
Advanced Topics in In-Memory Computing
Markus Dreseler, Martin Boissier

April 2016

“The Free Lunch Is Over”

• Number of transistors per chip
increases

• Clock Frequency stalls

2[Source: http://www.gotw.ca/publications/concurrency-ddj.htm]

Capacity vs. Speed (latency)
Memory hierarchy:

• Capacity restricted by price/performance
• SRAM vs. DRAM (refreshing needed every 64ms)

• SRAM is very fast but very expensive

Memory is organized in hierarchies
• Fast but small memory  

on the top
• Slow but lots of memory 

at the bottom

3

CPU Register

L1 Cache

L2 Cache

Main Memory

Permanent Disc Storage

technology latency size

SRAM <1 ns bytes

SRAM ~ 1 ns KB

SRAM < 10 ns MB

DRAM 100 ns GB-TB

~10 000 000 ns
(10ms)

TB-PB

In DBMS, on disk as well as in memory, data processing is often:
• Not CPU bound
• But bandwidth bound
• “I/O Bottleneck”

CPU could process data faster

Memory Access:
• Not truly random (in the sense of constant latency)
• Data is read in blocks/cache lines
• Even if only parts of a block are requested

Potential waste of bandwidth

Data Processing

4

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Cache	 Line	 1 Cache	 Line	 2

Memory Hierarchy
Cache  
Small but fast memory, which keeps data from main memory for fast access.

Cache performance is crucial
• Similar to disk cache (e.g. buffer pool)
• But: Caches are controlled by hardware.

Cache hit 
Data was found in the cache.  
Fastest data access since no lower level is involved.

Cache miss 
Data was not found in the cache. CPU has to load data from main memory into cache (miss
penalty).

5

CPU

Cache

Main	 Memory

Locality is King!
• To improve cache behavior

• Increase cache capacity
• Exploit locality

• Spatial: related data is close (nearby references are likely)
• Temporal: Re-use of data (repeat reference is likely)

• To improve locality
• Non random access (e.g. scan, index traversal):

• Leverage sequential access patterns
• Clustering data to a cache lines
• Partition to avoid cache line pollution  

(e.g. vertical decomposition)
• Squeeze more operations/information into a cache line

• Random access (e.g., hash joins):
• Partition to fit in cache (cache-sized hash tables)

6

Motivation
• Hardware has changed

• TB of main memory are available
• Cache sizes increased
• Multi-core CPU’s are present
• Memory bottleneck increased
• NUMA (and NUMA on a NUMA?)

• Data / Workload
• Tables are wide and sparse
• Lots of set processing

• Traditional databases
• Optimized for write-intensive workloads
• Show bad L2 cache behavior

7

Problem Statement

• DBMS architecture has not changed over decades

• Redesign needed to handle the changes in:
• Hardware trends (CPU/cache/memory)
• Changed workload requirements
• Data characteristics
• Data amount

8

Buffer	 pool

Query	 engine

Traditional	 DBMS	 Architecture

Row- or Column-oriented Storage

SELECT *

FROM Sales Orders

WHERE Document Number = ‘95779216’

9

Column StoreRow Store

SELECT SUM(Order Value)

FROM Sales Orders

WHERE Document Date > 2016-01-20

Question & Answer
How to optimize an IMDB?
• Exploit sequential access, leverage locality

• Column store
• Reduce I/O

• Compression
• Direct value access

• Fixed-length (compression schemes)
• Late Materialization
• Parallelize

10

Seminar Organization

Objective of the Seminar
• Work on advanced database topics in the context of in-memory

databases (IMDB) with regards to enterprise data management

• Learn how to work scientifically
• Fully understand your topic and define the objectives of your work
• Propose a contribution in the area of your topic
• Quantitatively demonstrate the superiority of your solution
• Compare your work to existing related work
• Write down your contribution so that others can understand and

reproduce your results

12

Seminar schedule
• Today (11.04.): Overview of topics, general introduction
• Thursday (18.04.): In-memory DB Basics & HYRISE
• 19.04.: Send your priorities for topics to markus.dreseler@hpi.de
• Planned Schedule

• Week of 23.05.: Mid-term presentation
• Week of 20.06.: Final presentation (tbc)
• 31.07.: Peer Reviewing (tbc)
• 07.08.: Paper hand-in (tbc)

• Throughout the seminar: individual coaching by teaching staff
• Meetings (Room V-2.16)

13

Final Presentation
• Why a final presentation?

• Show your ideas and their relevance to others
• Explain your starting point and how you evolved your idea /

implementation
• Present your implementation, explain your implementations

properties
• Sell your contribution! Why does your work qualify as rocket

science?

14

Peer Reviewing

• Each student will be assigned a colleague’s paper version 
(approximately two weeks before paper hand-in)
• Review will be graded
• Annotate PDF for easy fixes (e.g., typos)
• Short summary (2-3 pages) about the paper’s content and notes to

the author how to further improve his paper

• Expected to be done one week before paper hand-in

15

Final Documentation
• 7-9 pages, IEEE format [1]

• Suggested Content: Abstract, Introduction into the topic, Related work,
Implementation, Experiment/Results, Interpretation, Future Work

• Important!
• Related work needs to be cited
• Quantify your ideas / solutions with measurements
• All experiments need to be reproducible (code, input data) and the

raw data to the experiment results must be provided

16[1] http://www.ieee.org/conferences_events/conferences/publishing/templates.html

Grading

• 6 ECTS

• Grading:
• 30% Presentations (Mid-term 10% / Final 20%)
• 30% Results
• 30% Written documentation (Paper)
• 10% Peer Review

17

Topic Assignment

• Each participant sends list of top two topic areas in order of preference
to lecturers by 19.04. (markus.dreseler@hpi.de)

• Topics are assigned based on preferences and skills by teaching team

18

mailto:markus.dreseler@hpi.de

HYRISE

• Open source IMDB
• Hosted at https://github.com/hyrise
• C++11
• Query Interface: Query plan or stored procedures

19

Recommended Papers for Intro

• Plattner, VLDB 2014: The Impact of Columnar In-Memory Databases
on Enterprise Systems

• Krueger et al. VLDB 2012: Fast Updates on Read-Optimized
Databases Using Multi-Core CPUs

• Grund et al. VLDB 2010: HYRISE—A Main Memory Hybrid Storage
Engine

20

Topics

Data Stream Processing
• Aurora
• STREAM
• Samza
• Storm
• Spark (Streaming)
• Flink
• Apex
• …

22 Guenter Hesse

Data Stream Processing
Typical Streaming Architecture

New System - Kafka Streams

http://www.confluent.io/blog/real-time-stream-processing-the-next-step-for-apache-flink/]

http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple

23 Guenter Hesse

Evaluation of Kafka Streams
Question

How does Kafka Streams perform compared to other streaming systems
like Flink or Spark?

Tasks
• Set-Up of Kafka Stream
• Implementation of Liner Road Benchmark [1]
• Measurement of benchmark runs w/ certain data set sizes and certain

degrees of parallelism
• Result evaluation

[1] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear road: a stream data management benchmark. In
Proceedings of the Thirtieth international conference on Very large data bases - Volume 30 (VLDB '04), Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard
Schiefer (Eds.), Vol. 30. VLDB Endowment 480-491.

24 Guenter Hesse

Recognizing Compound Events in Spatio-Temporal
Football Data

25 Keven Richly, Christian Schwarz, Rainer Schlosser

• The usage of spatio-temporal data increased strongly in
recent years (e.g. performance analytics in football)

• Provided data for football games of the German Bundesliga
• ~1.5 million positional information per game
• Manually tracked event list

• Problem: the event list is tracked manually, is not
synchronized with the positional data, and contains errors

• Tasks
• Implementation and evaluation of algorithms to

automatically detect compound events in positional data
of football games

Hyrise-R
Implements elastic master replication

Topics
• Heterogeneous (indices, partitions) replicas
• Quick integration of new instances

26

Dispatcher

Cluster

Hyrise
Primary Node

Cluster
Interface

Request
Handler

Data
Storage Logger

Hyrise
Replica Node i

Cluster
Interface

Request
Handler

Data
Storage Logger

Stefan Klauck

Using Infiniband to Speed Up Networking

• Many database applications require network operations - especially in
distributed and replicated databases

• Latency and throughput are significant factors for performance

• Infiniband is a technology that reduces networking overheads and
hands off tasks to the hardware

27 Markus Dressler

Using Infiniband to Speed Up Networking
• The Infiniband API (ibverbs) is more verbose than the regular socket

API and allows the programmer to fine-tune many aspects of
networking

• Goal of this project is to understand the performance characteristics of
different approaches, including:
• Send vs. RDMA Write
• Scatter-Gather
• Reliable vs. unreliable networking

28 Markus Dressler

SAP HANA Tiering
• Situation

• In large enterprise databases, only a small subset of all data is
regularly accessed

• Keeping rarely accessed data in main memory is as a waste of
resources

• Project
• Evaluation of a new tiering approach for SAP HANA
• Less frequently accessed data is stored on disk while fully retaining

the OLAP performance of SAP HANA
• Cooperation with SAP Innovation Center in Potsdam

29 Martin Boissier

SAP HANA Tiering

• Project Setup
• Little bit of C++ coding in SAP HANA

• it's not a lot, still not easy though (it's high performance production C++)
• development environment already set up
• 50% is algorithmic work (optimal sorted order to reduce page

cache misses)
• 30 % is benchmarking (we've got a nice tool set at hand)

30 Martin Boissier

Workload Analyses
• Industry-driven (and synthetic) workloads are known to be way off

from real-world workloads
• With a real-world workload at hand, what can we do now?
• Project Setup

• We traced TPC-C and TPC-E and you’ll analyze and compare
synthetic workloads with a real-world production system

• Focus of project is a thorough analysis and workload comparison
• Evaluation framework written in Python and bash

31 Martin Boissier

Workload-Driven Partitioning
• Partitioning for Mixed Workload Databases

• OLxP databases profit from partitioning because scans can be pruned to a
subset of partitions, but finding such a partitioning scheme is burdensome

• A recent master's thesis analyzed an recent automated partitioning
approach and applied it to a real-world production system

• The results were more than promising (in average each query scan skips
~90% of all tuples through partition pruning)

• Project
• A more recent research paper proposed an another approach
• You’ll implement that new approach (framework is already in place) and

compare both approaches (performance, applicability for real-world OLxP
systems, their pros and cons, ...)

32 Martin Boissier

GPU Computing for Enterprise Applications
• Status Quo:

• Application logic moves closer to the database layer
• Compute intensive, long running application transactions consume

computational power of the database system
• Classical database tasks have less available resources

• Solution:
• GPUs and other Coprocessors offer enormous amount of

computational resources and on device memory bandwidth
• Data parallel operations perform very well on these components

33 Christian Schwarz

Example Application: Product Cost Simulation
• Application calculates cost (and other  

features) of products are calculated, 
using a system of linear equations

• Base parameter are stored inside  
the database system

• Problem is solved with 
specialized matrix inversion and 
matrix vector multiplication

• Implementation can leverage computational resources of Intel Xeon Phi and  
Nvidia Titan X

34 Christian Schwarz

Coprocessor Integration Status
• Database is connected as a separate  

process

• Data is transferred using local ODBC  
connection

• Major part of application runtime is 
spend in database connector

• Tasks
• Improve application runtime  

by integrating logic into database system
• Define an execution model suitable for logic  

integration
• Using SAP HANA Advanced Function Library 

to integrate code into running database system
• Measure performance improvement compared to separate process model

35 Christian Schwarz

Coprocessor Impact on Enterprise System
• Integrating complex application logic into  

database system increases system  
workload

• Coprocessors add computational resources 
to the system, helping to handle the new 
workload

• Tasks
• Define new workload based  

on existing ones
• Measure the impact of new applications 

on benchmark results
• Evaluate the influence on different query 

categories (OLTP, OLAP) 

36 Christian Schwarz

Topic Assignment

• Each participant sends list of top two topic areas in order of preference
to lecturers by 19.04. (markus.dreseler@hpi.de)

• Topics are assigned based on preferences and skills by teaching team

37

mailto:markus.dreseler@hpi.de

