Dynamic Programming and Reinforcement Learning

Monte Carlo Techniques and Q-Learning (Week 4)

Rainer Schlosser, Alexander Kastius

Hasso Plattner Institute (EPIC)

May 12, 2022
Outline

- Questions?

- Today: Finally, dynamics do not have to be known
 Learning & optimizing from simulation
 Monte Carlo Simulations
 Q-Learning
Recap: Last Week

- Approximate Dynamic Programming
- Forward Dynamic Programming
- Simulation-based Approaches
- Exercises & Implementation
- Value iteration & Policy iteration
Solving MDP Problems via DP and RL

- Discrete Time MDP Problems **with full knowledge** (last weeks)
 - Optimal Solutions (curse of dimensionality)
 - ADP & relaxation concepts to attack larger problem sizes
 - Forward Dynamic Programming (simulation-based)

- Discrete Time MDP Problems **with less knowledge** (today)
 - Time-independent (stationary) infinite horizon framework
 - No knowledge about reward distributions or state transitions
 - Simulation-based evaluation of policies
 - Simulation-based optimization of policies
MDP Problems with Different Characteristics

<table>
<thead>
<tr>
<th>Example</th>
<th>Objective</th>
<th>State</th>
<th>Action</th>
<th>Events</th>
<th>Rewards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airline Tickets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotel/Rental/Rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparel/Seasonal/Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perishable Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory Mgmt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durable Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Commerce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Allocations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetris/Chess/Go</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-driving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distinguish:
- Finite vs Infinite vs “Sink”

Distinguish:
- System dynamics known vs unknown
Recap

- Considered setup: Infinite horizon (stationary)
- Stationary policy: $\pi(s)$ for all states $s \in S$
- Realized trajectory: $s_0, a_0, r_0, s_1, a_1, r_1, ..., s_t, a_t, r_t, ...$
- (Observed) disc. future reward in s_t: $G_t = G_t(s_t) = \sum_{k \geq 0} \gamma^k \cdot r_{t+k}$
- Recursion for G_t: $G_t(s = s_t) = r_t + \gamma \cdot G_{t+1}(s' = s_{t+1})$
- Sink: A final state will be reached at a random time T
- No sink: There is no absorbing state (cf. inventory prob.)
Monte-Carlo Estimation (with Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?
Monte-Carlo Estimation (with Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ **under unknown dynamics**?

1. Generate/simulate **one** trajectory (the sink is reached at time T):

$$s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_T, a_T, r_T$$

For each trajectory compute all $G_t(s = s_t)$ (via recursion from r_T)

2.

3.
Monte-Carlo Estimation (with Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?

(1) Generate/simulate one trajectory (the sink is reached at time T):

$s_0, a_0, r_0, s_1, a_1, r_1, ..., s_T, a_T, r_T$

For each trajectory compute all $G_t(s = s_t)$ (via recursion from r_T)

(2) For all $t = 0, 1, ..., T$ estimate the policy’s value function $V^{(\pi)}(s)$ via:

$V^{(\pi)}(s_t) \leftarrow G_t(s_t)$

Can we do better?
Monte-Carlo Estimation (with Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?

1. Generate/simulate one trajectory (the sink is reached at time T):

 $s_0, a_0, r_0, s_1, a_1, r_1, ..., s_T, a_T, r_T$

 For each trajectory compute all $G_t(s = s_t)$ (via recursion from r_T)

2. For all $t = 0, 1, ..., T$ estimate the policy’s value function $V^{(\pi)}(s)$ via:

 $V^{(\pi)}(s_t) \leftarrow G_t(s_t)$

3. Use more simulated trajectories!
Monte-Carlo Estimation (with Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics?

(3) Generate/simulate $k=1,...,K$ trajectories (the sink is reached at time $T^{(k)}$):

$s_0^{(k)}, a_0^{(k)}, r_0^{(k)}, s_1^{(k)}, a_1^{(k)}, r_1^{(k)}, ..., s_{T^{(k)}}^{(k)}, a_{T^{(k)}}^{(k)}, r_{T^{(k)}}^{(k)}$

For each trajectory compute all $G_t^{(k)}(s = s_t^{(k)})$ (via recursion from $r_{T^{(k)}}^{(k)}$)

(4) How to update the estimation for $V^{(\pi)}(s)$?
Monte-Carlo Estimation (with Sink)

- Performance $V(\pi)(s)$ of a given policy $\pi(s)$ under unknown dynamics?

(3) Generate/simulate $k=1,...,K$ trajectories (the sink is reached at time $T^{(k)}$):

$s_0^{(k)}, a_0^{(k)}, r_0^{(k)}, s_1^{(k)}, a_1^{(k)}, r_1^{(k)}, ..., s_{T^{(k)}}^{(k)}, a_{T^{(k)}}^{(k)}, r_{T^{(k)}}^{(k)}$

For each trajectory compute all $G_t^{(k)}(s = s_t^{(k)})$ (via recursion from $r_{T^{(k)}}^{(k)}$)

(4) For all $t = 0,1,...,T$ of a run k update the estimation for $V(\pi)(s)$ using a learning rate parameter $\eta \in (0,1)$ as follows:

$V(\pi)(s_t^{(k)}) \leftarrow \eta \cdot G_t(s_t^{(k)}) + (1-\eta) \cdot V(\pi)(s_t^{(k)})$
Monte-Carlo Estimation (with Sink)

- Performance $V(\pi)(s)$ of a given policy $\pi(s)$ under unknown dynamics?

(3) Generate/simulate $k=1,\ldots,K$ trajectories (the sink is reached at time $T^{(k)}$):

$$s_0^{(k)}, a_0^{(k)}, r_0^{(k)}, s_1^{(k)}, a_1^{(k)}, r_1^{(k)}, \ldots, s_{T^{(k)}}^{(k)}, a_{T^{(k)}}^{(k)}, r_{T^{(k)}}^{(k)}$$

For each trajectory compute all $G_t^{(k)}(s = s_t^{(k)})$ (via recursion from $r_{T^{(k)}}^{(k)}$)

(4) For all $t = 0, 1, \ldots, T$ of a run k update the estimation for $V(\pi)(s)$ using a learning rate parameter $\eta \in (0, 1)$ as follows:

$$V(\pi)(s_t^{(k)}) \leftarrow \eta \cdot G_t(s_t^{(k)}) + (1 - \eta) \cdot V(\pi)(s_t^{(k)})$$

$$= \eta \cdot \left(G_t(s_t^{(k)}) - V(\pi)(s_t^{(k)}) \right) + V(\pi)(s_t^{(k)})$$
Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)
Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)

- **Idea**: To estimate $G_{t+1}(s_{t+1})$ use $V^{(\pi)}(s_{t+1}) = E\left(G_{t+1}(s_{t+1})\right) \quad :-)
Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)

- Idea: To estimate $G_{t+1}(s_{t+1})$ use $V^{(\pi)}(s_{t+1}) = E \left(G_{t+1}(s_{t+1}) \right)$:-)

- Replace $V^{(\pi)}(s^{(k)}_t) \leftarrow \eta \cdot \frac{G_t(s^{(k)}_t)}{r^{(k)}_t + \gamma \cdot G_{t+1}(s^{(k)}_{t+1})} + (1 - \eta) \cdot V^{(\pi)}(s^{(k)}_t)$, cf. MCE (4),

by $V^{(\pi)}(s^{(k)}_t) \leftarrow \eta \cdot \left(r^{(k)}_t + \gamma \cdot V^{(\pi)}(s^{(k)}_{t+1}) \right) + (1 - \eta) \cdot V^{(\pi)}(s^{(k)}_t)$
Temporal Difference Learning (without Sink)

- Performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ **under unknown dynamics** when there is no sink (to start to compute $G_t(s_t) = r_t + \gamma \cdot G_{t+1}(s_{t+1})$)

- **Idea:** To estimate $G_{t+1}(s_{t+1})$ use $V^{(\pi)}(s_{t+1}) = E(G_{t+1}(s_{t+1})) :-)$

- Replace

 \[
 V^{(\pi)}(s_t^{(k)}) \leftarrow \eta \cdot G_t(s_t^{(k)}) + (1 - \eta) \cdot V^{(\pi)}(s_t^{(k)}), \text{ cf. MCE (4),}
 \]

 by

 \[
 V^{(\pi)}(s_t^{(k)}) \leftarrow \eta \cdot \left(r_t^{(k)} + \gamma \cdot V^{(\pi)}(s_{t+1}^{(k)}) \right) + (1 - \eta) \cdot V^{(\pi)}(s_t^{(k)})
 \]

 \[
 \quad = \eta \cdot \left(r_t^{(k)} + \gamma \cdot V^{(\pi)}(s_{t+1}^{(k)}) - V^{(\pi)}(s_t^{(k)}) \right) + V^{(\pi)}(s_t^{(k)})
 \]
Towards Optimized Policies

- We can learn/simulate the performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics

- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?
Towards Optimized Policies

- We can learn/simulate the performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics

- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

$$V^{(\pi)}(s_t^{(k)}) = \max_{a_i \in A} E\left(r_t^{(k)} + \gamma \cdot V^{(\pi)}(s_{t+1}^{(k)}) \right)$$

- Missing coupling element?
Towards Optimized Policies

- We can learn/simulate the performance $V^{(\pi)}(s)$ of a **given** policy $\pi(s)$ **under unknown dynamics**

- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

 $$V^{(\pi)}(s^{(k)}_t) = \max_{a_t \in A} E \left(r^{(k)}_t + \gamma \cdot V^{(\pi)}(s^{(k)}_{t+1}) \right)$$

- **Missing** coupling element: anticipation of state transitions!

- **Solution options:**
Towards Optimized Policies

- We can learn/simulate the performance $V^{(\pi)}(s)$ of a given policy $\pi(s)$ under unknown dynamics.
- Can we optimize state-dependent actions based on $V^{(\pi)}(s)$?

$$V^{(\pi)}(s^{(k)}_t) = \max_{a_i \in A} E \left(r^{(k)}_t + \gamma \cdot V^{(\pi)}(s^{(k)}_{t+1}) \right)$$

- Missing coupling element: anticipation of state transitions!
- Solution options:
 - estimate state transition probabilities
 - learn state-action-values (more efficient)
Q-Values

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$
- $Q^{(\pi)}(s,a)$??
Q-Values

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$

- $Q^{(\pi)}(s, a)$ expected disc. future rewards of a given policy $\pi(s)$ when instead now playing a in s and then again continue to play $\pi(s)$

$$Q^{(\pi)}(s, a) := E \left(G_t \mid s_t = s, a_t = a, \forall k > t \text{ use } a_k = \pi(s_k) \right)$$

$$= E \left(r_t + \gamma \cdot V^{(\pi)}(s_{t+1}) \mid s_t = s, a_t = a \right) \text{ (effect of state transitions is “included”!)}$$
Q-Values

- \(V^{(\pi)}(s) \) expected disc. future rewards of a given policy \(\pi(s) \)

- \(Q^{(\pi)}(s, a) \) expected disc. future rewards of a given policy \(\pi(s) \) when instead now playing \(a \) in \(s \) and then again continue to play \(\pi(s) \)

\[
Q^{(\pi)}(s, a) := \mathbb{E}\left(G_t \mid s_t = s, a_t = a, \forall k > t \text{ use } a_k = \pi(s_k) \right) \\
= \mathbb{E}\left(r_t + \gamma \cdot V^{(\pi)}(s_{t+1}) \mid s_t = s, a_t = a \right) \quad \text{(effect of state transitions is “included”!)}
\]

- Note, \(Q^{(\pi)}(s, \pi(s)) = V^{(\pi)}(s) \), i.e., \(V \) is a special case of \(Q \)

- And it allows to optimize policies!??
Q-Values

- $V^{(\pi)}(s)$ expected disc. future rewards of a given policy $\pi(s)$

- $Q^{(\pi)}(s, a)$ expected disc. future rewards of a given policy $\pi(s)$ when instead now playing a in s and then again continue to play $\pi(s)$

$$Q^{(\pi)}(s, a) := E\left(G_t \mid s_t = s, a_t = a, \forall k > t \text{ use } a_k = \pi(s_k)\right)$$

$$= E\left(r_t + \gamma \cdot V^{(\pi)}(s_{t+1}) \mid s_t = s, a_t = a\right)$$ (effect of state transitions is “included”!)

- Note, $Q^{(\pi)}(s, \pi(s)) = V^{(\pi)}(s)$, i.e., V is a special case of Q

- Allows to optimize: $a^*(s) = \arg \max_{a_t \in A} \{Q(s, a_t)\}$ cf. policy iteration (!)
Estimating Q-Values (of a Policy) using SARSA

(1) Play a **given** policy \(\pi(s) \), i.e., observe \(s_t, a_t, r_t \) and also \(s_{t+1}, a_{t+1} \)

(2) Update the Q-value estimate
Estimating Q-Values (of a Policy) using SARSA

(1) Play a **given** policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}

(2) Update the Q-value estimate (start with random values or 0) via:

$$Q^{(\pi)}(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) \right) + (1 - \eta_t) \cdot Q^{(\pi)}(s_t, a_t)$$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t := 1/t$
Estimating Q-Values (of a Policy) using SARSA

1. Play a **given** policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}

2. Update the Q-value estimate (start with random values or 0) via:

$$Q^{(\pi)}(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) \right) + (1 - \eta_t) \cdot Q^{(\pi)}(s_t, a_t)$$

$$= \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) - Q^{(\pi)}(s_t, a_t) \right) + Q^{(\pi)}(s_t, a_t)$$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t := 1/t$

3. If the policy is changed also the Q-values change

4. Can we find an **optimal policy**?
Estimating Q-Values (of a Policy) using SARSA

(1) Play a given policy $\pi(s)$, i.e., observe s_t, a_t, r_t and also s_{t+1}, a_{t+1}

(2) Update the Q-value estimate (start with random values or 0) via:

$$Q^{(\pi)}(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) \right) + (1 - \eta_t) \cdot Q^{(\pi)}(s_t, a_t)$$

$$= \eta_t \cdot \left(r_t + \gamma \cdot Q^{(\pi)}(s_{t+1}, a_{t+1}) - Q^{(\pi)}(s_t, a_t) \right) + Q^{(\pi)}(s_t, a_t)$$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t := 1/t$

(3) If the policy is changed also the Q-values change

(4) An ϵ-greedy version of $\pi_t(s) = \text{arg max}_{a \in A} Q_t(s, a)$ is guaranteed to converge to the optimal policy (as all pairs s and a are reachable).
Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy \(\pi(s) \), i.e., observe \(s_t, a_t, r_t \) and \(s_{t+1} \)

(2) Update the Q-value estimate
Optimal Q-Values using Tabular Q-Learning (QL)

1. Play the current policy $\pi(s)$, i.e., observe s_t, a_t, r_t and s_{t+1}

2. Update the Q-value estimate (start with random values or 0 in $t=0$) via:

$$Q(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot \max_{a \in A} Q(s_{t+1}, a) \right) + (1 - \eta_t) \cdot Q(s_t, a_t)$$

where the learning rate η_t may be reduced over time to obtain estimates that remain constant, e.g., using $\eta_t := 1 / t$

3. Can we find an optimal policy?
Optimal Q-Values using Tabular Q-Learning (QL)

(1) Play the current policy \(\pi(s) \), i.e., observe \(s_t, a_t, r_t \) and \(s_{t+1} \)

(2) Update the Q-value estimate (start with random values or 0 in \(t=0 \)) via:

\[
Q(s_t, a_t) \leftarrow \eta_t \cdot \left(r_t + \gamma \cdot \max_{a \in A} Q(s_{t+1}, a) \right) + (1 - \eta_t) \cdot Q(s_t, a_t)
\]

\[
= \eta_t \cdot \left(r_t + \gamma \cdot \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t) \right) + Q(s_t, a_t)
\]

where the learning rate \(\eta_t \) may be reduced over time
to obtain estimates that remain constant, e.g., using \(\eta_t := 1/t \)

(3) An \(\epsilon \)-greedy version of \(a_t := \pi(s_t) = \arg \max_{a \in A} Q(s_t, a) \) is guaranteed
to converge to the optimal policy (as all pairs \(s \) and \(a \) are reachable).
On-Policy vs. Off-Policy Learning

SARSA
- Tuples are generated by the policy that we want to learn the values for
- Future estimations of a Q-value still depends on the policy
- The requirements for the policy forces us to generate the tuples in the specified order using the most current iteration of the policy
- If the policy used to generate the tuples is different, the values will change
- This style of algorithm is called on-policy

Q-Learning
- The tuples can be generated by any policy at any time, the generated Q-values will be the same
- The only requirement to ensure convergence: every combination of s and a that is visited repeatedly in endless time
- This style of algorithm is called off-policy
- Improves SARSA by shortening the learning process with off-policy learning
Summary (Solving Discrete Time MDPs via ADP)

SARSA & Q-Learning

(+) no system knowledge is required
(+) provides near-optimal solutions for infinite horizon MDPs
(+) guaranteed convergence
(+) numerically simple
(+) general applicable
(+) obtain good heuristics

(−) updates only for single “visited” states (cf. large state spaces)
(−) results are stochastic (due to simulated next states)
(−) hyper parameter tuning (e.g., learning + exploration rate)

Next: Deep QL, allows to attack larger problems
Overview

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>April 21</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>April 25/28</td>
<td>Finite + Infinite Time MDPs</td>
</tr>
<tr>
<td>3</td>
<td>May 2/5</td>
<td>Approximate Dynamic Programming (ADP) + DP Exercise</td>
</tr>
<tr>
<td>4</td>
<td>May 12</td>
<td>Q-Learning (QL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not Mon May 9)</td>
</tr>
<tr>
<td>5</td>
<td>May 16/19</td>
<td>Deep Q-Networks (DQN)</td>
</tr>
<tr>
<td>6</td>
<td>May 23</td>
<td>DQN Extensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not Thu May 26 “Himmelfahrt”)</td>
</tr>
<tr>
<td>7</td>
<td>May 30/June 2</td>
<td>Policy Gradient Algorithms</td>
</tr>
<tr>
<td>8</td>
<td>June 9</td>
<td>Project Assignments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not Mon June 6 “Pfingstmontag”)</td>
</tr>
<tr>
<td>9</td>
<td>June 13/16</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>10</td>
<td>June 20/23</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>11</td>
<td>June 27/30</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>12</td>
<td>July 4/7</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>13</td>
<td>July 11/14</td>
<td>Work on Projects: Input/Support</td>
</tr>
<tr>
<td>14</td>
<td>July 18/21</td>
<td>Final Presentations</td>
</tr>
<tr>
<td></td>
<td>Sep 15</td>
<td>Finish Documentation</td>
</tr>
</tbody>
</table>