
Dynamic Programming and Reinforcement Learning
Week 8a: Recap, Projects

Rainer Schlosser und Alexander Kastius
Enterprise Platform and Integration Concepts

31.05.21



■ 12.4.: Introduction & MDPs
■ 19.4.: Infinite Time MDPs
■ 26.4.: Approximate Dynamic Prog.
■ 3.5.: Problems with Q-Learning
■ 10.5.: Deep Q-Networks
■ 17.5.: DQN (2) / RAINBOW
■

15.4.: Finite Time MDPs
22.4.: Exercise (DP, VI, PI)
29.4.: Q-Learning
6.5.: Artificial Neural Networks

20.5.: Policy Gradients (1)
27.5.: Policy Gradients (2)

Chart 2

Past Schedule



Backward Induction
Uses the knowledge that a finite 
horizon exists to compute state and 
action values from the end of the 
process.

Value/Policy Iteration
Iteratively either optimizes the value 
function or the policy, until an 
optimal policy is found.

Chart 3

Solution Methods with Full Information

Return:
Optimal policy
Requirements:
Full knowledge about reward 
function, state transitions and 
events. 𝐴 and 𝑆 need to be discrete 
and finite.
A decision process with finite 
horizon. 

Return:
Optimal policy (within computational 
limits).
Requirements:
Full knowledge about reward 
function, state transitions and 
events. 𝐴 and 𝑆 need to be discrete 
and finite.



Approximate Dynamic Prog.
Learns a policy by observing a 
process and only updating those 
states that actually occur. Can 
overcome the limitations of a large 
state space.

Monte-Carlo Methods
Learns a policy by repeatedly 
performing the process and 
estimating Q-values. Compute the 
Q-value estimate by updating a table 
based on values computed from full 
trajectories.

Chart 4

ADP and Monte Carlo

Return:
Near optimal policy
Requirements:
𝐴 and 𝑆 need to be discrete and 
finite.
The process needs to have a 
terminal state that is reached with 
probability 1.

Return:
Near optimal policy
Requirements:
𝐴 and 𝑆 need to be discrete and 
finite.



TD-methods
Learns a policy by repeatedly 
performing the process and 
estimating Q-values. Compute the 
Q-value estimate by observing a 
single reward and estimate future 
rewards.

TD with function approximation
Learns a policy, by estimating Q-
values. Instead of keeping tables to 
store the values, a function 
approximator (for example an ANN) 
is trained to estimate those values, 
by minimizing the TD-error.

Chart 5

Temporal Difference Learning

Return:
Near optimal policy
Requirements:
𝐴 and 𝑆 need to be discrete and 
finite.

Return:
Near optimal policy
Requirements:
𝐴 needs to be discrete and finite.



Overcomes the 
maximization 
bias of Q-
learning.

Introduces a 
second estimator, 
to be able to use 
target values 
which are not by 
definition the 
maximum of the 
output.

Highly improves 
data efficiency. 
Introduces a 
buffer, which 
stores experience 
tuples. Select 
tuples from this 
buffer by their 
TD-error.
The buffer itself 
needs to be well 
implemented to 
allow efficient 
usage of the 
data. 

Immediately take 
delayed rewards 
into account 
instead of slowly 
propagating 
them through the 
learning process.

Can make things 
more complex if 
applied off-policy, 
but works well if 
used with greedy 
policies.

Learns 
distributions of 
rewards instead 
of their expected 
value.

Leads to more 
stable 
estimations of 
the overall value 
by correctly 
representing 
skewed 
distributions.

Double DQN PER n-Step Methods Distributional RL

Chart 6

(Some) Improvements for DQN



Policy gradient and AC
Learns a parametric representation 
of the policy by optimizing it 
according to the policy gradient 
theorem. Can be improved by adding 
a critic, which estimates 𝑠 or 𝑠, 𝑎
values to stabilize learning or even 
learn off-policy.
Return:
Near optimal policy
Requirements:
None, except that the process 
observed is markovian. This comes 
at the disadvantage of a complex 
system with high demand for data 
and many hyperparameters.

Chart 7

Policy Gradients for Continuous Control



Problem Oriented
We or you select a problem to work 
on and your challenge consists of 
finding the system and algorithm 
that yields the best performing 
policies, while being as efficient as 
possible. You have to choose your 
algorithm and modify it. If basic 
versions of the problem are solved 
you can look for extensions and 
generalizations!

Method Oriented
We or you select a special RL 
approach to work on. The goal 
consists of determining which use-
cases allow efficient usage of the 
method under evaluation and which 
don’t work well. You might have to 
reimplement some algorithms based 
on their description in the respective 
paper. You will select the aspect 
under assessment beforehand.

Chart 8

Regarding The Style of Projects



Problem oriented:
■ Tetris
■ Blobby Volley!
■ Mau Mau/Uno
■ Castle
■ Flipper
■ Pricing under Competition
■ Pricing multiple products with 

substitution effects
Preferably, we can find something 
where you don’t have to spend 4 of 
5 weeks to implement the 
environment.

Method/paper oriented:
■ Distral (a framework for multi-

task learning)
■ Alpha Go (incorporates tree 

search and other additions)
■ Eligibility traces (the final 

iteration of n-step learning)
■ Impala/A3C (parallel learning on 

multiple environment instances)

This might require you to evaluate 
more than a single problem, to gain 
an understanding of what those 
algorithms are designed for. Chart 9

Example Projects!



■ The goal of the project is to understand the dynamics of reinforcement 
learning (what works, what doesn’t work and why) given a specific use-
case or aspect of RL and presenting the knowledge gained, so everybody 
else can learn something from it as well.

■ You work in groups of at most 3.
■ Present your results in a documentation (ca. 15 pages, LNCS layout) and 

a final presentation (so everybody else can learn what you learned).
■ Documentation should incorporate information about:

□ What problem or aspect did you work on?
□ What did perform well?
□ What didn’t?
□ Which tricks did you use to overcome the issues found?

Project Format

Chart 10



■ 3.5.: Problems with Q-Learning
■ 10.5.: Deep Q-Networks
■ 17.5.: DQN (2) / RAINBOW
■

■ 31.5.: Project Assignments
■ 7.6.: Project Work/Support
■ 14.6.: Project Work/Support
■ 21.6.: Project Work/Support
■ 28.6.: Project Work/Support
■ 5.7.: Project Work/Support
■ 12.7.: Final Presentations
■ 31.8.: Final Documentation

6.5.: Artificial Neural Networks

20.5.: Policy Gradients (1)
27.5.: Policy Gradients (2)
3.6.: Project Assignments
10.6.: Project Work/Support
17.6.: Project Work/Support
24.6.: Project Work/Support
31.6.: Project Work/Support
8.7.: Project Work/Support
15.7.: Final Presentations

Chart 11

Schedule


