad \text{(linear)}$$

$$= \underset{p \in [0,1]}{\operatorname{arg\,max}} \left\{ \left(\prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i} \right)^2 \right\}$$
?? (convex)

$$= \underset{p \in [0,1]}{\operatorname{arg\,max}} \left\{ \ln \left(\prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i} \right) \right\}$$
??? (concave)

Log-Likelihood Function

$$\arg \max_{p} P(Y_1 = y_1, ..., Y_N = y_N)$$

$$= \arg \max_{p \in [0,1]} \left\{ \ln \left(\prod_{i=1}^{N} p^{y_i} \cdot (1-p)^{1-y_i} \right) \right\}$$

$$= \arg \max_{p \in [0,1]} \left\{ \sum_{i=1}^{N} \ln \left(p^{y_i} \cdot (1-p)^{1-y_i} \right) \right\}$$

$$= \arg \max_{p \in [0,1]} \left\{ \sum_{i=1}^{N} \left(\ln \left(p^{y_i} \right) + \ln \left((1-p)^{1-y_i} \right) \right) \right\}$$

$$= \arg \max_{p \in [0,1]} \left\{ \sum_{i=1}^{N} \left(y_i \cdot \ln(p) + (1-y_i) \cdot \ln(1-p) \right) \right\}$$

Optimization

• FOC:
$$\frac{\partial}{\partial p} P(Y_1 = y_1, ..., Y_N = y_N) \stackrel{!}{=} 0$$

$$\sum_{i=1}^{N} (y_i \cdot \ln(p)' + (1-y_i) \cdot \ln(1-p)') \stackrel{!}{=} 0$$

$$\Leftrightarrow \sum_{i=1}^{N} \left(\frac{y_i}{p} + \frac{1 - y_i}{1 - p} \right) \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \sum_{i=1}^{N} \left(\underbrace{(1 - p) \cdot y_i + p \cdot (1 - y_i)}_{=y_i + (1 - 2y_i) \cdot p} \right) \stackrel{!}{=} 0$$

- Solve for *p*.
- 1 Variable, 1 Equation (Unique solution p^*)
- **Result**: Our data fits to the model $P(Y = 1) = p^*$ and $P(Y = 0) = 1 p^*$.

Generalization & Pricing Use Case

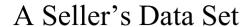
Use Case: Demand Estimation on Amazon

• Regular price adjustments (e.g., time intervals of ca. 2 hours)

Observation of market conditions (at the time of price adjustments)
 e.g., Competitors' prices, quality, rating, shipping time, etc.

• Sales observations: Points in time (within certain intervals)

• Rare events, i.e., 0 or 1 sales between price adjustments (2 hours)



period	sale	price	rank	competitor's prices for product i (ISBN)				
t	$\mathcal{Y}_t^{(i)}$	$a_t^{(i)}$	$r_t^{(i)}$	$p_{t,1}^{(i)}$	$p_{t,2}^{(i)}$	$p_{t,3}^{(i)}$	$p_{\scriptscriptstyle t,4}^{\scriptscriptstyle (i)}$	$p_{t,K}^{(i)}$
1	0	19	3	13	17	20	25	
2	0	15	2	13	17	20	25	
3	1	10	1	13	15	20	/	
4	0	10	1	13	15	20	22	
5	1	12	2	11	15	20	24	
6	0	15	3	11	14	20	24	

Estimation of Sales Probabilities

- Goal: Quantify sales probabilities as function of our offer price
- Idea: Sales probabilities should depend on market conditions
- Approach: Maximum Likelihood
 - (1) Choose family of models: Logistic function
 - (2) Define explanatory variables (based on our data)
 - (3) Calibrate model: Find model coefficients
 - (4) Result: Quantify sales probabilities for any market situation!

Explanatory Variables

- Data: Market situation in t: $\vec{s} = (t, p_1, ..., p_K, q_1, ..., p_K, r_1, ..., r_K, f_1, ..., f_K, ...)$
- Define explanatory variables (What could affect decisions?):

$$x_1(a, \vec{s}) \coloneqq 1$$
 (Intercept)
 $x_2(a, \vec{s}) \coloneqq price \ rank$ (Rank of offer price within competitors' prices)
 $x_3(a, \vec{s}) \coloneqq a - \min_{k=1,\dots,K} p_k$ (Price difference to best competitor)
 $x_4(a, \vec{s}) \coloneqq quality \ rank$ (Rank of our product condition)
 $x_5(a, \vec{s}) \coloneqq \#commercials$ (Number of competitors with feedback >10000)
 $x_6(a, \vec{s}) \coloneqq combinations$ (Number of comp. with better price + better quality)
 $x_7(a, \vec{s}) \coloneqq 1_{\{a \cdot 100 \mod 10 = 9\}}$ (Psychological Prices)

24

One Family of Models: Logistic Function

•
$$P(Y = 1 \mid \vec{x}(a, \vec{s})) := e^{\vec{x}'\vec{\beta}} / (1 + e^{\vec{x}'\vec{\beta}})$$

$$= \frac{\exp(\beta_1 \cdot x_1(a, \vec{s}) + \beta_2 \cdot x_2(a, \vec{s}) + ...)}{1 + \exp(\beta_1 \cdot x_1(a, \vec{s}) + \beta_2 \cdot x_2(a, \vec{s}) + ...)} \in (0, 1)$$

- There are other families, but this is a good family
- Maximum Likelihood Estimation:

Find best $\vec{\beta}$ coefficients for our data $y_t, \vec{x}(a_t, \vec{s}_t), t = 1,..., N$

Maximize the Log-Likelihood Function

• Recall:

$$\arg\max_{p} P(Y_1 = y_1, ..., Y_N = y_N) = \arg\max_{p \in [0,1]} \left\{ \sum_{i=1}^{N} (y_i \cdot \ln(p) + (1 - y_i) \cdot \ln(1 - p)) \right\}$$

• Now, we have the conditional probabilities:

$$\arg \max_{\vec{\beta}} P(Y_1 = y_1 \mid a_1, \vec{s}_1, \dots, Y_N = y_N \mid a_N, \vec{s}_N)$$

$$= \arg \max_{\beta_m \in \mathbb{R}, m=1,\dots,M} \left\{ \sum_{i=1}^{N} \left(y_i \cdot \ln \left(\frac{e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}}{1 + e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}} \right) + (1 - y_i) \cdot \ln \left(1 - \frac{e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}}{1 + e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}} \right) \right) \right\}$$

Optimization

• FOC:
$$\frac{\partial}{\partial \vec{\beta}} P(Y_1 = y_1 \mid a_1, \vec{s}_1, \dots, Y_N = y_N \mid a_N, \vec{s}_N) \stackrel{!}{=} 0$$

$$\sum_{i=1}^{N} \left(y_i \cdot \frac{\partial}{\partial \beta_m} \ln \left(\frac{e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}}{1 + e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}} \right) + (1 - y_i) \cdot \frac{\partial}{\partial \beta_m} \ln \left(1 - \frac{e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}}{1 + e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}} \right) \right) \stackrel{!}{=} 0, \quad m = 1, ..., M$$

$$\Leftrightarrow \sum_{i=1}^{N} \left(\left(y_i - \frac{e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}}{1 + e^{\vec{x}(a_i, \vec{s}_i)'\vec{\beta}}} \right) \cdot x_i^{(m)} \right) \stackrel{!}{=} 0, \quad \text{for all } m = 1, ..., M$$

- Solve the nonlinear system for $\vec{\beta} = (\beta_1, ..., \beta_M)$
- *M* Variables, *M* Equations (Unique solution $\vec{\beta}^* = (\beta_M^*, ..., \beta_M^*)$)
- Result: Our data fits to the model $P(Y=1|\vec{x}(a,\vec{s})) := e^{\vec{x}(a,\vec{s})'\vec{\beta}^*} / (1 + e^{\vec{x}(a,\vec{s})'\vec{\beta}^*})$

Check Proof

$$\begin{split} &\sum_{i=1}^{N} \left(y_{i} \cdot \left(\frac{e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \right)^{-1} \frac{\partial}{\partial \beta_{m}} \left(1 + e^{-\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \right)^{-1} + (1 - y_{i}) \cdot \frac{\partial}{\partial \beta_{m}} \ln \left(1 - \frac{e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \right)^{-1} \left(-1 \right) \left(1 + e^{-\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \right)^{-2} \cdot e^{-\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \left(-x_{i}^{(k)} \right) - (1 - y_{i}) \cdot \left(\frac{1}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \right)^{-1} \left(1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \left(x_{i}^{(k)} \right) \right)^{-1} \cdot e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \left(x_{i}^{(k)} \right) \right) \stackrel{!}{=} 0 \\ &\sum_{i=1}^{N} \left(y_{i} \cdot \left(1 + e^{-\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \right)^{1} \left(-1 \right) \left(1 + e^{-\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \right)^{-2} \cdot e^{-\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \left(-x_{i}^{(k)} \right) - (1 - y_{i}) \cdot \left(1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \right)^{-1} \cdot e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}} \left(x_{i}^{(k)} \right) \right) \stackrel{!}{=} 0 \\ &\sum_{i=1}^{N} \frac{1}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \cdot \left(y_{i} \cdot \left(x_{i}^{(k)} \right) - (1 - y_{i}) \cdot \left(x_{i}^{(k)} \right) \right) \frac{e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \stackrel{!}{=} 0 \\ &\sum_{i=1}^{N} \left(y_{i} \cdot \left(x_{i}^{(k)} \right) - \left(x_{i}^{(k)} \right) - \left(x_{i}^{(k)} \right) \frac{e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}}{1 + e^{\vec{x}(a_{i},\vec{s}_{i})'\vec{\beta}}} \right) \stackrel{!}{=} 0 \end{aligned}$$

Application of the Model Obtained

- Observe current market situation for a product: \vec{s}
- For any admissible offer prices a we can evaluate $\vec{x}(a, \vec{s})$ and obtain

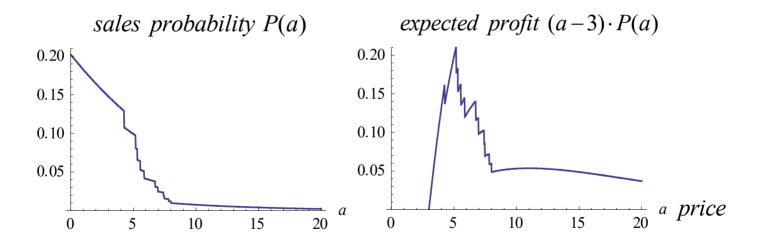
$$P(Y = 1 \mid \vec{x}(a, \vec{s})) := \frac{e^{\vec{x}(a, \vec{s})' \vec{\beta}^*}}{1 + e^{\vec{x}(a, \vec{s})' \vec{\beta}^*}}$$

• Now, we can optimize *expected profits* (for one time interval):

$$\max_{a\geq 0} \left\{ (a-c) \cdot \frac{e^{\vec{x}(a,\vec{s})'\vec{\beta}^*}}{1 + e^{\vec{x}(a,\vec{s})'\vec{\beta}^*}} \right\}$$

Prediction of Sales Probabilities

• Example: Competitor's prices $\vec{p} = (4.26, 5.18, 5.31, 5.55, 5.86, ...)$



Summary

- (+) Logistic Regression is simple and robust
- (+) Allows for many observations N and many features M
- (+) Plausibility Checks & Closed Form Expressions
- (+/-) Definition of Customized Explanatory Variables

- (–) No dependencies between variables
- (–) Limited to binary dependent variables

What is a good Model?

- Use "Goodness of fit" measures (for MLE models)
- AIC (low is good, trade-of between fit and number of variables M)

$$AIC := -2 \cdot \sum_{i=1}^{N} (y_i \cdot \ln p_i + (1 - y_i) \cdot \ln(1 - p_i)) + 2 \cdot M$$

Note, p_i depends on all features x_i and the optimal β^* coefficients.

- Normalized (McFadden Pseudo R^2): $R^2 := 1 AIC / AIC_0$ (vs. Null-model)
- Be creative: Test different variables and find the smallest AIC value.

Hint: Not quantity but quality counts!

Next Lecture (May 16)

Homework: Solve at least 2 out of 4 of the following problems

- The latest version of the HPI Master Project Assignment Problem
- A model to solve Sudoku examples
- Soccer line-up with several constraints
- A model to solve logistic regressions

Hand in (May 23): (i) written key formulas/model & (ii) executable (Ampl) files Teams of at most two students are allowed. Questions per Mail.

For further details take a look at the course website.

Overview

2	April 25	Linear Programming I
3	April 29	Linear Programming II
4	May 2	Linear/Logistic Regression + Homework (3 weeks time)
5	May 16	Exercise Implementations
6	May 20	Dynamic Programming
7	May 23	Response Strategies / Game Theory
8	May 27	Project Assignments
9	June 3	Robust Optimization
10	June 13	Workshop / Group Meetings
11	June 20	Presentations (First Results)
12/13	June 24/27	Workshop / Group Meetings
14/15	July 1/4	Workshop / Group Meetings
16	July 11	Presentations (Final Results), Feedback, Documentation (Aug 31)