

IT Systems Engineering | Universität Potsdam

Analyze Genomes: An In-Memory Technology Use Case In-Memory Computing for Life Sciences Dr. Matthieu-P. Schapranow, Hasso Plattner Institute

Motivation: Can we analyze the entire data of a patient, incl. Electronic Health Records (EHR) and genome data, during a doctor's visit?

- Genome data analysis may add up to weeks,
 i.e. biopsy, biological preparation, sequencing,
 alignment, variant calling, full analysis, and evaluation
- Issue: Complex and time-consuming data processing tasks
- In-memory technology accelerates genome data processing
 - Highly parallel alignment / variant calling
 - Real-time analysis of individual patient or cohort data
 - Combined search in structured / unstructured data
- 2 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

Our Challenge Distributed Big Data Sources

Human genome/biological data

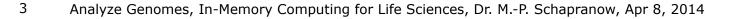
600GB per full genome 15PB+ in databases of leading institutes

160M data points (2.4GB) per sample >3TB raw proteome data in ProteomicsDB

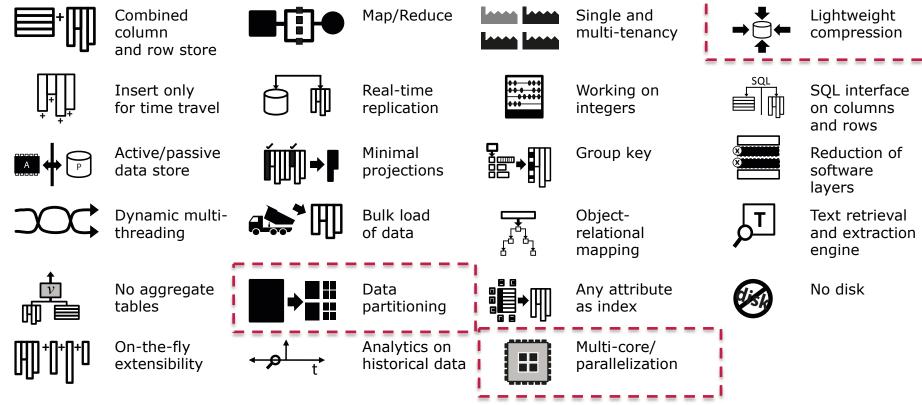
Hospital information systems Often more than 50GB

ß	Cancer patient records >160k records at NCT
	>160k records at NCT

Medical sensor data Scan of a single organ in 1s creates 10GB of raw data



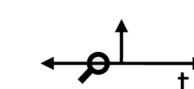
Prescription data


1.5B records from 10,000 doctors and 10M Patients (100 GB)

Clinical trials Currently more than 30k recruiting on ClinicalTrials.gov

Our Approach In-Memory Technology

4 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

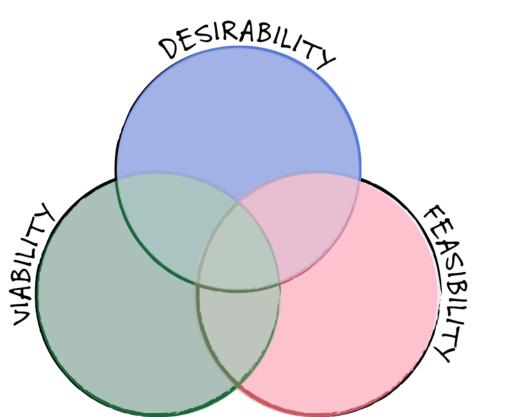

Meaningful In-Memory Database Concepts Text Mining

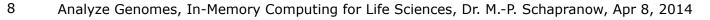
- Full text indexing for any text attributes
- User-defined dictionaries to define entities <u>http://scn.sap.com/community/developer-center/hana/blog/</u> <u>2013/12/27/hana-text-analysis-with-custom-dictionaries</u>
- Custom Grouper User Language (CGUL) rules to create token-based regular expressions with linguistic attributes <u>http://wiki.scn.sap.com/wiki/display/EIM/CGUL+Tips+and+Tricks+for</u> <u>+Entity+Extraction</u>

Meaningful In-Memory Database Concepts Time Travel

- Process time series data by retrieving the complete database state at any period of history
- History Database Tables
- SELECT TEMPERATURE FROM "PATIENTS"."ICS_TEMP" WHERE PATIENT NAME = `Matthieu Schapranow' AS OF COMMIT ID 209811
- <u>http://scn.sap.com/community/developer-center/hana/blog/</u> 2013/02/12/when-i-travelled-through-time-using-sap-hana

Meaningful In-Memory Database Concepts Predictive Analysis Library (PAL)


- Provides specific **analysis functions** tightly integrated within the database, e.g. k-means or hierarchical clustering
- http://help.sap.com/hana/ SAP HANA Predictive Analysis Library PAL en.pdf


7

Our Vision Personalized Medicine

Our Vision Personalized Medicine

Desirability

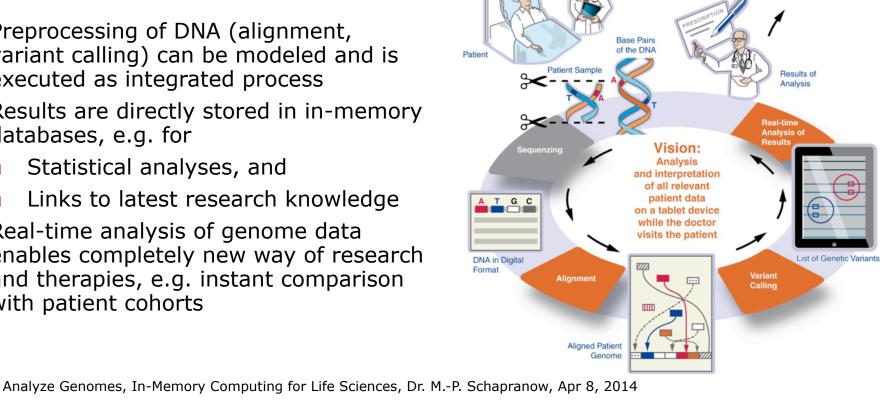
- Leveraging directed customer services
- Portfolio of integrated services for clinicians, researchers, and patients
- Include latest research results, e.g. most effective therapies

Viability

- Enable personalized medicine also in far-off regions and developing countries
- Share data via the Internet to get feedback from word-wide experts (cost-saving)
- Combine research data (publications, annotations, genome data) from international databases in a single knowledge base

Feasibility

- HiSeq 2500 enables high-coverage whole genome sequencing in ≈1d
- IMDB enables allele frequency determination of 12B records within <1s
- 1 relevant out of 80M annotations <1s</p>
- Data preparation as a service reduces TCO

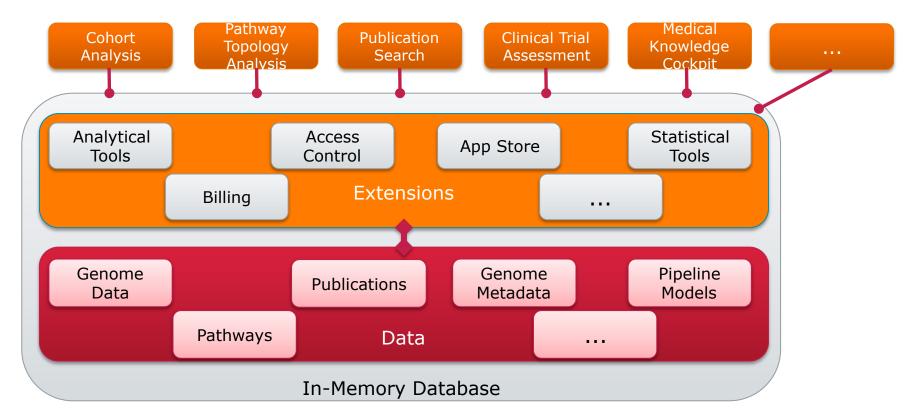

9 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

High-Performance In-Memory Genome Project Integration of Genomic Data

- Preprocessing of DNA (alignment, variant calling) can be modeled and is executed as integrated process
- Results are directly stored in in-memory databases, e.g. for
 - Statistical analyses, and П

10

- Links to latest research knowledge
- Real-time analysis of genome data enables completely new way of research and therapies, e.g. instant comparison with patient cohorts

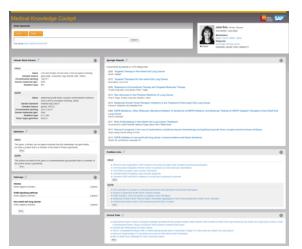


Individual Treatment Decision

High-Performance In-Memory Genome Project Architectural Overview

11 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

High-Performance In-Memory Genome Project Selected Research Topics

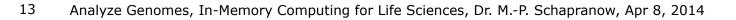

Improving Analyses:

- Information combination, e.g. Medical Knowledge Cockpit, Oncolyzer
- Genome Browser enables deep dive into the genome
- Cohort Analysis, e.g. clustering of patient cohorts
- Combined Search, e.g. in clinical trials and side-effect databases
- Pathways Topology Analysis, e.g. to identify cause/effect

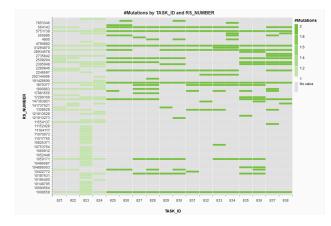
Improving Data Preparations:

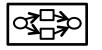
- Graphical modeling of Genome Data Processing (GDP) pipelines
- Scheduling and execution of multiple GPD pipelines in parallel
- App store for medical knowledge (bring algorithms to data)
- Exchange of sensitive data, e.g. history-based access control
- Billing processes for intellectual property and services
- 12 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

High-Performance In-Memory Genome Project Medical Knowledge Cockpit



Unified access to structured and unstructured data sources




Automatic clinical trial matching build on text analysis features

- Search for affected genes in distributed and heterogeneous data sources
- Immediate exploration of relevant information, such as
 - Gene descriptions,
 - Molecular impact and related pathways,
 - Scientific publications, and
 - Suitable clinical trials.
- No manual searching for hours or days: In-memory technology translates searching into interactive finding!

High-Performance In-Memory Genome Project Drug Response Testing

Interactive analysis of correlations between drugs and genetic variants

- Drug response depends on individual genetic variants of tumors
- Challenge: Identification of relevant genetic variants and their impact on drug response is a ongoing research activity, e.g. Xenograft models
- Exploration of experiment results is timeconsuming and Excel-driven
- In-memory technology enables interactive exploration of experiment data to leverage new scientific insights

High-Performance In-Memory Genome Project Search in Structured and Unstructured Medical Data

Clinical Trials

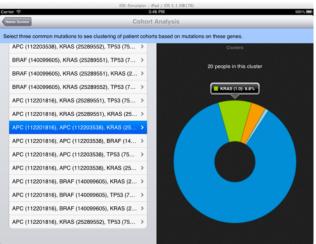
Internal

- Panitumumab Plus Pemetrexed and Cisplatin (PemCisP) Versus Peme
- FLO +/- Pazopanib as First-line Treatment in Advanced Gastric Cance

External

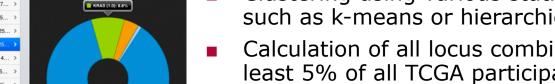
- Molecular Profiling and Targeted Therapy for Advanced Non-Small Ce
- Erlotinib and Temsirolimus for Solid Tumors
- Molecular Epidemiology of Lung Adenocarcinoma in Multi-ethnic Asia
- Safety and Efficacy Study of Neratinib and Cetuximab to Treat Patient
- French National Observatory of the Patients With Non-small Cell Lung

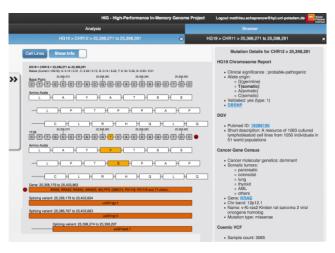
Unified access to structured and unstructured data sources



Clinical trial matching using text analysis features

- Extended text analysis feature by medical terminology
 - □ Genes (122,975 + 186,771 synonyms)
 - Medical terms and categories (98,886 diseases + 48,561 synonyms, 47 categories)
 - Pharmaceutical ingredients (7,099 + 5,561 synonyms)
- Indexed clinicaltrials.gov database (145k trials/ 30,138 recruiting)
- Extracted, e.g., 320k genes, 161k ingredients, 30k periods
- Select all studies based on multiple filters in less than 500ms

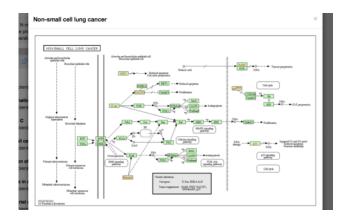

High-Performance In-Memory Genome Project Analysis of Patient Cohorts



Fast clustering directly performed within the in-memory database

- In a patient cohort, a subset does not respond to therapy why?
- Clustering using various statistical algorithms, such as k-means or hierarchical clustering
- Calculation of all locus combinations in which at least 5% of all TCGA participants have mutations: 200ms for top 20 combinations
- Individual clusters are calculated in parallel directly within the database
- K-means algorithm: 50ms (PAL) vs. 500ms (R)

High-Performance In-Memory Genome Project Genome Browser


Unified access to multiple formerly disjoint data sources

- Genome Browser: Comparison of multiple genomes with reference
- Combined knowledge base: latest relevant annotations and literature, e.g. NCBI, dbSNP, and UCSC
- Detailed exploration of genome locations and existing associations
- Ranked variants, e.g. accordingly to known diseases
- Links to more detailed sources enable fast identification of relevant information while eliminating long-lasting searches.

High-Performance In-Memory Genome Project Pathway Analysis

Unified access to multiple formerly disjoint data sources

- Search in pathways is limited to "is a certain element contained" today
- Integrated >1,5k pathways from international sources, e.g. KEGG, HumanCyc, and WikiPathways, into HANA
- Implemented graph-based topology exploration and ranking based on patient specifics
- Enables interactive identification of possible dysfunctions affecting the course of a therapy before its start

Pathway analysis of genetic variants with graph engine

What to take home? Test it: http://we.AnalyzeGenomes.com

For researchers

- Enable real-time analysis of medical data
- Automatic assessment of data, e.g. scan of pathways to identify cellular impact of mutations
- Combined free-text search in publications, diagnosis, and EMR data, i.e. structured and unstructured data

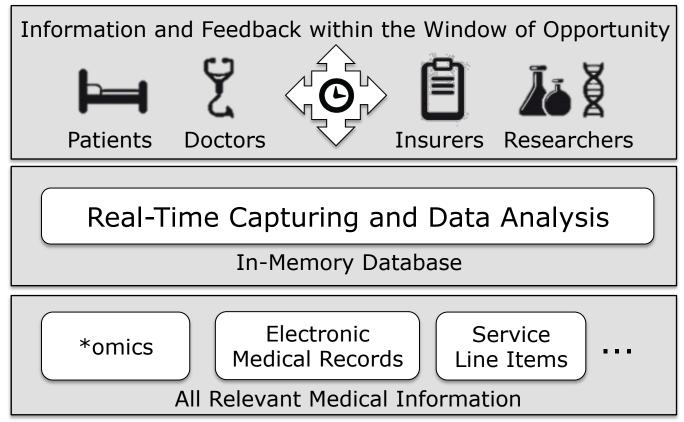
For clinicians

- Preventive diagnostics to identify risk patients early
- Indicate pharmacokinetic correlations
- Scan for similar patient cases, e.g. to evaluate therapy success

For patients

- Identify relevant clinical trials and medical experts
- Start most appropriate therapy as early as possible
- 19 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

Keep in contact with us!


Dr. Matthieu-P. Schapranow schapranow@hpi.uni-potsdam.de http://we.analyzegenomes.com/

Hasso Plattner Institute Enterprise Platform & Integration Concepts Dr. Matthieu-P. Schapranow August-Bebel-Str. 88 14482 Potsdam, Germany

BACKUP

High-Performance In-Memory Genome Project Architectural Overview

Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

Research initiative for exchanging relevant tumor data to improve personalized treatment

High-Performance In-Memory Genome Project

- Honored 2012 by the Innovation Award of the German Capitol Region
- In-memory technology as key-enabler for real-time analysis of tumor data in seconds instead of hours
- Information available at your fingertips: In-memory technology on mobile devices, e.g. iPad
- Interdisciplinary cooperation between
 - Medical doctors,
 - Researchers, and П
 - Software engineers. П
- 23 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

Time Skip

System Therapy

System Therap

Surger

Time Ski

Surgen

Primary Diagnosis Code

Primary Diagnosis Text

Same Birth Yea

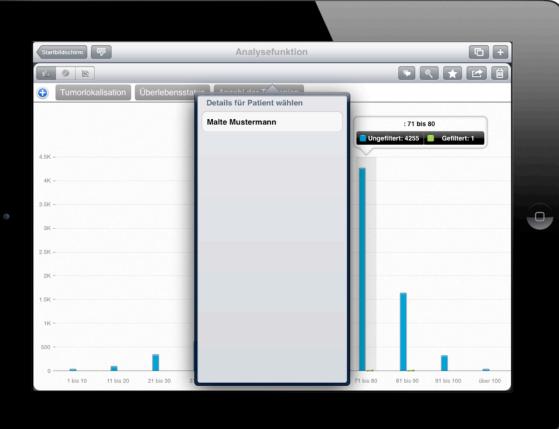
Primary Diagnosis Localization

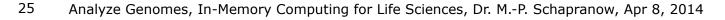
0.4-0.3-

0.2-

HANA Oncolyzer

High-Performance In-Memory Genome Project HANA Oncolyzer Patient Details Screen

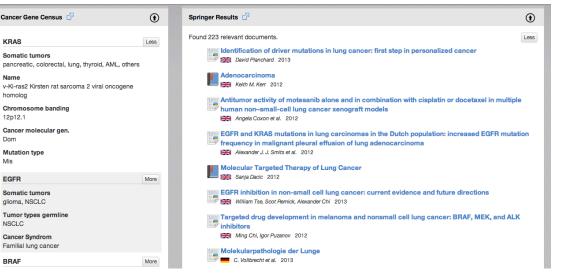

- Combines patient's time series data of specific patient and analysis results of patient cohort
- Real-time analysis across hospital-wide data whenever details screen is accessed
- <u>http://epic.hpi.uni-</u> <u>potsdam.de/Home/</u> <u>HanaOncolyzer</u>


High-Performance In-Memory Genome Project HANA Oncolyzer Patient Analysis Screen

- Allows to real-time analysis on complete patient cohort
- Flexible filters and various chart types allow graphical exploration of data on mobile devices

Hasso

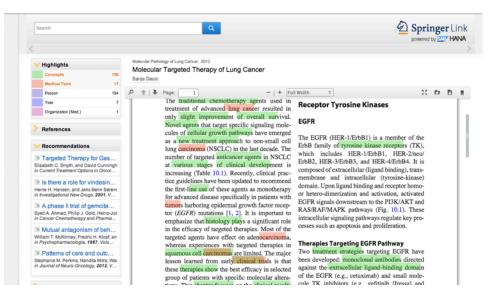
Plattner


Medical Knowledge Cockpit Seamless Integration of Patient Specifics

Medical Knowledge Cockpit		HPI Hasso Plattner Institut
Enter search terms How about A2M, AADAT or PIK3CA? NRAS x BRAF x EGFR x NRAS x non-small cell lung cancer x	Search	Jane Dough female, 48 years, non-smoker Markers KRAS, EGFR, BRAF, NRAS Diagnosis non-small cell lung cancer, stage IV

- Google-like user interface for searching data
- Seamless integration of individual EMR data
- Search various sources for biomarkers, literature, and diseases

Medical Knowledge Cockpit **Publications**


Mis

- In-place preview of relevant data, such as publications and publication meta data
- Incorporating individual filter settings, e.g. additional search terms
- 27 Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

Medical Knowledge Cockpit Publications

- Interactively explore relevant publications, e.g. PDFs
- Improved ease of exploration, e.g. by highlighted medical terms and relevant concepts
- Analyze Genomes, In-Memory Computing for Life Sciences, Dr. M.-P. Schapranow, Apr 8, 2014

Medical Knowledge Cockpit Relevant Scientific Findings at a Glance

		Clinical Trials	٢
Pathways	۲	Internal	
Non-small cell lung cancer Homo sapiens (human)	5 genes	FLO +/- Pazopanib as First-line Treatment in Advanced Gastric Cancer (PaFLO)	
Prostate cancer Homo sapiens (human)	5 genes	External Molecular Profiling and Targeted Therapy for Advanced Non-Small Cell Lung Cancer, Small Cell Lung Cancer Thymic Malignancies	Less , and
ErbB signaling pathway Homo sapiens (human)	5 genes	Frightie many landes Frightie many landes Frightie many landes Molecular Epidemiology of Lung Adenocarcinoma in Multi-ethnic Asian Phenotype French National Observatory of the Patients With Non-small Cell Lung (NSCLC) and Molecular Testings	
Endometrial cancer Homo sapiens (human)	5 genes	 Trial of MEK Inhibitor and Pl3K/mTOR Inhibitor in Subjects With Locally Advanced or Metastatic Solid Tumors Safety, Pharmacokinetics and Pharmacodynamics of BKM120 Plus MEK162 in Selected Advanced Solid Tum Patients 	
Pathways in cancer Homo sapiens (human)	5 genes	 Molecular Analysis of Thoracic Malignancies Randomized Phase II Study of AZD6244 (Mitogen-activated Protein Kinase Inhibitor) MEK-Inhibitor With Erlotin KRAS Wild Type Advanced Non-Small Cell Lung Cancer (NSCLC) and a Randomized Phase II Study of AZD62 	
Bladder cancer Homo sapiens (human)	5 genes	With Erlotinib in Mutant KRAS Adva Lung Cancer in Women Treated With Anti-oestrogens anD Inhibitors of EGFR (LADIE) Ad/HER2/Neu Dendritic Cell Cancer Vaccine Testing	
Glioma Homo sapiens (human)	4 genes	S0819: Carboplatin/Paciitaxel With or Without Bevacizumab and/or Cetuximab in Stage IV or Recurrent Non-S Cell Lung Cancer Single Nucleotide Polymorphism(SNP)Study	imall
Melanoma Homo sapiens (human)	4 genes	 PF-00299804 in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer That Has Not Resp to Standard Therapy for Advanced or Metastatic Cancer Eriotinib Plus Tivantinib (ARQ 197) Versus Single Agent Chemotherapy in Locally Advanced or Metastatic Non Cell Lung Cancer 	
	4 genes		-Small

- Personalized clinical trials, e.g. by incorporating patient specifics
- Classification of internal/external trials based on treating institute