

IT Systems Engineering | Universität Potsdam

In-Memory Technology in Life Sciences

Intelligent Healthcare Networks in the 21st Century?

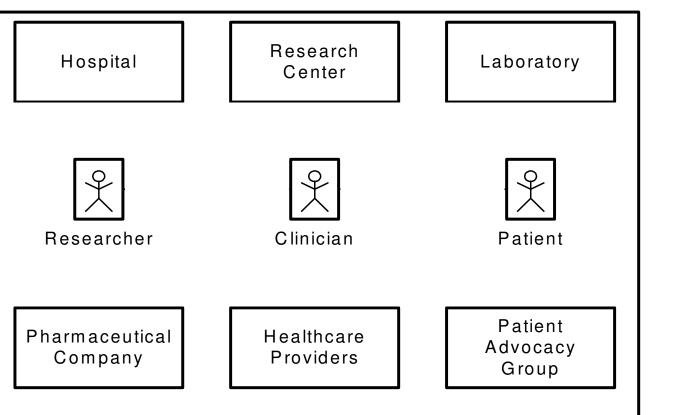
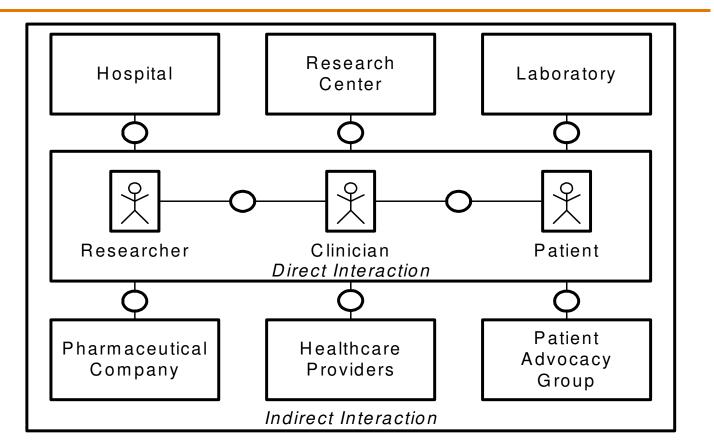


Image: Second

In-Memory Technology for Life Sciences

Schapranow, HPI, Apr 19, 2016

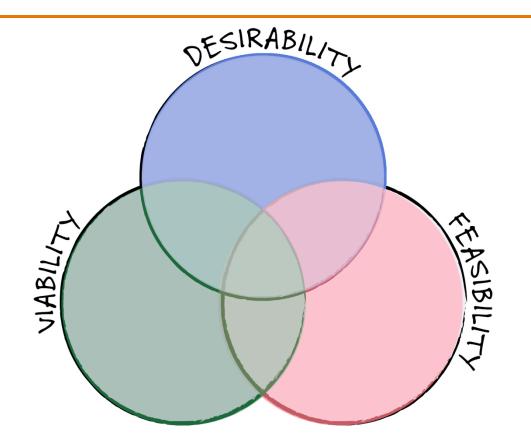
Intelligent Healthcare Networks in the 21st Century?



In-Memory Technology for Life Sciences

Schapranow, HPI, Apr 19, 2016

Intelligent Healthcare Networks in the 21st Century!


In-Memory Technology for Life Sciences

Hasso Plattner Institut

Schapranow, HPI, Apr 19, 2016

Our Methodology Design Thinking

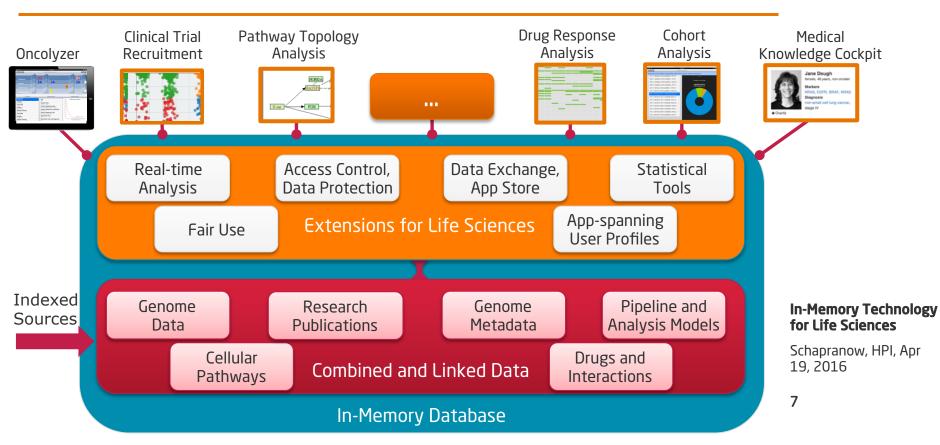
In-Memory Technology for Life Sciences

Our Methodology Design Thinking

- Portfolio of integrated services for clinicians, researchers, and patients
- Include latest treatment option, e.g. most effective therapies

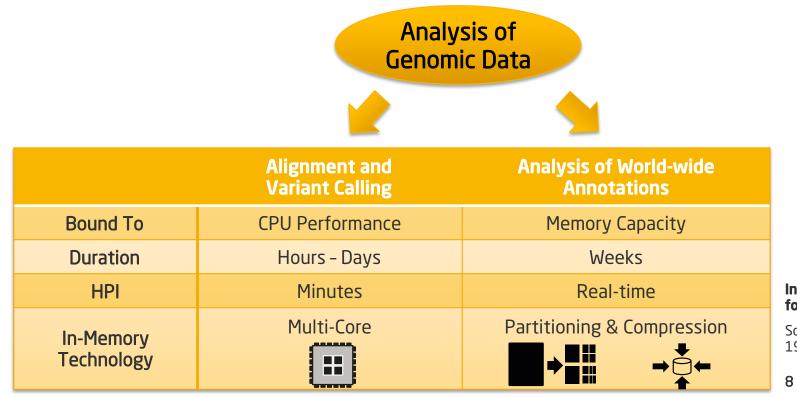
Viability

- Enable precision medicine also in far-off regions and developing countries
- Involve word-wide experts (cost-saving)
- Combine latest international data (publications, annotations, genome data)

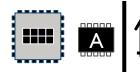

Feasibility

- HiSeq 2500 enables high-coverage whole genome sequencing in 20h
- IMDB enables allele frequency determination of 12B records within <1s for Life
- Cloud-based data processing services reduce TCO

In-Memory Technology for Life Sciences


we.analyzegenomes.com Real-time Analysis of Big Medical Data

In-Memory Database Technology Use Case: Analysis of Genomic Data



In-Memory Technology for Life Sciences

In-Memory Data Management Overview

Advances in Hardware

Multi-core architecture (6 x 12 core CPU per blade)

Parallel scaling across blades

1 blade \approx 50k USD = 1 enterprise class server

64 bit address space -4 TB in current server boards

4 MB/ms/core data throughput

Cost-performance ratio rapidly declining

Advances in Software

Active & Passive Data Stores

In-Memory Technology for Life Sciences

Schapranow, HPI, Apr 19,2016

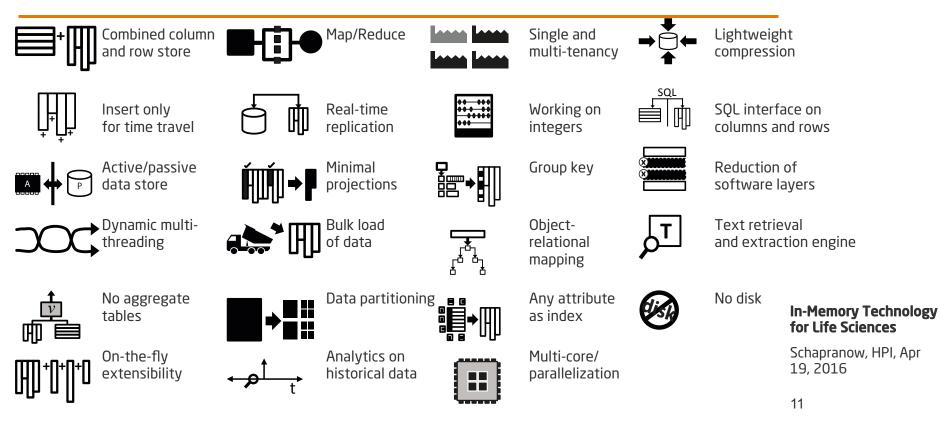
Row and **Column Store**

Insert Only

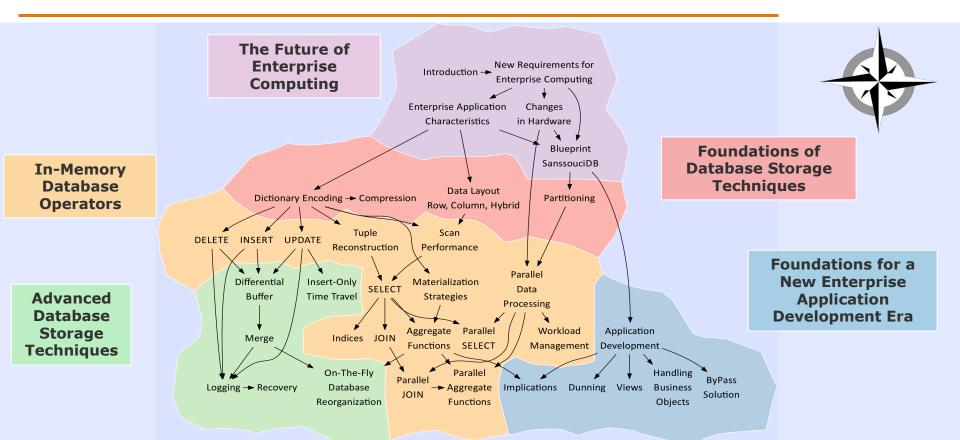
Partitioning Compression

Parallelization

In-Memory Database Technology Hardware Characteristics at HPI FSOC Lab


- 1,000 core cluster at Hasso Plattner Institute with 25 TB main memory
- 25 nodes, each consists of:
 - □ 40 cores
 - □ 1 TB main memory
 - □ Intel[®] Xeon[®] E7- 4870
 - □ 2.40GHz
 - 30 MB Cache

In-Memory Technology for Life Sciences


Our Technology In-Memory Database Technology

Learning Map of openHPI Course In-Memory Data Management

SanssouciDB: An In-Memory Database for Enterprise Applications

Interface Service	es and Sessio	n Management	
Query Execution	Metadata	TA Manager	Distribution Layer at Blade <i>i</i>
Active Data			Main Memory at Blade <i>i</i>
Main Store	Differential Store	Indexes	
Column Column Conbined Column Ge	Column Column Combined Column	Inverted	
		Object Data Guide	
Data Time Logging Recovery			
	E	Log	Non-Volatile Memory
Passive Data (His	story) Snap	oshots	

In-Memory Technology for Life Sciences

- Typical compression factor of 10:1 for enterprise software
- In financial applications up to 50:1

- Main memory access is the new bottleneck
- Lightweight compression can reduce this bottleneck, i.e.

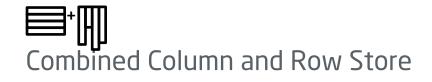
Lossless

- $\hfill\square$ Improved usage of data bus capacity
- Work directly on compressed data

	Table			_
Recld 1	091487	Colon	C18.0	
Recld 2	357982	Larynx	C32.0	
Recld 3	123489	Lip	C00.9	
Recld 4	998711	Colon	C18.0	
Recld 5	215678	Rectum	C20.0	
Recld 6	647912	Rectum	C20.0	
Recld 7	167898	Mama	C50.9	
Recld 8	646470	Colon	C18.0	

Attribute Vector		
Recld	Valueld	
1	C18.0	
2	C32.0	
З	C00.9	
4	C18.0	
5	C20.0	
6	C20.0	
7	C50.9	
8	C18.0	

Data Dictionary


Valueld	Value
1	Larynx
2	Lip
3	Rectum
4	Colon
5	Mama

Inverted Index

Valueld	RecldList
1	2
2	3
3	5,6
4	1,4,8
5	7

In-Memory Technology for Life Sciences

Schapranow, HPI, Apr 19, 2016

Row Stores	Column Stores
Designed for operative workload, e.g.	Designed for analytical work, e.g.
 Create and maintain meta data for	 Evaluate the number of
laboratory tests	positive test results
 Access a complete record of a	 Identification of correlations or
clinical trial or experiment series	test candidates

In-Memory Technology combines both stores
 Increased performance for analytical work
 Operative performance remains interactively

In-Memory Technology for Life Sciences

Hasso Plattner Institut

- Traditional databases allow four data operations:
 - □ INSERT, SELECT and
 - DELETE, UPDATE (destructive)
- Insert-only database tables
 - INSERT, SELECT performed, DELETE, UPDATE are built on them
 - Maintain complete history, e.g. bookkeeping systems
 - Enable time travelling, e.g. to
 - Trace changes and reconstruct medical decisions
 - Document complete history of changes in therapies, dosages, etc.
 - Enable statistical observations of blood pressure, heart rate, etc.

In-Memory Technology for Life Sciences

Horizontal Partitioning	Vertical Partitioning
Cut long tables into shorter segments	Split off selected columns to individual resources
Example: Grouping of samples belonging to same experiment, patients of the same station, etc.	Example: Separation of personalized data from experiment data, research vs. clinical data

- IMDB supports both partitioning approaches
- Data Partitioning is the basis for
 - Parallel execution of database queries
 - Implementation of data aging and data retention management

In-Memory Technology for Life Sciences

Multi-core and Parallelization

- Modern server systems consist of x CPUs, e.g. 6
- Each CPU consists of y CPU cores, e.g. 12
- Consider each of the x*y CPU core as individual workers, e.g. 6x12 = 72
- Each worker can perform one task at the same time in parallel
- Full table scan of database table w/ 1M entries results in 1/x*1/y processing time when traversing in parallel
 - Reduced response time
 - $\hfill\square$ No need for pre-aggregated totals and redundant data
 - Improved usage of hardware
 - Instant analysis of data

In-Memory Technology for Life Sciences

Active and Passive Data Store

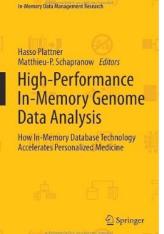
Active Data	Passive Data
Accessed and updated frequently, e.g.	Used for analytical & statistical purposes only, e.g.
 Most recent experiment results, e.g. last two weeks 	 Samples that were processed 5 years ago
 Samples that have not been processed, yet 	 Meta data about seeds that are not longer produced

- Passive data can be stored on slower storages
 - Reduces main memory demands
 - Improves performance active data

In-Memory Technology for Life Sciences

Reduction of Application Layers

- Layers are introduced to abstract software complexity
- Each layer offers complete functionality, e.g. meta data of samples
- Less layers result in
 - More specific code only
 - Improved code maintainability
 - Reduced resource demands
 - Improved performance of applications due to eliminating obsolete processing


In-Memory Technology for Life Sciences

Keep in contact with us!

Dr. Matthieu-P. Schapranow schapranow@hpi.de http://we.analyzegenomes.com/ Hasso Plattner Institute Enterprise Platform & Integration Concepts (EPIC) Program Manager E-Health Dr. Matthieu-P. Schapranow August-Bebel-Str. 88 14482 Potsdam, Germany

In-Memory Technology for Life Sciences