
Dynamic Programming and Reinforcement Learning
Week 6b: Policy Gradients

Rainer Schlosser und Alexander Kastius
Enterprise Platform and Integration Concepts

20.05.21

Already solved:
■ State Space Complexity

□ Many Dimensions
□ Continuous Values

■ Current methods require discretization and
become intractable at some point

Chart 2

Continuous Control

■ Continuous Control
□ Action Space might consist of

continuous values as well
□ Can be discretized sometimes,

which prevents us from finding
the actual optimal policy

■ Maximization operation becomes impossible, can only be approximated
by discretization.

■ Discretization does introduce a penalty in the achievable reward, unless
the decision problem is very well formulated in that regard

■ Discretization does have to relearn that actions are related, something
that might be encoded in the action space

■ Introduces more hyper-parameters, which have to be tuned manually
■ Is there anything we can do about this?

Effects Of Continuous Action Spaces

Chart 3

■ All operations performed previously, aimed at finding the optimal
policy with regard to the expected discounted reward.

■ Most of those used estimated the value of performing something to do so
and defined the assignment of a to s based on rules (greedy, 𝜖-greedy).

■ To change the policy, the value estimation had to change first.

■ The optimization goal was usually related to a measure of performance.
■ One example for this, would be the expected discounted reward of 𝜋

from the starting state 𝑠!:
𝐸(𝑉" 𝑠!)

Policy Gradients

Chart 4

■ One example for this, would be the expected discounted reward of 𝜋
from the starting state 𝑠!:

𝐸(𝑉" 𝑠!)

■ This depends on the policy as well as the process itself (transitions,
reward function etc.).

■ A policy can be parametric, e.g. depend on a set of parameters.
■ A non-deterministic policy with parameters 𝜙 will be denoted

𝜋# 𝑎 𝑠 = 𝑝 𝑎$ = 𝑎 𝑠$ = 𝑠, 𝜙$ = 𝜙)

(The probability of choosing a in s given our
parameters are set to 𝜙 at that point in time)

■ The known greedy or 𝜖-greedy policy could already be formulated in that
way.

Policy Gradients

Chart 5

Discrete
The following methods can be used
for discrete action spaces as well.
There could be a deterministic
mechanism ℎ(𝑠, 𝑎; 𝜙) that outputs a
measure of preference for the given
action 𝑎 in state 𝑠.

𝜋# 𝑎 𝑠) =
𝑒%(',);#)

∑),∈. 𝑒%(',),;#)

Is there any advantage of doing
something like this if we have
our fine-tuned DQN ready to
use?

Continuous
In the continuous case, things get more
complicated.
Instead of assigning each action a
probability, we can provide a probability
density function for our continuous action
space variables.
Usually, we use an existing probability
distribution, a parameter estimator ℎ 𝑠; 𝜙
and then do something like this:

𝜋# 𝑎 𝑠) =
1

ℎ 𝑠; 𝜙 / 2𝜋
exp −

𝑎 − ℎ 𝑠; 𝜙 0
1

2ℎ 𝑠; 𝜙 /
1

Our parameter estimator outputs the
mean (𝜇) and standard deviation 𝜎 of a
normal dist.!

Chart 6

Policy Formulation

■ Given a parametric policy, we can define:
𝐽 𝜙 = 𝑉"! 𝑠!

■ This has the shape of a loss function. Given some magic optimization
logic, we could find well performing policies by finding the parameters 𝜙
that maximize this value!

■ First idea: Reuse previous logic and do SGD or something related to it:
𝜙$23 ← 𝜇∇#𝐽 𝜙$ + 𝜙$

■ Nice, problem solved. Well, not really.
■ The actual problem in this case: Finding 𝜵𝝓𝑱 𝝓𝒕 .

Policy Gradients

Chart 7

The actual problem in this case: Finding ∇#𝐽 𝜙 .
∇#𝐽 𝜙 = ∇#𝑉 𝑠!

Notice: We consider 𝑉 generalized to any 𝑠 for the moment:

∇#𝑉(𝑠) = ∇# @
)∈.

𝜋# 𝑎 𝑠)𝑄"(𝑠, 𝑎)

= @
)∈.

∇#𝜋# 𝑎 𝑠)𝑄" 𝑠, 𝑎 + 𝜋# 𝑎 𝑠)∇#𝑄"(s, a)

= @
)∈.

∇#𝜋# 𝑎 𝑠)𝑄" 𝑠, 𝑎 + 𝜋# 𝑎 𝑠)∇# @
'"∈6,7∈8

𝑝(𝑠,, 𝑟|𝑠, 𝑎)(𝑟 + 𝑉 𝑠,)

We just found a recursive formulation of this gradient.

Finding ∇!𝐽 𝜙"

Chart 8

∇#𝑉(𝑠)

= @
)∈.

∇#𝜋# 𝑎 𝑠)𝑄" 𝑠, 𝑎 + 𝜋# 𝑎 𝑠)∇# @
'"∈6,7∈8

𝑝(𝑠,, 𝑟|𝑠, 𝑎)(𝑟 + 𝑉 𝑠,)

We just found a recursive formulation of this gradient.
With some “smaller” tricks (rolling this out, then noticing that we can

replace the “chance of reaching something” part with the probability of
going from state 𝑠 to state 𝑥 in 𝑘 steps given we follow 𝜋) this leads us to:

=@
9∈6

@
:;!

<

Pr 𝑠 → 𝑥, 𝑘, 𝜋 @
)∈.

∇#𝜋# 𝑎 𝑥 𝑄"(𝑥, 𝑎)

Finding ∇!𝐽 𝜙" (2)

Chart 9

∇#𝑉(𝑠)

=@
9∈6

@
:;!

<

Pr 𝑠 → 𝑥, 𝑘, 𝜋 @
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

Now lets back to the original problem:
∇#𝑉(𝑠!)

=@
9∈6

@
:;!

<

Pr 𝑠! → 𝑥, 𝑘, 𝜋 @
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

=@
9∈6

𝜂(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

The last trick uses the detail that the sum of going to state 𝑥 from the start
state in 𝑘 steps over all 𝑘 is equal to the number of times to be in state 𝑥

during an episode (𝜂(𝑥), don’t confuse with LR).

Finding ∇!𝐽 𝜙" (3)

Chart 10

∇#𝑉(𝑠!)

=@
9∈6

𝜂(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

The last trick uses the info that the sum of going to state 𝑥 from the start
state in 𝑘 steps over all 𝑘 is equal to the number of times to be in state 𝑥

during an episode (𝜂(𝑥)).
The relative time spent in an episode is then:

𝜇 𝑥 =
𝜂 𝑥

∑'"∈6 𝜂(𝑠′)

= @
'"∈6

𝜂(𝑠′)@
9∈6

𝜂 𝑥
∑'"∈6 𝜂(𝑠′)

@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

This is multiplication by one.

Finding ∇!𝐽 𝜙" (3)

Chart 11

𝜇 𝑥 =
𝜂 𝑥

∑'"∈6 𝜂(𝑠′)

∇#𝑉 𝑠! = @
'"∈6

𝜂 𝑠′ @
9∈6

𝜂 𝑥
∑'"∈6 𝜂 𝑠′

@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

= @
'"∈6

𝜂(𝑠′)@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

∝@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

Okay now why had we go through this, you could have given us this one on
chart 3?

Finding ∇!𝐽 𝜙" (3)

Chart 12

∇#𝑉 𝑠! = @
'"∈6

𝜂(𝑠′)@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

∝@
9∈6

𝜇(𝑥)@
)∈.

∇#𝜋# 𝑎 𝑥 𝑄" 𝑥, 𝑎

Okay now why had we go through this, you could have given us this one on
chart 3?

To memorize that the recursiveness in the values allows us to compute
something proportional to the actual gradient by only using 3 pieces of

information:
(i) The relative occurrence of all states, (ii) the gradient on the probability of

an action and (iii) the Q-value of this action.
We can cancel out all transition probabilities at some point.

Finding ∇!𝐽 𝜙" (3)

Chart 13

If we compute the
inner element of the
gradient every time we
observe state 𝑠 the
expected value of the
resulting gradients will
be the same as the
sum just shown.
(Everything else can be
down-scaled by
adjusting the learning
rate).

Can be simply
computed with our
backpropagation tools
at hand. This requires
the policy to be
differentiable with
regard to all
parameters.

We have already seen
a simply method for
the episodic case:
Follow the policy, wait
until we reach the end
of the episode and
then simply compute it
for the states and
actions observed
during that episode.

Relative occurrence Gradient on 𝝅 Q-value

Chart 14

The Road to REINFORCE

Ha. You thought we’re done with summing up sums of sums yet?

∇#𝐽 𝜙 ∝@
'∈6

𝜇(𝑠)@
)∈.

∇#𝜋# 𝑎 𝑠 𝑄" 𝑠, 𝑎

= 𝐸 @
)∈.

𝜋# 𝑎 𝑠
𝜋# 𝑎 𝑠

∇#𝜋# 𝑎 𝑠 𝑄" 𝑠, 𝑎

= 𝐸
∇#𝜋# 𝑎$ 𝑠$
𝜋# 𝑎$ 𝑠$

𝑄" 𝑠$, 𝑎$

= 𝐸
∇#𝜋# 𝑎$ 𝑠$
𝜋# 𝑎$ 𝑠$

𝐺$

In the last step, we replaced 𝑠 and 𝑎 with realizations of it. We are allowed
to do so, because that’s covered by our expected value.

REINFORCE

Chart 15

∇#𝐽 𝜙 ∝ 𝐸
∇#𝜋# 𝑎$ 𝑠$
𝜋# 𝑎$ 𝑠$

𝐺$

Inserting this in our gradient ascent update, we get the REINFORCE update
mechanism:

𝜙$23 = 𝜙$ + 𝜂$
∇#𝜋## 𝑎$ 𝑠$
𝜋## 𝑎$ 𝑠$

𝐺$

𝜂$ = Learning rate
Note, the computation of 𝐺$ can only be performed in the episodic case with

a guaranteed terminal state.

REINFORCE

Chart 16

■ 3.5.: Problems with Q-Learning
■ 10.5.: Deep Q-Networks
■ 17.5.: Eligibility Traces
■

■ 31.5.: Project Assignments
■ 7.6.: Project Work/Support
■ 14.6.: Project Work/Support
■ 21.6.: Project Work/Support
■ 28.6.: Project Work/Support
■ 5.7.: Project Work/Support
■ 12.7.: Final Presentations
■ 31.8.: Final Documentation

6.5.: Artificial Neural Networks

20.5.: Policy Gradients (1)
27.5.: Policy Gradients (2)
3.6.: Project Assignments
10.6.: Project Work/Support
17.6.: Project Work/Support
24.6.: Project Work/Support
31.6.: Project Work/Support
8.7.: Project Work/Support
15.7.: Final Presentations

Chart 17

Schedule

