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Already solved:
■ State Space Complexity

□ Many Dimensions
□ Continuous Values

■ Current methods require discretization and 
become intractable at some point
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Continuous Control

■ Continuous Control
□ Action Space might consist of 

continuous values as well
□ Can be discretized sometimes, 

which prevents us from finding 
the actual optimal policy



■ Maximization operation becomes impossible, can only be approximated 
by discretization.

■ Discretization does introduce a penalty in the achievable reward, unless 
the decision problem is very well formulated in that regard

■ Discretization does have to relearn that actions are related, something 
that might be encoded in the action space

■ Introduces more hyper-parameters, which have to be tuned manually
■ Is there anything we can do about this?

Effects Of Continuous Action Spaces
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■ All operations performed previously, aimed at finding the optimal 
policy with regard to the expected discounted reward.

■ Most of those used estimated the value of performing something to do so 
and defined the assignment of a to s based on rules (greedy, 𝜖-greedy).

■ To change the policy, the value estimation had to change first.

■ The optimization goal was usually related to a measure of performance.
■ One example for this, would be the expected discounted reward of 𝜋

from the starting state 𝑠!:
𝐸(𝑉" 𝑠! )

Policy Gradients
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■ One example for this, would be the expected discounted reward of 𝜋
from the starting state 𝑠!:

𝐸(𝑉" 𝑠! )

■ This depends on the policy as well as the process itself (transitions, 
reward function etc.).

■ A policy can be parametric, e.g. depend on a set of parameters.
■ A non-deterministic policy with parameters 𝜙 will be denoted

𝜋# 𝑎 𝑠 = 𝑝 𝑎$ = 𝑎 𝑠$ = 𝑠, 𝜙$ = 𝜙)

(The probability of choosing a in s given our 
parameters are set to 𝜙 at that point in time)

■ The known greedy or 𝜖-greedy policy could already be formulated in that 
way.

Policy Gradients

Chart 5



Discrete
The following methods can be used 
for discrete action spaces as well.
There could be a deterministic 
mechanism ℎ(𝑠, 𝑎; 𝜙) that outputs a 
measure of preference for the given 
action 𝑎 in state 𝑠.

𝜋# 𝑎 𝑠) =
𝑒%(',);#)

∑),∈. 𝑒%(',),;#)

Is there any advantage of doing 
something like this if we have 
our fine-tuned DQN ready to 
use?

Continuous
In the continuous case, things get more 
complicated.
Instead of assigning each action a 
probability, we can provide a probability 
density function for our continuous action 
space variables.
Usually, we use an existing probability 
distribution, a parameter estimator ℎ 𝑠; 𝜙
and then do something like this:

𝜋# 𝑎 𝑠) =
1

ℎ 𝑠; 𝜙 / 2𝜋
exp −

𝑎 − ℎ 𝑠; 𝜙 0
1

2ℎ 𝑠; 𝜙 /
1

Our parameter estimator outputs the 
mean (𝜇) and standard deviation 𝜎 of a 
normal dist.!
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Policy Formulation



■ Given a parametric policy, we can define:
𝐽 𝜙 = 𝑉"! 𝑠!

■ This has the shape of a loss function. Given some magic optimization 
logic, we could find well performing policies by finding the parameters 𝜙
that maximize this value!

■ First idea: Reuse previous logic and do SGD or something related to it:
𝜙$23 ← 𝜇∇#𝐽 𝜙$ + 𝜙$

■ Nice, problem solved. Well, not really.
■ The actual problem in this case: Finding 𝜵𝝓𝑱 𝝓𝒕 .

Policy Gradients
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The actual problem in this case: Finding ∇#𝐽 𝜙 .
∇#𝐽 𝜙 = ∇#𝑉 𝑠!

Notice: We consider 𝑉 generalized to any 𝑠 for the moment:

∇#𝑉(𝑠) = ∇# @
)∈.

𝜋# 𝑎 𝑠)𝑄"(𝑠, 𝑎)

= @
)∈.

∇#𝜋# 𝑎 𝑠)𝑄" 𝑠, 𝑎 + 𝜋# 𝑎 𝑠)∇#𝑄"(s, a)

= @
)∈.

∇#𝜋# 𝑎 𝑠)𝑄" 𝑠, 𝑎 + 𝜋# 𝑎 𝑠)∇# @
'"∈6,7∈8

𝑝(𝑠,, 𝑟|𝑠, 𝑎)(𝑟 + 𝑉 𝑠, )

We just found a recursive formulation of this gradient.

Finding ∇!𝐽 𝜙"

Chart 8



∇#𝑉(𝑠)

= @
)∈.

∇#𝜋# 𝑎 𝑠)𝑄" 𝑠, 𝑎 + 𝜋# 𝑎 𝑠)∇# @
'"∈6,7∈8

𝑝(𝑠,, 𝑟|𝑠, 𝑎)(𝑟 + 𝑉 𝑠, )

We just found a recursive formulation of this gradient.
With some “smaller” tricks (rolling this out, then noticing that we can 

replace the “chance of reaching something” part with the probability of 
going from state 𝑠 to state 𝑥 in 𝑘 steps given we follow 𝜋) this leads us to:

=@
9∈6

@
:;!

<

Pr 𝑠 → 𝑥, 𝑘, 𝜋 @
)∈.

∇#𝜋# 𝑎 𝑥 𝑄"(𝑥, 𝑎)

Finding ∇!𝐽 𝜙" (2)
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∇#𝑉(𝑠)

=@
9∈6

@
:;!

<

Pr 𝑠 → 𝑥, 𝑘, 𝜋 @
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

Now lets back to the original problem:
∇#𝑉(𝑠!)

=@
9∈6

@
:;!

<

Pr 𝑠! → 𝑥, 𝑘, 𝜋 @
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

=@
9∈6

𝜂(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

The last trick uses the detail that the sum of going to state 𝑥 from the start 
state in 𝑘 steps over all 𝑘 is equal to the number of times to be in state 𝑥

during an episode (𝜂(𝑥), don’t confuse with LR).

Finding ∇!𝐽 𝜙" (3)
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∇#𝑉(𝑠!)

=@
9∈6

𝜂(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

The last trick uses the info that the sum of going to state 𝑥 from the start 
state in 𝑘 steps over all 𝑘 is equal to the number of times to be in state 𝑥

during an episode (𝜂(𝑥)).
The relative time spent in an episode is then:

𝜇 𝑥 =
𝜂 𝑥

∑'"∈6 𝜂(𝑠′)

= @
'"∈6

𝜂(𝑠′)@
9∈6

𝜂 𝑥
∑'"∈6 𝜂(𝑠′)

@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

This is multiplication by one.

Finding ∇!𝐽 𝜙" (3)
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𝜇 𝑥 =
𝜂 𝑥

∑'"∈6 𝜂(𝑠′)

∇#𝑉 𝑠! = @
'"∈6

𝜂 𝑠′ @
9∈6

𝜂 𝑥
∑'"∈6 𝜂 𝑠′

@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

= @
'"∈6

𝜂(𝑠′)@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

∝@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

Okay now why had we go through this, you could have given us this one on 
chart 3?

Finding ∇!𝐽 𝜙" (3)
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∇#𝑉 𝑠! = @
'"∈6

𝜂(𝑠′)@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

∝@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

Okay now why had we go through this, you could have given us this one on 
chart 3?

To memorize that the recursiveness in the values allows us to compute 
something proportional to the actual gradient by only using 3 pieces of 

information:
(i) The relative occurrence of all states, (ii) the gradient on the probability of 

an action and (iii) the Q-value of this action.
We can cancel out all transition probabilities at some point.

Finding ∇!𝐽 𝜙" (3)
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If we compute the 
inner element of the 
gradient every time we 
observe state 𝑠 the 
expected value of the 
resulting gradients will 
be the same as the 
sum just shown. 
(Everything else can be 
down-scaled by 
adjusting the learning 
rate).

Can be simply 
computed with our 
backpropagation tools 
at hand. This requires 
the policy to be 
differentiable with 
regard to all 
parameters.

We have already seen 
a simply method for 
the episodic case:
Follow the policy, wait 
until we reach the end 
of the episode and 
then simply compute it 
for the states and 
actions observed 
during that episode.

Relative occurrence Gradient on 𝝅 Q-value
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The Road to REINFORCE



Ha. You thought we’re done with summing up sums of sums yet?

∇#𝐽 𝜙 ∝@
'∈6

𝜇(𝑠)@
)∈.

∇#𝜋# 𝑎 𝑠 𝑄" 𝑠, 𝑎

= 𝐸 @
)∈.

𝜋# 𝑎 𝑠
𝜋# 𝑎 𝑠

∇#𝜋# 𝑎 𝑠 𝑄" 𝑠, 𝑎

= 𝐸
∇#𝜋# 𝑎$ 𝑠$
𝜋# 𝑎$ 𝑠$

𝑄" 𝑠$ , 𝑎$

= 𝐸
∇#𝜋# 𝑎$ 𝑠$
𝜋# 𝑎$ 𝑠$

𝐺$

In the last step, we replaced 𝑠 and 𝑎 with realizations of it. We are allowed 
to do so, because that’s covered by our expected value.

REINFORCE
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∇#𝐽 𝜙 ∝ 𝐸
∇#𝜋# 𝑎$ 𝑠$
𝜋# 𝑎$ 𝑠$

𝐺$

Inserting this in our gradient ascent update, we get the REINFORCE update 
mechanism:

𝜙$23 = 𝜙$ + 𝜂$
∇#𝜋## 𝑎$ 𝑠$
𝜋## 𝑎$ 𝑠$

𝐺$

𝜂$ = Learning rate
Note, the computation of 𝐺$ can only be performed in the episodic case with 

a guaranteed terminal state.

REINFORCE

Chart 16



■ 3.5.: Problems with Q-Learning
■ 10.5.: Deep Q-Networks
■ 17.5.: Eligibility Traces
■

■ 31.5.: Project Assignments
■ 7.6.: Project Work/Support
■ 14.6.: Project Work/Support
■ 21.6.: Project Work/Support
■ 28.6.: Project Work/Support
■ 5.7.: Project Work/Support
■ 12.7.: Final Presentations
■ 31.8.: Final Documentation

6.5.: Artificial Neural Networks

20.5.: Policy Gradients (1)
27.5.: Policy Gradients (2)
3.6.: Project Assignments
10.6.: Project Work/Support
17.6.: Project Work/Support
24.6.: Project Work/Support
31.6.: Project Work/Support
8.7.: Project Work/Support
15.7.: Final Presentations
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