

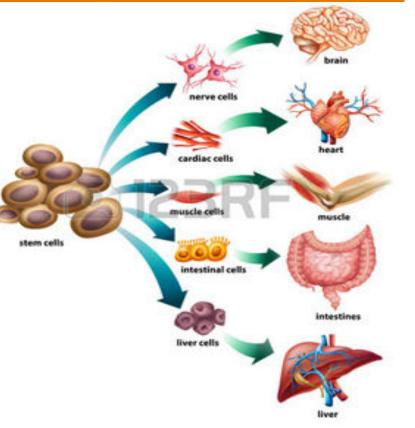
Introduction to RNAseq Analysis

Milena Kraus Apr 18, 2016

Agenda

What is RNA sequencing used for?

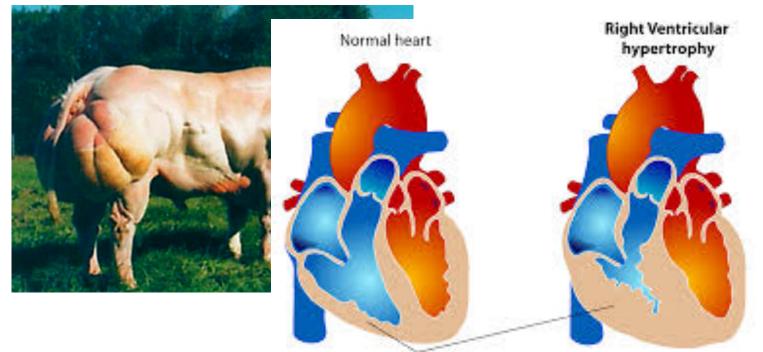
- 1. Biological background
- 2. From wet lab sample to transcriptome
 - a. Experimental procedure
 - b. Raw data
 - c. Processing pipeline(s)
 - d. Downstream analysis


RNAseq Intro

Milena Kraus, Apr 19, 2016

How is a muscle cell different from a liver cell?

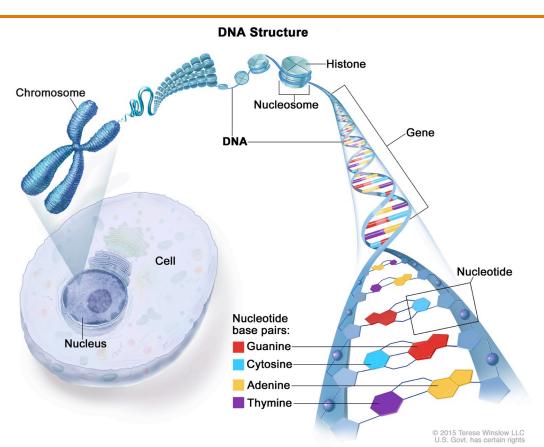
- Every cell in your body contains the same DNA as every other cell
- The DNA codes for every process in the cell



RNAseq Intro

Milena Kraus, Apr 19, 2016

What is the difference between a healthy heart and a sick heart?

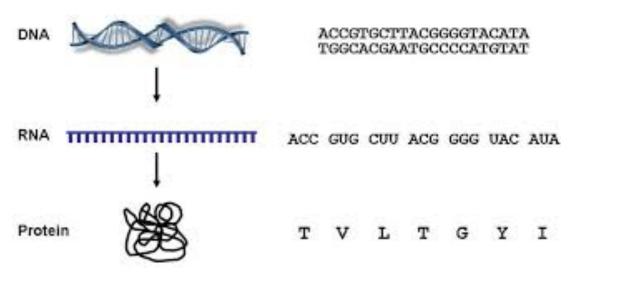


vertride wall

RNAseq Intro

Milena Kraus, Apr 19, 2016

Biological Background

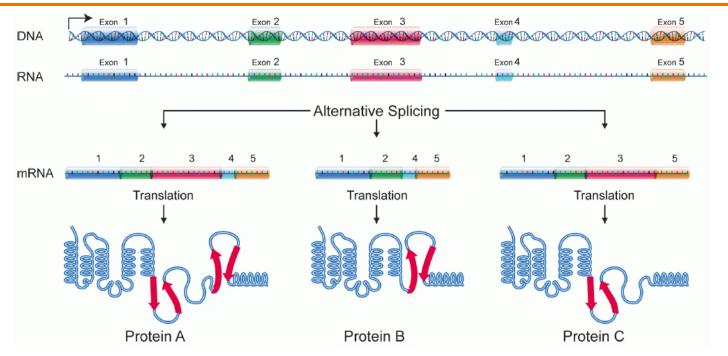

HPI Hasso Plattner Institut

RNAseq Intro

Milena Kraus, Apr 19, 2016

Central Dogma of Molecular Biology From DNA to RNA to protein

- Interesting information from RNA:
 - Sequence
 - Quantity



RNAseq Intro

Milena Kraus, Apr 19, 2016

One more bio fact before we start: Alternative Splicing

 Von National Human Genome Research Institute - http://www.genome.gov/Images/EdKit/ bio2j_large.gif, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=2132737

RNAseq Intro

Milena Kraus, Apr 19, 2016

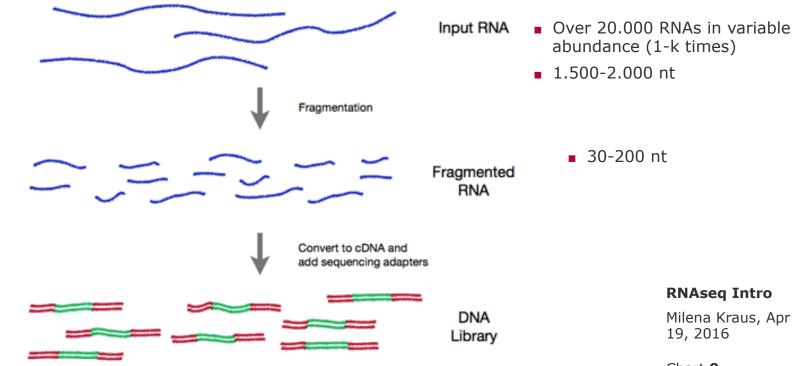
Hasso

Plattner

Institut

HPI

From Wet Lab Experiment to Transcriptome



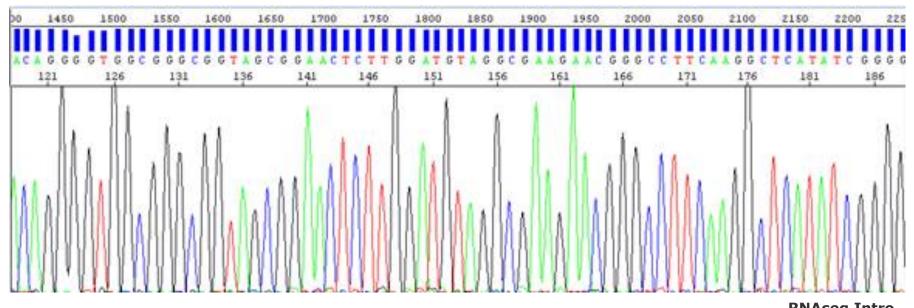
RNAseq Intro

Milena Kraus, Apr 19, 2016

Experimental Procedure

Sequencer

SOLID 5500


Illumina HiSeq2000

RNAseq Intro

Milena Kraus, 19.04.2016

Sequencing Signal

RNAseq Intro

Milena Kraus, Apr 19, 2016

Raw data FASTQ files

+

@SRR831012.1 HWI-ST155_0742:7:1101:1284:1981/1
NGAGATGAAGCACTGTAGCTTGGAATTCTCGGGTGCCAAGGAACTCCAGT

@SRR831012.2 HWI-ST155_0742:7:1101:2777:1998/1
NGAGATGAAGCACTGTAGCTCTTTGGAATTCTCGGGTGCCAAGGAACTCC
+

Quality score (increasing from worst to best): !"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

@SampleID.ReadNr

Experimental Setup

In our setting:

- ~1.4 GB per file
- ~8 Mio reads per file
- 80 files

RNAseq Intro

Milena Kraus, Apr 19, 2016

Raw data Reference genome

FASTA-file

>Sequenz 1

;comment A

In our setting:

- Indexed HG19 (Humane Genome V19)
- HG consists of approx 3.2B nucleotides

RNAseq Intro

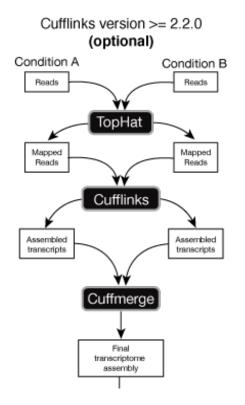
Milena Kraus, Apr 19, 2016

Raw data Gene library

- 20k-25k protein coding genes representing small part of the genome
- Using the annotation to speed up processing
- If the discovery of new genes in a sample is expected, a custom annotation can be calculated from the reads

Col 1	Col 2	<u>Col 3</u>	Col 4	Col 5	Col 6	Col 7	Col 8	<u>Col 9</u>
chr21	HAVANA	transcript	10862622	10863067		+		gene id "ENSG00000169
chr21	HAVANA	exon	10862622	10862667		+	2	gene id "ENSG00000169
chr21	HAVANA	CDS	10862622	10862667		+	0	gene id "ENSG00000169
chr21	HAVANA	start codon	10862622	10862624		+	0	gene id "ENSG00000169
chr21	HAVANA	exon _	10862751	10863067		+	-	gene id "ENSG00000169
chr21	HAVANA	CDS	10862751	10863064		+	2	gene id "ENSG00000169
chr21	HAVANA	stop codon	10863065	10863067		+	0	gene id "ENSG00000169
chr21	HAVANA	UTR	10863065	10863067		+		gene_id "ENSG00000169

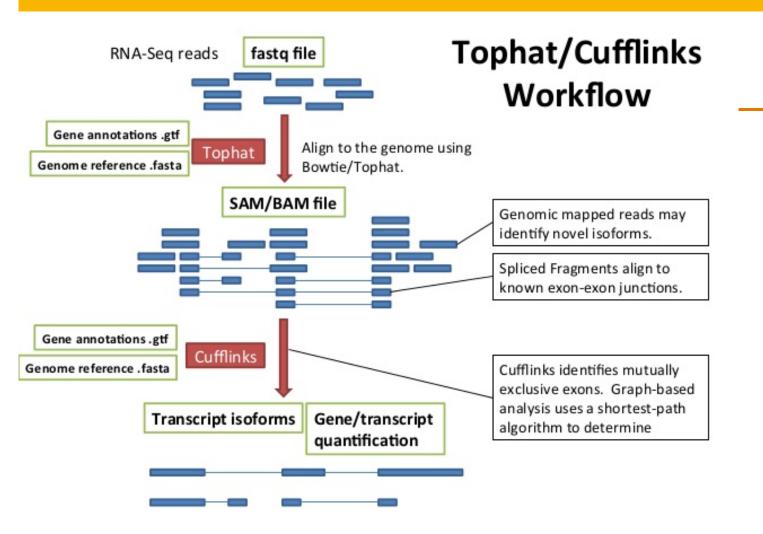
In our setting: geneshg19.gtf



RNAseq Intro

Milena Kraus, Apr 19, 2016

Processing pipeline Gold standard – tophat/cufflinks


- TopHat aligns RNA-Seq reads to mammaliansized genomes using the ultra high-throughput short read aligner BOWTIE, and then analyzes the mapping results to identify splice junctions between exons.
- Cufflinks assembles mapped RNA-Seq reads into transcripts.
- Cuffmerge creates an assembly of all transcripts to build the transcriptome (ocurrence transcripts).

RNAseq Intro

Milena Kraus, Apr 19, 2016

HPI Hasso Plattner Institut

RNAseq Intro

Milena Kraus, Apr 19, 2016

Cuffmerge

- Input: Transcript library condition-wise (.gtf)
- Algorithm: Counts/Assembles all transcripts found in the different conditions
- Output: Library of all transcripts over all conditions (.gtf)
- The transcriptome ...
 - □ Serves as a reference for further analysis,
 - Contains all found transcripts over all conditions, and
 - Resembles a rough profile of the studied tissue.

RNAseq Intro

Milena Kraus, Apr 19, 2016

Processing Pipeline New approach: DESeq and DEXseq

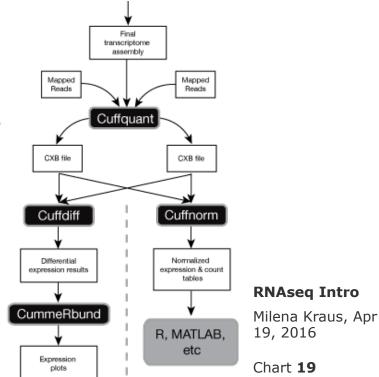
Preprocessing to generate count tables from .bam files with htseq-count

DESeq

- Input: count table including all conditions
- Algorithm: Estimates variance-mean dependence in count data using a negative binomial distribution instead of maximum likelihood.
- Output: table containing gene identifiers and their normalized counts

DEXseq

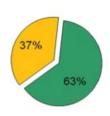
 Same stat. method as DESeq but the output shows differentially expressed exons


RNAseq Intro

Milena Kraus, Apr 19, 2016

Downstream Processing Statistical analysis and visualization

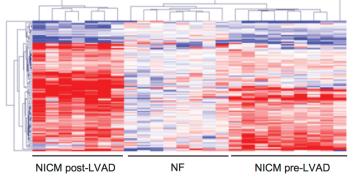
- **Cuffquant** is an intermediate step that helps to serialize and parallelize analysis.
- Cuffdiff compares expression levels of transcripts and shows differentials spliced genes and isoforms.
- Cuffnorm normalizes expression levels for exact comparison (usually optional).
- CummeRbund is an R package that provides various methods to visualize the data.



CummeRbund

- Α CM p CMP SM P ICM 1 F6 F3 F3
- R package with common methods for □ Statistical analysis

□ Visualization


Total mRNA

Α **mRNA**

Ē

mitochondrial non-mitochondrial NICM 5 VICM 2 NICM 4 ICM 7 ICM 5 VICM 1 CM 3 NICM CM 2 CM 8 NICM CM 1 CM 6 NF5 NF3 NF4 NF7 NF6 NF2 NF2 NF8

52.3% variance

ICM

25

-24

NICM

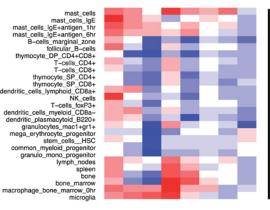
D

NICM CM 4 NOIN 24.4

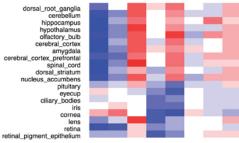
14.1 NF

21.1 22.6

RNAseq Intro


Milena Kraus, Apr 19, 2016

HPI Hasso Plattner Institut


Imune system, , bone Qo bone marrow

Neural Qo sensory system

Intestines &

internal organs

RNAseq Intro

Milena Kraus, 19.04.2016

Chart 21

mast_cells mast_cells_lgE mast_cells_lgE+antigen_1hr mast_cells_lgE+antigen_6hr B-cells_marginal_zone follicular_B-cells thymocyte_DP_CD4+CD8+ T-cells_CD4+ T-cells_CD4+ T-cells_CD8+ thymocyte_SP_CD4+ thymocyte_SP_CD8+ dendritic_cells_lymphoid_CD8a+ NK_cells T-cells_foxP3+ dendritic_cells_myeloid_CD8adendritic plasmacytoid B220+ granulocytes_mac1+gr1+ mega_erythrocyte_progenitor stem_cells_HSC common_myeloid_progenitor granulo_mono_progenitor

> dorsal_root_ganglia cerebellum hippocampus hypothalamus olfactory_bulb cerebral_cortex cerebral_cortex_prefrontal dorsal_striatum nucleus_accumbens

> > kidney

stomach

pancreas

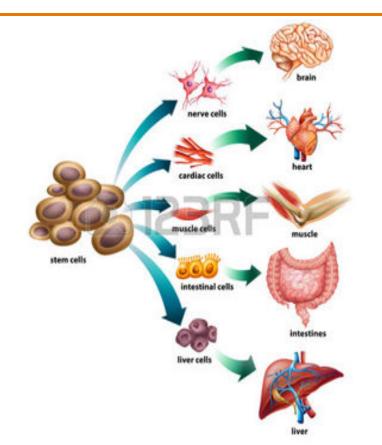
epidermis

heart

bladder prostate lung ovary uterus

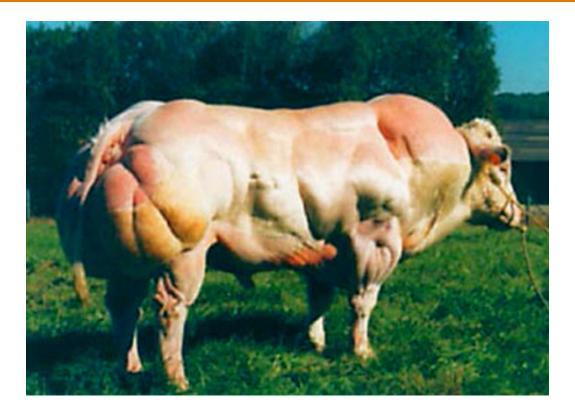
lqgap1

Mvp


Pea15a Arrb2 Shoc2 Ksr1 Pebp1

Arrb1

liver


intestine_small intestine_large r adipose_brown skeletal_muscle 0 N adipose_white

Tissue specificity

Variant calling from RNAseq data

RNAseq Intro

Milena Kraus, Apr 19, 2016

Thank you for your attention!

Speaker Job Description Institute

Explanations - Text layers

First text layer for running text.

- Second level for bullet points
 - $\hfill\square$ Third level for bullet points
 - Fourth level for bullet points

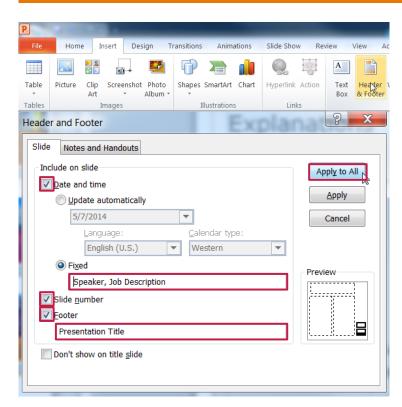
1. Fifth level for numberings

a) Sixth level for listings

SEVENTH TEXT LAYER FOR CORE MESSAGES In this template, we pre-formatted different text layers (as you can see on the right side).

You don't have to generate bullet points manually. By the way: Please avoid this!

To change from one text layer to the next, use the Increase / Decrease List Level buttons:



RNAseq Intro

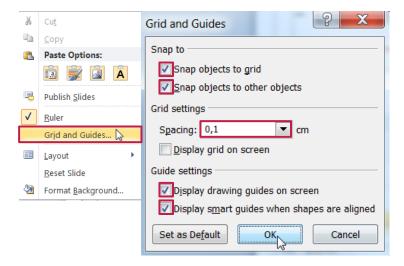
Milena Kraus, Apr 19, 2016

Explanations - Footer

You can insert or change your presentation's footer. Click on the Insert-tab | Header and Footer | After filling in your descriptions click on **Apply to All.**

Descriptions:

- Activate date and time and write in:Speaker, Job Description
- Activate the slide number.
- Activate the footer and write in: *Presentation Title*


Don't use the template without the complete footer.

RNAseq Intro

Milena Kraus, Apr 19, 2016

Explanations - Drawing guides

You can enable your guide-lines to align objects on the slide (View | Show | Select the option "Guides")


Or hit the right mouse button outside the slide and go at "Grid and Guides…"

RNAseq Intro

Milena Kraus, Apr 19, 2016

Explanations - Slide layouts

You can choose between different slide layouts. These pre-defined layouts gives you the oportunity to use text and visualisations just the right way.

To use these layouts:

Click on the Home-tab | New Slide or Layout | and choose one out of the layouts

Click "Reset" to reset to the predefined slide layout.

RNAseq Intro

Milena Kraus, Apr 19, 2016