
Software Engineering 2 (SWT2)

Chapter 3:
BDD and Testing (in Rails)

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

2

Agenda

■  Why Behavior-driven Design (BDD)?
□  Goals of Automated Testing

□  The Case for BDD
□  Writing Software that Matters

■  Building Blocks of Tests and BDD
■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

3

Goals of Automated Developer Testing

Developer 1 (no TDD/BDD)

■  Minute 5: working registration
page

■  Minute 8: feature is tested
(3 times)

Developer 2: with TDD/BDD
(almost no browser testing)
■  Minute 5: working test
■  Minute 10: working

implementation
■  Minute 10.30: feature is tested

(3 times)

SWT2 | BDD and Testing in Rails | WS2012/2013

4 ■  Feature 1: Website registration

Goals of Automated Developer Testing

Developer 1 (no TDD/BDD)

■  Minute 11: implemented
■  Minute 14: tested

(3 times)
■  Minute 17: refactoring ready
■  Minute 19: tested feature 1
■  Minute 21: tested feature 2

■  Minute 22: committed

Developer 2: with TDD/BDD
(almost no browser testing)
■  Minute 12.30: test ready
■  Minute 15.30: implemented

■  Minute 16.00: tested (3 times)
■  Minute 19: refactoring ready
■  Minute 19.10: tested
■  Minute 20.10: committed

SWT2 | BDD and Testing in Rails | WS2012/2013

5 ■  Feature 2: Special case for feature 1

Goals of Automated Developer Testing

■  Finding errors faster
■  Better code (correct, robust, maintainable)

■  Automated developer testing is frequently faster
■  Easier to add new features
■  Easier to modify existing features

■  BUT

□  Tests might have bugs
□  Test environment != production environment
□  Code changes break tests
□  …

è we’ll cover a bit of this in this lecture

SWT2 | BDD and Testing in Rails | WS2012/2013

6

Agenda

■  Why Behavior-driven Design (BDD)?
□  Goals of Automated Testing

□  The Case for BDD
□  Writing Software that Matters

■  Building Blocks of Tests and BDD
■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

7

How Traditional Projects Fail

■  Delivering late
■  Delivering over budget

■  Delivering the wrong thing
■  Unstable in production
■  Costly to maintain

SWT2 | BDD and Testing in Rails | WS2012/2013

8

Why Traditional Projects Fail

■  Smart people trying to do good work
■  Stakeholders are well intended

Process in traditional projects
■  Planning à Analysis à Design à Code à Test à Deploy
■  Much effort for

□  Documents for formalized hand-offs

□  Templates
□  Review committees
□  …

SWT2 | BDD and Testing in Rails | WS2012/2013

9

Why Traditional Projects Fail

■  The later we find a defect, the more expensive to fix it
■  Does front-loading a software development process make sense?

Reality shows
■  Project plans are wonderful
■  Adjustments/assumptions are made during analysis, design, code
■  Re-planning takes place

■  Example: testing phase
□  Tester raises a defect
□  Programmer claims he followed the specification
□  Architect blames business analyst etc.

□  à exponential cost

SWT2 | BDD and Testing in Rails | WS2012/2013

10

Why Traditional Projects Fail

■  People are afraid of making changes
■  Unofficial changes are carried out

■  Documents get out of sync
■  ...

■  Again, why do we do that!?
■  To minimize the risk of finding a defect to late

SWT2 | BDD and Testing in Rails | WS2012/2013

11

A Self-Fulfilling Prophecy

■  We conduct the front-loaded process to minimize exponential
costs of change
□  Project plan
□  Requirements spec

□  High-level design documents
□  Low-level design documents

■  This process causes the exponential costs of change!
è A self-fulfilling prophecy

■  Makes sense for a bridge, ship, or a building
■  Software (and Lego) are EASY to change!

SWT2 | BDD and Testing in Rails | WS2012/2013

12

A Self-Fulfilling Prophecy

■  Many teams work very successful with traditional approaches
■  High degree of communication and collaboration is needed

■  Behavior-driven development … an Agile methodology

SWT2 | BDD and Testing in Rails | WS2012/2013

13

Behavior-driven Development

People ask
■  Why do so many software projects fail?

■  Why are we consistently bad at delivering software?
■  Why do larger teams suffer more?
■  What can be done?

■  A series of lightweight methods

■  Focus: delivering working software to users

SWT2 | BDD and Testing in Rails | WS2012/2013

14

The Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

SWT2 | BDD and Testing in Rails | WS2012/2013

15

http://agilemanifesto.org/

How Agile Methods Address Project Risks

■  No longer late or over budget
□  Tiny iterations

□  Easy to calculate budget
□  High-priority requirements first

■  No longer delivering the wrong thing
□  Strong stakeholder communication

□  Short feedback cycles

SWT2 | BDD and Testing in Rails | WS2012/2013

16

How Agile Methods Address Project Risks

■  No longer unstable in production
□  Delivering each iteration

□  High degree of automation

■  No longer costly to maintain
□  Maintenance mode since Sprint 2
□  Maintenance of multiple versions during development

SWT2 | BDD and Testing in Rails | WS2012/2013

17

The Cost of Going Agile

■  Outcome-based planning / no complete detailed project plan

■  Streaming requirements / a new requirements process

■  Evolving design / no complete upfront design à flexible

■  Changing existing code / need for refactoring

SWT2 | BDD and Testing in Rails | WS2012/2013

18

The Cost of Going Agile

■  Frequent code integration / continuous integration

■  Continual regression testing / add nth feature; test n-1 features

■  Frequent production releases / organizational challenges

■  Co-located team / keep momentum

SWT2 | BDD and Testing in Rails | WS2012/2013

19

Agenda

■  Why Behavior-driven Design (BDD)?
□  Goals of Automated Testing

□  The Case for BDD
□  Writing Software that Matters

■  Building Blocks of Tests and BDD
■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

20

Writing Software that Matters

■  “BDD is about implementing an application by describing its
behavior from the perspective of its stakeholders”

■  Principles of BDD
1.  Enough is enough
2.  Deliver stakeholder value
3.  It’s all behavior

SWT2 | BDD and Testing in Rails | WS2012/2013

21

BDD Cycle

SWT2 | BDD and Testing in Rails | WS2012/2013

22

[Chelimsky et al.:
The Rspec Book, 2010]

Maximum BDD Pyramid

Vision

Goals

Epics

Use Case | Feature

User Stories | Scenarios

Scenario Steps

Test Cases
SWT2 | BDD and Testing in Rails | WS2012/2013

23

Vision

■  All Stakeholders, one statement

■  Core stakeholders vs. incidental stakeholders

■  Example: improve Supply Chain; understand customers better

■  Core stakeholders have to define the vision

■  Incidental stakeholders help understand
□  what is possible
□  at what cost

□  with what likelihood

SWT2 | BDD and Testing in Rails | WS2012/2013

24

Goals

■  Goals have to be identified

■  Examples
□  Easier ordering process
□  Better access to suppliers’ information

■  Goals should be SMART

□  Specific (when is it done?)
□  Measurable (was the objective reached?)
□  Achievable (reduce unrealistic expectations)
□  Relevant (not every exception is relevant)

□  Timeboxed (certain investment in time)

SWT2 | BDD and Testing in Rails | WS2012/2013

25

Epics

■  Huge themes / feature sets are described as an “epic”

■  Too high level to start coding

■  Useful for conversations

■  Examples

□  Reporting
□  Customer registration

SWT2 | BDD and Testing in Rails | WS2012/2013

26

Use Case | Features

■  Describe the behavior we will implement in software
■  Can be traced back to a stakeholder

■  Warning: do not directly start at this level
■  Is it a waterfall process?

□  Yes, we think about goals to be achieved
□  No, we just do enough

■  Explain the value/context of a feature to stakeholders à not too
much detail

■  Features deliver value to stakeholders

SWT2 | BDD and Testing in Rails | WS2012/2013

27

User Stories

■  Stories are demonstrable functionality
■  Attributes (INVEST)

□  Independent
□  Negotiable
□  Valuable (from a business Point of View)
□  Estimable
□  Small enough to be implemented in one iteration

□  Testable
■  1 feature à 1..n User Stories
■  Stories should be vertical
■  A token for a conversation

SWT2 | BDD and Testing in Rails | WS2012/2013

28

User Stories

■  Story content
□  Title

□  Narrative
◊ Description, reason, benefit
◊  “As a <stakeholder>, I want <feature> so that <benefit>”
◊  “In order to <benefit>, a <stakeholder> wants to

<feature>”
□  Acceptance criteria

■  Stories in, features out

SWT2 | BDD and Testing in Rails | WS2012/2013

29

Scenarios, Scenario Steps, Test Cases

■  1 User Story à 1..n scenarios
■  Each scenario describes one aspect of a User Story

■  Describe high-level behavior

■  1 scenario à m scenario steps + step implementation
■  Given – When – Then

■  1 scenario step à 0..i tests (e.g., in RSpec)
■  Describe low-level behavior

SWT2 | BDD and Testing in Rails | WS2012/2013

30

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  Test Data
□  Test Doubles
□  Setup and Teardown
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests
□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

31

Test::Unit vs. RSpec

■  Test::Unit comes with Ruby

SWT2 | BDD and Testing in Rails | WS2012/2013

32

Test::Unit vs. RSpec

■  RSpec has syntactical sugar in it

■  We’ll use RSpec ;)

SWT2 | BDD and Testing in Rails | WS2012/2013

33

http://teachmetocode.com/articles/
rspec-vs-testunit/

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  Test Data
□  Test Doubles
□  Setup and Teardown
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests
□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

34

Test Data Overview

■  Fixtures
□  Fixed state at the beginning of a test

□  Assertions can be made against this state

■  Factories
□  Blueprint for models
□  Used to generate test data locally in the test

SWT2 | BDD and Testing in Rails | WS2012/2013

35

Fixtures

SWT2 | BDD and Testing in Rails | WS2012/2013

36

test/fixtures/users.yml

Fixtures, 1:n relationship

SWT2 | BDD and Testing in Rails | WS2012/2013

37

test/fixtures/companies.yml

test/fixtures/users.yml

Fixtures, n:m relationship

SWT2 | BDD and Testing in Rails | WS2012/2013

38

test/fixtures/users.yml

Fixtures are ERB Files

SWT2 | BDD and Testing in Rails | WS2012/2013

39

Loading Fixtures

SWT2 | BDD and Testing in Rails | WS2012/2013

40

Why Fixtures are a Pain

■  Fixtures are global
□  Only ONE set of data

□  Every test has to deal with ALL test data

■  Fixtures are spread out
□  Own directory
□  One file per model à data for one test is spread out over

many files
□  Tracing relationships is a pain

SWT2 | BDD and Testing in Rails | WS2012/2013

41

Why Fixtures are a Pain

■  Fixtures are distant
□  A test fails

□  It is unclear which data is used
□  How are values computed?
□  assert_equal(users(:ernie).age + users(:bert).age), 20)

■  Fixtures are brittle

□  Tests rely on this data
□  Tests break when data is changed
□  Data requirements may be incompatible

SWT2 | BDD and Testing in Rails | WS2012/2013

42

Fixing Fixtures with Factories

Test data should be
■  Local (defined as closely as possible to the test)

■  Compact (easy and quick to generate; even complex data sets)
■  Robust (independent to other tests)

è Data factories

SWT2 | BDD and Testing in Rails | WS2012/2013

43

Data Factories

■  Blueprint for sample instances
■  Rails tool support

□  Factory Girl
□  Machinist
□  Fabrication
□  FictureBuilder
□  ObjectDaddy
□  …
□  https://www.ruby-toolbox.com/categories/

rails_fixture_replacement
■  Similar structure

□  Syntax for creating the factory blueprint
□  API for creating new objects

■  We’ll use factory_girl

SWT2 | BDD and Testing in Rails | WS2012/2013

44

Defining Factories

SWT2 | BDD and Testing in Rails | WS2012/2013

45

Defining Factories

■  One most simplistic factory <model_name> for each class
■  Put in

□  test/factories.rb
□  spec/factories.rb
□  test/factories/*.rb
□  spec/factories/*.rb ç with * = <model_name>

SWT2 | BDD and Testing in Rails | WS2012/2013

46

Using Factories

■  Build strategies: build, create ß standard, attributes_for, stub

SWT2 | BDD and Testing in Rails | WS2012/2013

47

Attributes

SWT2 | BDD and Testing in Rails | WS2012/2013

48

Associations

SWT2 | BDD and Testing in Rails | WS2012/2013

49

Associations

SWT2 | BDD and Testing in Rails | WS2012/2013

50

Inheritance

SWT2 | BDD and Testing in Rails | WS2012/2013

51

Sequences for Unique Values

SWT2 | BDD and Testing in Rails | WS2012/2013

52

Sequences for Unique Values

SWT2 | BDD and Testing in Rails | WS2012/2013

53

Callbacks

■  after_build - called after a factory is built (via Factory.build)
■  after_create - called after a factory is saved (via Factory.create)

■  after_stub - called after a factory is stubbed (via Factory.stub)

SWT2 | BDD and Testing in Rails | WS2012/2013

54

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  Test Data
□  Test Doubles

◊  Introduction
◊  Stubs in Detail
◊  Mocks in Detail

□  Setup and Teardown
□  Model Tests
□  View Tests
□  Controller Tests
□  …

■  Testing Tests
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

55

Isolation of Test Cases

■  Tests should be independent
■  New bug in a model à only tests related

to this model should fail
■  How to achieve this?

□  Don’t share complex test data ✔
□  Don’t use complex objects

SWT2 | BDD and Testing in Rails | WS2012/2013

56

Steve Freeman, Nat Pryce: Growing
Object-Oriented Software, Guided by
Tests

Test Doubles

■  Fake objects used in place of “real” ones
■  Purpose: automated testing

■  Used when
□  real object is unavailable
□  real object is difficult to
◊  access or
◊  trigger

□  following a strategy to re-create an
application state

□  limiting scope of the test to the
object/method currently under test

SWT2 | BDD and Testing in Rails | WS2012/2013

57

Verifying Behavior During a Test

■  Usually: test system state AFTER a test
■  With test doubles: test system behavior!

SWT2 | BDD and Testing in Rails | WS2012/2013

58

Stubs vs. Mocks

■  Stub (passive)
□  Returns a predetermined value for a method call

□  Does not actually call the method

 thing.stubs(:name).returns(“Fred”)

■  Mock (more aggressive)

□  In addition: set an assertion
□  If expectation is not met à test failure

SWT2 | BDD and Testing in Rails | WS2012/2013

59

Why to have Mocks?

■  Makes sense?

■  Makes more sense?

SWT2 | BDD and Testing in Rails | WS2012/2013

60

Ruby Test Double Frameworks

■  Rspec-mocks (http://github.com/rspec/rspec-mocks)
■  Mocha (http://mocha.rubyforge.org/)

■  FlexMock (http://flexmock.rubyforge.org/)
■  https://www.ruby-toolbox.com/categories/mocking

■  We’ll use Mocha

SWT2 | BDD and Testing in Rails | WS2012/2013

61

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  Test Data
□  Test Doubles

◊  Introduction
◊  Stubs in Detail
◊  Mocks in Detail

□  Setup and Teardown
□  Model Tests
□  View Tests
□  Controller Tests
□  …

■  Testing Tests
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

62

Stubs

■  Replacement for one or many parts of an object
■  Normal method call is not happening

■  Returns a predefined value if called

■  You can only call stubby.name or stubby.weight
■  Else: error
■  Or: stub_everything(...) à nil

SWT2 | BDD and Testing in Rails | WS2012/2013

63

Stubbing Instances

SWT2 | BDD and Testing in Rails | WS2012/2013

64

Stubbing Classes

■  A specific instance is returned

■  Database is not touched

■  “find” cannot be verified anymore BUT
■  Tests based on “find” can be isolated

■  è just test the logic that is under test

SWT2 | BDD and Testing in Rails | WS2012/2013

65

Multiple Return Values

SWT2 | BDD and Testing in Rails | WS2012/2013

66

Stub Returns and Raises

SWT2 | BDD and Testing in Rails | WS2012/2013

67

Examples

SWT2 | BDD and Testing in Rails | WS2012/2013

68

Hints for any_instance

■  No guarantee that find returns the exact object you expect
■  any_instance is valid only for instances created after you declared

the stub (not for fixture data)

SWT2 | BDD and Testing in Rails | WS2012/2013

69

Stubs with Parameters

SWT2 | BDD and Testing in Rails | WS2012/2013

70

Stubs with Parameters

SWT2 | BDD and Testing in Rails | WS2012/2013

71

with() Descriptor

SWT2 | BDD and Testing in Rails | WS2012/2013

72

instance_of(), Not

SWT2 | BDD and Testing in Rails | WS2012/2013

73

any_of()

SWT2 | BDD and Testing in Rails | WS2012/2013

74

regexp_matches(), …

SWT2 | BDD and Testing in Rails | WS2012/2013

75

http://mocha.rubyforge.org/

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  Test Data
□  Test Doubles

◊  Introduction
◊  Stubs in Detail
◊  Mocks in Detail

□  Setup and Teardown
□  Model Tests
□  View Tests
□  Controller Tests
□  …

■  Testing Tests
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

76

Mocks

■  Mock = Stub + attitude
■  Demands that mock parameters are called

SWT2 | BDD and Testing in Rails | WS2012/2013

77

Mocks

SWT2 | BDD and Testing in Rails | WS2012/2013

78

Mocks

SWT2 | BDD and Testing in Rails | WS2012/2013

79

Stub Modifiers are Valid for Mocks

SWT2 | BDD and Testing in Rails | WS2012/2013

80

How often wants a Mock to be Called?

■  By default: one

SWT2 | BDD and Testing in Rails | WS2012/2013

81

Mock Objects and Behavior-Driven
Development

■  Example of a controller test

SWT2 | BDD and Testing in Rails | WS2012/2013

82

vs.

Advantages and Disadvantages

■  Disadvantages
□  Mismatch between mocked model and real model
◊ Data type
◊ Semantic
◊ è integration tests

□  Risk to test predefined data (non-sense)
□  Tests might depend on internal structures of mocked object

à brittle while refactoring

■  Advantages
□  The test is focused on behavior

□  Speed
□  Isolation of tests (failure in model does not affect controller test)

SWT2 | BDD and Testing in Rails | WS2012/2013

83

Test Double Dos & Don’ts

■  You replace an object because it is hard to create in a test
environment è use a stub

■  minimize number of mocked methods

■  #mocksñ è possibility to run out of sync with real implementationñ

■  #mocksñ è test too large? Poor object-oriented design?

■  Don’t assert a value you set by a test double (false positives)

SWT2 | BDD and Testing in Rails | WS2012/2013

84

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  Test Data
□  Test Doubles
□  Setup and Teardown
□  Model Tests
□  View Tests

□  Controller Tests
□  …

■  Testing Tests
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

85

Setup and Teardown
RSpec

SWT2 | BDD and Testing in Rails | WS2012/2013

86

Setup and Teardown
RSpec

SWT2 | BDD and Testing in Rails | WS2012/2013

87

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

88

Model Tests

■  A Rails model
□  accesses data through an ORM

□  implements business logic
□  is “fat”

■  Model tests
□  Model tests in Rails = Test::Unit + test data + setup/teardown

+ test logic + additional assertions
□  Easiest tests to write

SWT2 | BDD and Testing in Rails | WS2012/2013

89

Hints for Model Tests

■  Tests should cover ~100% of the model code
■  Do not test framework functionality like “belongs_to”

■  Test your validations
■  How many tests? Let tests drive the code à perfect fit
■  What comes out?

□  One test for the “happy-path case”
□  One test for each branch

□  Corner cases (nil, wrong values, …) ß if appropriate
■  Keep each test small!

SWT2 | BDD and Testing in Rails | WS2012/2013

90

How many Assertions per Test?

■  If 1 call to a model è many changes:
□  #Assertions ñ è clarity and cohesion ñ

□  #Assertions ñ è test independece
è Use context & describe and have 1 assertion per test

SWT2 | BDD and Testing in Rails | WS2012/2013

91

ñ

Test Run

SWT2 | BDD and Testing in Rails | WS2012/2013

92

Example Rspec Tests

SWT2 | BDD and Testing in Rails | WS2012/2013

93

Example Rspec Tests

SWT2 | BDD and Testing in Rails | WS2012/2013

94

RSpec

■  Remainder: we use RSpec

SWT2 | BDD and Testing in Rails | WS2012/2013

95

http://rspec.info/

Autotest

■  Automate testing with Autotest
(https://github.com/rspec/rspec/wiki/autotest)

■  Run autotest –rails
■  Integrate with Growl

■  Use FSEvent

SWT2 | BDD and Testing in Rails | WS2012/2013

96

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

97

View Tests

■  A Rails view
□  Has only minimal logic

□  Does never call the database
□  Presents the data given by the controller

■  Challenges for view tests
□  Time-intensive

□  How to test look & feel?
□  Brittle w.r.t. re-designs

■  What to do?

SWT2 | BDD and Testing in Rails | WS2012/2013

98

View Tests

■  Specify and verify logical and semantic structure

■  Goals
□  Validate that view layer runs without error
□  Data gathered by the controller is presented as expected
□  Validate security-based output (e.g., for admins)

■  Do not
□  Validate HTML markup
□  Look & feel

SWT2 | BDD and Testing in Rails | WS2012/2013

99

Most Basic View Tests

SWT2 | BDD and Testing in Rails | WS2012/2013

100

Keys to Meaningful View Tests

■  Test views semantically with use DOM IDs / CSS classes
■  Do not test actual text

■  Side-effect: you validate your HTML

SWT2 | BDD and Testing in Rails | WS2012/2013

101

assign()

SWT2 | BDD and Testing in Rails | WS2012/2013

102

should have_selector()

SWT2 | BDD and Testing in Rails | WS2012/2013

103

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

104

Controller Tests

■  A Rails controller
□  Is “skinny”
□  Calls the ORM
□  Calls the model
□  Passes data to the view

■  Goal of controller tests
□  Simulate a request
□  Verify the result

■  Subclass of ActionController::TestCase (
http://api.rubyonrails.org/classes/ActionController/TestCase.html)

■  and ActiveSupport:TestCase (
http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html)

SWT2 | BDD and Testing in Rails | WS2012/2013

105

Controller Tests

■  3 important variables
□  controller

□  request
□  response

■  Variables for
□  session – session[:key]

□  controller variables – assigns[:key]
□  flash – flash[:key]

SWT2 | BDD and Testing in Rails | WS2012/2013

106

Controller Tests

■  Methods for
□  get

□  post
□  put
□  delete
□  xhr (Ajax)

SWT2 | BDD and Testing in Rails | WS2012/2013

107

What to test?

■  Remember: model functionality is tested in model tests

■  Controller tests
□  Verify that user requests trigger
◊ model/OER calls
◊  that data is forwarded to view

□  Handling of invalid user requests
□  Verifying security roles / role-based access control

SWT2 | BDD and Testing in Rails | WS2012/2013

108

Structure of a Controller Test

■  Setup
□  Prepare data

□  Prepare request/session

■  Send request to controller

■  Validate controller response

SWT2 | BDD and Testing in Rails | WS2012/2013

109

Simple Controller Test

SWT2 | BDD and Testing in Rails | WS2012/2013

110

Simple Controller Test

SWT2 | BDD and Testing in Rails | WS2012/2013

111

Structure of a Request

<http_verb> :<method>, <parameters>, <session_data>, <text_flash>

SWT2 | BDD and Testing in Rails | WS2012/2013

112

format.js

Some More Examples

SWT2 | BDD and Testing in Rails | WS2012/2013

113

Testing File Uploads

SWT2 | BDD and Testing in Rails | WS2012/2013

114

Background on Controller Tests

■  Controller method is called directly
■  Routes are NOT evaluated

■  Real request parameters are always strings

SWT2 | BDD and Testing in Rails | WS2012/2013

115

Background on Controller Tests

■  By default, views are not rendered

SWT2 | BDD and Testing in Rails | WS2012/2013

116

Testing the Controller Response

■  HTTP status code
■  Correct template

■  Assertion methods
□  response.should redirect_to(…)
□  response.should be_success | be_redirect | …
□  response.should render_template(…)

SWT2 | BDD and Testing in Rails | WS2012/2013

117

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

118

Route Tests

■  route_for

■  params_from

SWT2 | BDD and Testing in Rails | WS2012/2013

119

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

120

Outgoing Mail Tests

■  What to validate?
□  Application sends mail when expected

□  Email content is what you expect

■  Enable testing
□  Uncomment line 26 in config/environments/test.rb
□  config.action_mailer.delivery_method = :test

□  In mail test setup: “ActionMailer::Base.deliveries.clear”

SWT2 | BDD and Testing in Rails | WS2012/2013

121

First Steps in Outgoing Mail Tests

SWT2 | BDD and Testing in Rails | WS2012/2013

122

Validating Content

■  Applied to the body of each email in ActionMailer::Base.deliveries
■  Only text/html emails

SWT2 | BDD and Testing in Rails | WS2012/2013

123

Complete Outgoing Mail Test

SWT2 | BDD and Testing in Rails | WS2012/2013

124

More insights about mail spec at http://tmail.rubyforge.org/

Mail Tests in RSpec & Cucumber

■  email-spec (https://github.com/bmabey/email-spec)
■  Installation

SWT2 | BDD and Testing in Rails | WS2012/2013

125

Cucumber Mail Scenarios

■  Clear the email queue (done automatically by email_spec)

■  Execute steps that sends an email

■  Check the user received an/no/[0-9] emails
■  Open the email
■  Inspect the email contents

■  Interact with the email (e.g. click links)

SWT2 | BDD and Testing in Rails | WS2012/2013

126

Cucumber Mail Scenarios

■  Given a clear email queue | no emails have been sent

■  When ...

■  Then I|they|address should receive an|no|\d+ emails
■  Then I|they|address should have an|no|\d+ emails
■  Then I|they|address should receive an|no|\d+ emails with subject

”subject”
■  Then I|they|address should receive an email with the following

body:

SWT2 | BDD and Testing in Rails | WS2012/2013

127

Cucumber Mail Scenarios

■  When I|they|address opens the email ß last recent one
■  When I|they|address opens the email with subject ”subject”

■  When I|they|address opens the email with text ”text”

■  Then I|they should see ”text" in the email subject
■  Then I|they should see \regex/ in the email subject

■  Then I|they should see ”text" in the email body
■  Then I|they should see \regex/ in the email body

SWT2 | BDD and Testing in Rails | WS2012/2013

128

Cucumber Mail Scenarios

■  Then I|they should see the email delivered from ”text”
■  Then I|they should see ”header_text" in the email ”header_name

■  Then I|they should see \regex/ in the email ”header_name"
header

■  Then I should see it is a multi-part email
■  Then I|they should see ”text" in the email html part body
■  Then I|they should see ”text" in the email text part body

SWT2 | BDD and Testing in Rails | WS2012/2013

129

Cucumber Mail Scenarios

■  Then I|they should see an|no|\d+ attachments with the email
■  Then there should be an|no|\d+ attachments named ”filename”

■  Then attachment \d+ should be named ”filename”
■  Then there should be an|no|\d+ attachments of type ”content_type
■  Then attachment (\d+) should be of type ”content_type”

■  Then all attachments should not be blank

■  Then show me a list of email attachments

SWT2 | BDD and Testing in Rails | WS2012/2013

130

Cucumber Mail Scenarios

■  When I|they follow ”link" in the email
■  When I|they click the first link in the email

■  # Debugging, Rails and OSx ATM since EmailViewer uses
RAILS_ROOT and OSx's 'open' command.

■  Then save and open current email
■  Then save and open all text emails

■  Then save and open all html emails
■  Then save and open all raw emails

SWT2 | BDD and Testing in Rails | WS2012/2013

131

Cucumber Example Scenario

SWT2 | BDD and Testing in Rails | WS2012/2013

132

RSpec Example Test

SWT2 | BDD and Testing in Rails | WS2012/2013

133

RSpec Example Test 2

SWT2 | BDD and Testing in Rails | WS2012/2013

134

RSpec Example Test 2

SWT2 | BDD and Testing in Rails | WS2012/2013

135

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

136

Helper Tests

■  Helpers are filled with “the rest”
■  Used as mediator between views and models or

views and controllers
■  (Complex) view logic is moved to helpers

SWT2 | BDD and Testing in Rails | WS2012/2013

137

Helper Tests

SWT2 | BDD and Testing in Rails | WS2012/2013

138

Agenda

■  Why Behavior-driven Design (BDD)?
■  Building Blocks of Tests and BDD

□  …
□  Model Tests
□  View Tests
□  Controller Tests
□  Routing Tests

□  Outgoing Mail Tests
□  Helper Tests
□  Integration and Acceptance Tests

■  Testing Tests & Hints for Successful Test Design

■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

139

Integration Tests

■  Written by a developer for a developer

■  Test communication of controllers via sessions/cookies
■  Verify end-to-end behavior
■  Make controller calls
■  Verify that everything is okay

■  Similar to controller tests, BUT
□  Not tied to one controller
□  1..n sessions for different users

SWT2 | BDD and Testing in Rails | WS2012/2013

140

Methods

■  url_for(object_instance)

■  via_redirect
■  post_via_redirect
■  follow_redirect!

■  https!

■  https!(false)

■  host!(epic.hpi.uni-potsdam.de)

■  Set initial state: session[:user_id] = 3

SWT2 | BDD and Testing in Rails | WS2012/2013

141

Test::Unit

SWT2 | BDD and Testing in Rails | WS2012/2013

142

Multiple Session Example with Test::Unit

SWT2 | BDD and Testing in Rails | WS2012/2013

143

Webrat & Capybara

■  Webrat and Capybara are very similar
■  We’ll use Capybara

■  DSL for
□  “browsing the Internet”
□  Acceptance testing

■  Capybara is case-sensitive (due to Xpath backend)

SWT2 | BDD and Testing in Rails | WS2012/2013

144

Finding Elements

■  Finding elements
□  label

□  DOM ID
□  form field name

■  “Phone Number”
■  “phone”
■  “user[phone]”

SWT2 | BDD and Testing in Rails | WS2012/2013

145

10 Capybara Methods

■  attach_file(field_locator, path, content_type = nil)
■  check(field_locator)

■  choose(field_locator)
■  click_button(value)
■  click_link(text_or_title_or_id, options = {})
■  fill_in(field_locator, options = {})
■  save_and_open_page()

■  select(option_text, options = {})
■  uncheck(field_locator)
■  visit(url = nil, http_method = :get, data = {})

SWT2 | BDD and Testing in Rails | WS2012/2013

146

Clarity ñ

SWT2 | BDD and Testing in Rails | WS2012/2013

147

Cucumber

■  Features
□  Gherkin (i.e. the language Cucumber understands)
□  Title
□  Narrative
□  Scenarios

◊  Title
◊  Steps

■  cucumber command
□  Parses steps
□  Map them to step definitions

■  Step definition
□  Written in Ruby (or other languages)
□  “implements” a step
□  https://www.ruby-toolbox.com/categories/Cucumber_Steps for

helpful add-ons and predefined steps

SWT2 | BDD and Testing in Rails | WS2012/2013

148

Gherkin

■  Feature
■  Background

■  Scenario
■  Scenario Outline
■  Scenarios
■  Given
■  When

■  Then
■  And / But
■  |
■  “””
■  #

SWT2 | BDD and Testing in Rails | WS2012/2013

149

Predefined Steps

■  Given I am on the homepage | <RESTresource>s page
■  When I go to (.+)

■  When I press ”button” (within ”selector”)
■  When I follow ”link” (within ”selector”)
■  When I fill in ”field" with ”value” (within ”selector”)
■  When I fill in ”value" for “field” (within ”selector”)
■  When I fill in the following:

 | Account Number | 5002 |
 | Expiry date | 2009-11-01 |
 | Note | Nice guy |

SWT2 | BDD and Testing in Rails | WS2012/2013

150

Predefined Steps

■  When I select ”value" from ”field” (within “selector”)
■  When I check|uncheck “field” (within “selector”)

■  When I choose “field” (within “selector”)
■  When I attach the file ”path" to “field” (within ”selector”)
■  Then I should see JSON:
■  Then I should (not) see “text” (within “selector")
■  Then I should (not) see \regex/ (within “selector”)

SWT2 | BDD and Testing in Rails | WS2012/2013

151

Predefined Steps

■  Then the ”field" field (within ”selector”)
 should (not) contain ”value”

■  Then the ”label" checkbox (within ”selector”)
 should (not) be checked

■  Then I should be on the <RESTresource>s page
■  Then I should have the following query string:

■  Then show me the page

SWT2 | BDD and Testing in Rails | WS2012/2013

152

Declarative vs. Imperative

■  Scenario: transfer money
(declarative)
□  Given I have $100 in checking
□  And I have $20 in savings
□  When I transfer $15 from

checking to savings
□  Then I should have $85 in

checking
□  And I should have $35 in

savings

[RSpec Book]

■  Scenario: transfer money
(imperative)
□  Given I have $100 in checking
□  And I have $20 in savings
□  When I go to the transfer form
□  And I select "Checking" from

"Source Account”
□  And I select "Savings" from

"Target Account”
□  And I fill in "Amount" with "15”
□  And I press "Execute Transfer”
□  Then I should see that I have

$85 in checking
□  And I should see that I have $35

in savings

SWT2 | BDD and Testing in Rails | WS2012/2013

153

Organizing Features

■  ./features/*.feature
■  ./features/<epic>/*.feature

■  cucumber features
■  Cucumber features/<epic>

SWT2 | BDD and Testing in Rails | WS2012/2013

154

Tagging

Pending

Work in
progress

Passing

SWT2 | BDD and Testing in Rails | WS2012/2013

155

Tags

■  @wip
■  Cucumber --tags @wip

■  @wip @piw
■  AND: cucumber --tags @wip --tags @piw
■  OR: cucumber --tags @wip,@piw
■  NOT: cucumber --tags @wip ~@piw

■  Run certain scenarios / features
■  Only run in certain environments
■  Relate epics

SWT2 | BDD and Testing in Rails | WS2012/2013

156

Calling Steps From Steps

■  When /I transfer (.*) from (.*) to (.*)/ do |amount, source, target|
□  When "I select #{source} as the source account”
□  When "I select #{target} as the target account”
□  When "I set #{amount} as the amount”
□  When "I click transfer”

■  end

■  When /I transfer (.*) from (.*) to (.*)/ do |amount, source, target|
□  steps %Q{

◊  When I select #{source} as the source account
◊  And I select #{target} as the target account
◊  And I set #{amount} as the amount And I click transfer

□  }
■  end

SWT2 | BDD and Testing in Rails | WS2012/2013

157

Background

■  Feature: invite friends
□  Background: Logged in
◊ Given I am logged in as "Aslak”
◊ And the following people exist:
●  | name | friend? |
●  | David | yes |
●  | Vidkun | no |

□  Scenario: Invite someone who is already a friend
□  Scenario: Invite someone who is not a friend
□  Scenario: Invite someone who is not a friend who doesn't

have an account

SWT2 | BDD and Testing in Rails | WS2012/2013

158

Multi-Line Text

Scenario: pending implementation
 Given a file named "example_without_block_spec.rb" with:
 """
 describe "an example" do
 it "has not yet been implemented”
 end
 """
 When I run "spec example_without_block_spec.rb”
 Then the exit code should be 0
 And the stdout should include
 """
 Pending:

 an example has not yet been implemented \(Not Yet Implemented\)
 .\/example_without_block_spec.rb:2

 Finished in ([\d\.]*) seconds

 1 example, 0 failures, 1 pending
 """

SWT2 | BDD and Testing in Rails | WS2012/2013

159

Cucumber Configuration

■  config/cucumber.yml

■  Define profiles
□  wip: --tags @wip features
□  cucumber –p wip

■  Define default format

SWT2 | BDD and Testing in Rails | WS2012/2013

160

Capybara and Ajax

■  Capybara uses
□  Celerity (http://celerity.rubyforge.org/) or

□  Culerity (https://github.com/langalex/culerity/)
□  To run JS without a browser

SWT2 | BDD and Testing in Rails | WS2012/2013

161

https://github.com/jnicklas/capybara

Capybara and Ajax

SWT2 | BDD and Testing in Rails | WS2012/2013

162

Agenda

■  Behavior-Driven Development of MasterMind
■  Why Behavior-driven Design (BDD)?

■  Building Blocks of Tests and BDD
■  Testing Tests & Hints for Successful Test Design
■  Outlook

SWT2 | BDD and Testing in Rails | WS2012/2013

163

Testing Tests

■  Test coverage

■  Fault seeding

■  Mutation testing

SWT2 | BDD and Testing in Rails | WS2012/2013

164

Tests Coverage

■  Most commonly used metric for evaluating test suite quality

■  Test coverage = executed code during test suite run / all code *100
■  85 loc / 100 loc = 85% test coverage

1.  Absence of code coverage indicates a potential problem
2.  Existence of code coverage means very little

3.  In combination with good testing practices, coverage might say
something about test suite reach

SWT2 | BDD and Testing in Rails | WS2012/2013

165

How to Measure Coverage?

■  Most useful approaches
□  Line coverage

□  Branch coverage

■  Tool
□  SimpleCov (https://github.com/colszowka/simplecov) - Ruby 1.9
□  Rcov (https://github.com/relevance/rcov) for 1.8

□  Uses line coverage

□  è 100% code coverage although 1 branch wasn’t executed

SWT2 | BDD and Testing in Rails | WS2012/2013

166

Rcov / SimpleCov

SWT2 | BDD and Testing in Rails | WS2012/2013

167

Rcov / SimpleCov

SWT2 | BDD and Testing in Rails | WS2012/2013

168

How Much is Enough?

■  100% code coverage says nothing
■  0% says much

■  Almost 100% is a side effect of BDD

SWT2 | BDD and Testing in Rails | WS2012/2013

169

5 Habits of Highly Successful Tests

■  Independence
□  of external test data

□  of other tests (or test order)
■  Repeatability

□  Same results each test run
□  Problems
◊  date (Timecop)
◊  random numbers (try to avoid them)

SWT2 | BDD and Testing in Rails | WS2012/2013

170

5 Habits of Highly Successful Tests

■  Clarity
□  Test purpose should be immediately understandable

□  Readability
□  How does the test fit into the larger test suite?
□  Worst case:

SWT2 | BDD and Testing in Rails | WS2012/2013

171

5 Habits of Highly Successful Tests

■  Clarity
□  …

□  Better:

□  “Debugging is harder than coding”
□  Tests should be simple

SWT2 | BDD and Testing in Rails | WS2012/2013

172

5 Habits of Highly Successful Tests

■  Conciseness
□  Use the minimum amount of code and objects

□  Clear beats concise
□  Writing the minimum amount of tests
□  à tests will be faster

SWT2 | BDD and Testing in Rails | WS2012/2013

173

5 Habits of Highly Successful Tests

■  Robustness
□  Tests the logic as intended

□  Code is correct à tests passes
□  Code is wrong à test does not pass
□  Example: view testing

SWT2 | BDD and Testing in Rails | WS2012/2013

174

vs.

5 Habits of Highly Successful Tests

■  Robustness

□  But be aware of false positives

SWT2 | BDD and Testing in Rails | WS2012/2013

175

Troubleshooting

■  Reproduce the error
■  What has changed?

■  Isolate the failure
■  thing.inspect (p thing)
■  Add assertions/prints to your test
■  Rails.logger.error
■  save_and_open_page

■  Explain to someone else

SWT2 | BDD and Testing in Rails | WS2012/2013

176

Manual Fault Seeding

■  Introduce a fault into your program
■  Run tests

■  Minimum 1 test should fail
■  Warning: do not leave the fault in the software!

SWT2 | BDD and Testing in Rails | WS2012/2013

177

Mutation Testing

■  Mutant: Slightly modified version of the program under test,
differing from it by a small, syntactic change

SWT2 | BDD and Testing in Rails | WS2012/2013

178

Test
Cases

Program

Mutants

should pass on

should fail on

To create mutants, replace:
if è if not
12 è 13
= è <

Mutation Testing

■  Ruby tool: Heckle (http://ruby.sadi.st/Heckle.html)

1.  Your tests should pass
2.  You run Heckle to change your code
3.  Test(s) should fail
4.  Write tests for surviving mutants if useful

SWT2 | BDD and Testing in Rails | WS2012/2013

179

Outlook

§  Lego Exercise
§  Project Introduction

§  Assignment until Nov 5, 11:59pm CET
§  Build teams of ~5 people
§  Name the PO of your team
§  Send info to swt2_2012_orga@lists.hpi.uni-potsdam.de

SWT2 | BDD and Testing in Rails | WS2012/2013

180

