Data-Driven Decision-Making
In Enterprise Applications

Introduction

Rainer Schlosser
Hasso Plattner Institute (EPIC)

April 27, 2020
The World is Full of Decision Problems
What Constitutes a Decision Problem?

- Decisions
- Objectives
- Constraints
How to Approach Decision Problems?

<table>
<thead>
<tr>
<th>Decisions x</th>
<th>When can I do what?</th>
<th>Identify.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective $F(x)$</td>
<td>What do I want to optimize?</td>
<td>Define.</td>
</tr>
<tr>
<td>Constraints $C(x)$</td>
<td>What has to be satisfied?</td>
<td>Determine.</td>
</tr>
</tbody>
</table>
How to Approach Decision Problems?

Decisions x
When can I do what?
Identify.

Impact of x
What happens if a certain decision is made?
Estimate.

Objective $F(x)$
What do I want to optimize?
Define.

Constraints $C(x)$
What has to be satisfied?
Determine.

Optimization
Max $F(x)$ over x such that $C(x)$ is satisfied.
Solve!

Data-Driven Decision-Making in Enterprise Applications - Introduction
Agenda

- Introduction ✓
- Personal Background
- Goals of the Course & Grading
- Outlook: Solution Techniques and Problem Examples
Personal Background

- Ph.D. Operations Research (2014), Humboldt-University of Berlin
- Hasso Plattner Institute, EPIC, since 2015
- Field of Research
 - Data-driven decision support
 - Focus on stochastic dynamic models
- Current Areas of Applications
 - Operations management (e.g., dynamic pricing, ordering, advertising)
 - Database configuration (e.g., data placement problems, index selection)
Agenda

- Introduction ✓
- Personal background ✓
- Goals of the Course & Grading
- Outlook: Solution Techniques and Problem Examples
Technical Information

- **Credits?** 4 SWS (V/Ü), 6 ECTS (graded)
- **When?**
 - Monday 13.30 - 15.00 VL (lecture)
 - Thursday 11.00 – 12.30 UE (exercise/questions)

 Start: April 27, 2020, End: July 16, 2020

- **Where?** currently via Zoom (maybe later Room D-E. 9/10)

- **Who?** Rainer Schlosser, rainer.schlosser@hpi.de

- **Slides?** EPIC, Teaching, Summer 2020
Structure of the Course

- **April/May:** Lectures on „Optimization Techniques“:
 (i) Linear Programming
 (ii) Integer Linear Programming
 (iii) Linear + Logistic Regression
 (iv) Dynamic Programming
 (v) Robust + Nonlinear Optimization

- **June/July:** Choose Projects, Apply/Extend Suitable Techniques,
 Work in Teams, Input/Support will be given

- **July/Aug:** Documentation of Projects Results
Overview

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>April 27/30</td>
<td>Introduction + Linear Programming</td>
</tr>
<tr>
<td>2</td>
<td>May 4/7</td>
<td>Integer Linear Programming</td>
</tr>
<tr>
<td>3</td>
<td>May 11/14</td>
<td>Linear + Logistic Regression</td>
</tr>
<tr>
<td>4</td>
<td>May 18</td>
<td>Exercise Implementations</td>
</tr>
<tr>
<td>5</td>
<td>May 25/28</td>
<td>Dynamic Programming (Thu May 21 “Himmelfahrt”)</td>
</tr>
<tr>
<td>6</td>
<td>June 4</td>
<td>Dynamic Pricing Competition</td>
</tr>
<tr>
<td>7</td>
<td>June 8/11</td>
<td>Project Assignments</td>
</tr>
<tr>
<td>8</td>
<td>June 15/18</td>
<td>Robust + Nonlinear Optimization</td>
</tr>
<tr>
<td>9</td>
<td>June 22/25</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>10</td>
<td>June 29/2</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>11</td>
<td>July 6/9</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>12</td>
<td>July 13/16</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>13</td>
<td>July/Aug</td>
<td>Finish Documentation (Deadline: Aug 31)</td>
</tr>
</tbody>
</table>

Data-Driven Decision-Making in Enterprise Applications - Introduction
Goals of the Course & Grading

- **Goal:** Develop models to compute optimized decisions for different problems & applications
- **Learn:** Optimization techniques
- **Do:** Apply & extend different optimization approaches
- **Grading:**
 - 30% Project results
 - 70% Documentation ("Projektarbeit")
Prerequisites

- Programming
 - Parameters, Data Preparation
 - Loops, Recursions, Simulations

- Basic Mathematical Background
 - Sets, Vectors
 - Probabilities, Random Variables, Expected Values

- More does not harm
 - Regression Analysis
 - Experience with Solvers
 - Game Theory
Agenda

- Introduction ✓

- Personal Background ✓

- Goals of the Course & Grading ✓

- Outlook: Solution Techniques and Problem Examples
Week 2-3 – Linear (Integer) Programming

- \[\max_{x_1, x_2 \geq 0} c'x \quad \text{s.t.} \quad Ax \leq b \]
 - Knapsack Problem
 - Matrix Inversion
 - Assignment Problems
 - Data placement problems
Week 4 – Linear / Logistic Regression

- Least squares
- Maximum Likelihood
- Estimation of Conditional Probabilities
- Demand Learning on Online Marketplaces
Week 5-6 – Dynamic Programming

- How to control processes over time
- Plan decisions over time
- Consider state transitions
- Inventory Management
- Dynamic Pricing Competition

Data-Driven Decision-Making in Enterprise Applications - Introduction
Week 7 – Choose Your Project

- Form teams of 2-3 students

- Potential projects:
 - Data placement problems
 - Index Selection
 - Dynamic Pricing
 - Competition + Game Theory, . . .

Data-Driven Decision-Making in Enterprise Applications - Introduction
Overview

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>April 27/30</td>
<td>Introduction + Linear Programming</td>
</tr>
<tr>
<td>2</td>
<td>May 4/7</td>
<td>Integer Linear Programming</td>
</tr>
<tr>
<td>3</td>
<td>May 11/14</td>
<td>Linear + Logistic Regression</td>
</tr>
<tr>
<td>4</td>
<td>May 18</td>
<td>Exercise Implementations (Thu May 21 “Himmelfahrt”)</td>
</tr>
<tr>
<td>5</td>
<td>May 25/28</td>
<td>Dynamic Programming (Mon June 1 “Pfingstmontag”)</td>
</tr>
<tr>
<td>6</td>
<td>June 4</td>
<td>Dynamic Pricing Competition</td>
</tr>
<tr>
<td>7</td>
<td>June 8/11</td>
<td>Project Assignments</td>
</tr>
<tr>
<td>8</td>
<td>June 15/18</td>
<td>Robust + Nonlinear Optimization</td>
</tr>
<tr>
<td>9</td>
<td>June 22/25</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>10</td>
<td>June 29/2</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>11</td>
<td>July 6/9</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>12</td>
<td>July 13/16</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>13</td>
<td>July/Aug</td>
<td>Finish Documentation (Deadline: Aug 31)</td>
</tr>
</tbody>
</table>