Hasso
Plattner
Instltut

‘i!%, o |l '- . !1 l
e
< gkl ik *!I"l"'"l"l"'"'"'||I||l Il||!||'||l||'“l"|"'"!

NolgEIEREERTS

Software Engeneering
WS 2014/15

Review Techniques

“[Formal or informal] meeting during which a software product is
[examined by] project personnel, managers, users, customers, user
representatives, or other interested parties for comment or approval”
[IEEE1028]

B People-intensive approach instead of using tools

Code Reviews — Software Engeneering Il — WS 2014/15

Why Reviews?

[Giese]
B Assure that software fulfills the requirements
m Faults are covered as early as possible
B Projects gets more manageable by identifying new risks
B Improvement of communication
B Further education of participants
m Software gets more visible

Code Reviews — Software Engeneering Il — WS 2014/15

Involved Roles

[http://community.acs.org/journals/acbcct/cs/Portals/0/wiki/PeerReview.jpg]

Code Reviews — Software Engeneering Il — WS 2014/15 4

Involved Roles

Manager

B Assessment is an important task for manager

m But: Lack of technical understanding

B But: Assessment of a product vs assessment of a person

C Outsider in review process, but should support with resources (time,
staff, rooms, ...)

Developer
B Should not justify but only explain their results
m No boss should take part at review

Code Reviews — Software Engeneering Il — WS 2014/15

Review team

Team leader [Giese]

B Responsible for quality of review

B Technical, personal and administrative competence

B Moderation of review meetings

Reviewer

m Study the material before first meeting

B Don’t try to achieve personal targets!

B Gives positive andnegative comments on review artifacts
[J Not on the author!

Recorder

B Any reviewer, can rotate even in review meeting
B Protocol as basis for final review document

Code Reviews — Software Engeneering Il — WS 2014/15

Task of Review Team

[Giese]
Deliver a good review
® “Don’t shoot the messenger”
B Find problems, but don’t try to solve them
Artifact of interest should be assessed
B Accepted, partly accepted, needs corrections, rejected
B Acceptance only possible if no participant speaks against it
Problems should be clearly identified/ extracted

Code Reviews — Software Engeneering Il — WS 2014/15

Review Team Building

[Giese]
Team members: In general staff with personal interest in a good result
Review as basis for management decisions
Potential members
B Representative of team which build artifact (not the author!)
B Representative of customer
B Representative of team which will use the artifact
B Representative of QA unit
B Experienced staff or outsiders to ensure objectivity
3-6 members (with some extra viewers)

Code Reviews — Software Engeneering Il — WS 2014/15

Management Reviews

“The purpose of a management review is to monitor progress, determine

the status of plans and schedules, confirm requirements and their system

allocation, or evaluate the effectiveness of management approaches used

to achieve fitness for purpose” [I[EEE1028-97]

B Support decisions about changes and corrective actions that are
required during a software project

B Determine the adequacy of plans, schedules, and requirements and
monitor their progress or inconsistencies

Code Reviews — Software Engeneering Il — WS 2014/15

Technical Reviews

“The purpose of a technical review is to evaluate a software product to

determine its suitability for its intended use. The objective is to identify

discrepancies from approved specifications and standards. The results

should provide management with evidence confirming (or not) that the

product meets the specifications and adheres to standards, and that

changes are controlled” [IEEE1028-97]

B Roles: a decision-maker, a review leader, a recorder, and technical staff
to support the review activities

B |nputs: Statement of objectives, a specific software product, the
specific project management plan, the issues list associated with this
product, the technical review procedure

Code Reviews — Software Engeneering Il — WS 2014/15

10

Inspections

“The purpose of an inspection is to detect and identify software product

anomalies” [IEEE1028-97]

B Team members checks the material/ artifacts independently

B Consolidation of results in meeting of team members and developer

B Focus on important parts of software

B Meetings gets more structured/ shorter, but much preparation time for
each team member

Code Reviews — Software Engeneering Il — WS 2014/15

11

Inspections - Process and Roles

[Galin2004]

Drganizational
preparations

.

Owverview meeting

Inspection

v Moderator (scribe)

Thorough review of
document

i Coder or
Author implementer
(presenter)

Inspection session(s)

Inspection session report
Inspection summary report

Comections
and reworking Designer

Y

Follow-up of corrections
and reworking

Tester

Code Reviews — Software Engeneering Il — WS 2014/15 1 2

Walk-Throughs

“The purpose of a walk-through is to evaluate a software product. A walk-

through may be conducted for the purpose of educating an audience

regarding a software product.” [IEEE1028-97]

B Similar to inspection but typically less formally

B Organized by developer/ software engineer for reviewing his own work

B Bigger audience can participate at meeting (e.g. for education
purposes)

B Few preparation for team members

Code Reviews — Software Engeneering Il — WS 2014/15

13

Walk-Throughs

S— [Galin2004]
preparations
Walkthrough
Coordinator (scribe)
Maintenance Standards
i 0! expert enforcer
reading
Walkthrough session(s) Author User
(presenter) representative

Walkthrough
session report

Code Reviews — Software Engeneering Il — WS 2014/15 1 4

Reviews ﬂ

[Galin2004]

Shouldbe reviewed 52y Q0 KI@gS (2 085S

Parts with complicated algorithms Trivial parts where no complications are
expected

Critical parts where faults could have bad Parts which won’t break the functionality

effects if faults occur

Parts using new technologies/ Parts which are similar to some which has

environment/ ... been reviewed in previous meetings

Parts which has been constructed by Reused or redundant parts

inexperienced team members

Code Reviews — Software Engeneering Il — WS 2014/15 1 5

Comparison of Review and Audit

Types

[Giese, 2012]

Eigenschaft Formaler technischer Inspektion Walkthrough Persénlicher
Review Review
Vortreffen Nein Ja Nein Nein
Vorbereitung der Ja - sehr griindlich Ja - griindlich Ja - Nein
Teammitglieder oberflachlich
Sitzung Ja Ja Ja Nein
Nachfolgende Ja Ja Nein Nein
Aktivitaten
Formales Nein Ja Nein Nein
Training der
Teilnehmer
Checklisten Nein Ja Nein Nein
Systematische Nicht formal bendétigt Formal bendétigt Nicht formal Nicht formal
Erfassung von bendtigt bendtigt
Fehlern
Reviewdokument | Formal design review 1) Bericht zu den
report Ergebnissen der
Sitzung
2) Zusammenfassung
der Sitzung

Code Reviews — Software Engeneering Il — WS 2014/15

16

Code Review Tools

Gerrit: https://code.google.com/p/gerrit/
B Integrated with Github: http://gerrithub.io
B Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.

Review Ninja: http://review.ninja
B Github integration

FishEye: https://www.atlassian.com/software/fisheye/overview

B Visualize, Review, and organize code changes

Code Reviews — Software Engeneering Il — WS 2014/15

17/

https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
http://gerrithub.io
http://review.ninja/
https://www.atlassian.com/software/fisheye/overview
https://www.atlassian.com/software/fisheye/overview

Conclusion

B Reviews are very effective and efficient techniques!
B “Low tech” (without tools)
®m Unfortunately, in practice, these techniques aren’t widely-used!

Code Reviews — Software Engeneering Il — WS 2014/15

18

Tools that might help...

B Measured code complexity with Flog
B http://ruby.sadi.st/Flog.html
GCt 23 aK2ga é2dz 0KS Y24l
0 KS O2RS>Y (0KS KAIKSNI 0KS
® Example input class and report

2 NI dzNP dza
éézNqu

Test#blan : (11.2)

class Tes=t

def blah 6.0: eval
a = eval "1+1"]
if & —— 2 then 1.2: branch
puts Tyay” 1.2: ==
end
end 1.2: puts
= 1.2: assignment

0.4: lit_fixnum

Code Reviews — Software Engeneering Il — WS 2014/15

19

http://ruby.sadi.st/Flog.html

Tools that might help (2/2)

Find painful parts:
B Flay (structual similarities, https://rubygems.org/gems/flay)
B Reek (code smells, https://github.com/troessner/reek)

B Cane (code quality, https://github.com/square/cane)
_ I

B Metric_fu (combines the above,
https://github.com/metricfu/metric_fu/)

B Rails_best practices (Rails specific,
https://github.com/flyerhzm/rails best practices)

Find slow parts of your code/tests:

B rake spec SPEC_OPTS="“--profile”

® Show 10 slowest examples from your test suite

Code Reviews — Software Engeneering Il — WS 2014/15

20

https://rubygems.org/gems/flay
https://rubygems.org/gems/flay
https://github.com/troessner/reek
https://github.com/troessner/reek
https://github.com/troessner/reek
https://github.com/square/cane
https://github.com/square/cane
https://github.com/metricfu/metric_fu/
https://github.com/metricfu/metric_fu/
https://github.com/flyerhzm/rails_best_practices
https://github.com/flyerhzm/rails_best_practices
https://github.com/flyerhzm/rails_best_practices

Code Examples

validates_presence_of :last_name

validates_presence_of :source

validates_inclusion_of :potential, :in => @..100, :message => " ist in % anzugeben und kan
validates_inclusion_of :status, :in => 1..4, :message => ": 1 - offen | 2 - benachrichtigt
validates_format_of :email, :with = /ACIC([A-Za-z0-9]+_+) | ([A-Za-z@-9]+\-+) | ([A-Za-zB-2]+

def self.newLead (first_name, last_name, source, potential, status, email, adr_street, adr

if first_name == nil or last_name == nil or first_name == or last_name ==
return nil

end

if source == nil or source ==
return nil

end

if potential == nil or potential ==
return nil

end

if status == nil or status ==
return nil

end

or potential < @ or potential > 100

or status < 1 or status > 4

if email != nil and email != "" and (email =~ /ACIC([A-Za-z@-9]+_+)I([A-Za-z@-9]+\-+) ([
return nil

end

lead = Lead.create(:first_name => first_name, :last_name => last_name, :source => source

return lead
end

Code Reviews — Software Engeneering Il — WS 2014/15

21

Problem?

Re-implements Active Record Validation Logic
Acts different than the embodied method

Nightmare to test
Violates Ruby coding conventions

Solution:
B xyz = Lead.new({:first_name => first_name, :last_name => ...})

B xyz.valid? => false

Code Reviews — Software Engeneering Il — WS 2014/15

2°

Code Examples

def getSeller
seller_list=[]
for s in Seller.find_by_sql ["SELECT name FROM sellers where id = 7",self.seller_id]
seller_list << Seller.find(s.attributes["name"])
end
return seller_list
end

Code Reviews — Software Engeneering Il — WS 2014/15

23

Problem?

B Re-implements Active Record Association Logic

B Min. 2 SQL queries when you already have the desired object...

Hm Solution:

] belongs_to :seller

Code Reviews — Software Engeneering Il — WS 2014/15

24

Code Example

def SupportTicket.select(ClosedTickets
result = Arrav.new
all.each do |ticketl]
if ticket.closed?
result << ticket
end
end
return result
end

Code Reviews — Software Engeneering Il — WS 2014/15

25

Problem?

B Re-implements Active Record Finder Logic
B Major performance issue

m Violates Ruby coding conventions
m Solution:

O SupportTicket.find_all by closed(true)
[SupportTicket.where(:closed => true)

Code Reviews — Software Engeneering Il — WS 2014/15

26

Code Example

class MockupProduct < ActiveRecord::Base
attr_accessible :discount_range, :name, :price
has_one :offer

end

Code Reviews — Software Engeneering Il — WS 2014/15

2/

Problem?

Cluttering the source code with “Mockup Classes” (what’s that anyway?)

Solution:

B Commit dependent classes very early

m fill them with content later

B Predefine interfaces

B Use ambassadors

B Stub the methods that you want to use, not the entire classes

Code Reviews — Software Engeneering Il — WS 2014/15

28

Code Example

def getActualDiscount
@customer = self.opportunity.mockup_customer

if @customer.discount_class == "A"

@customer_discount = 3@

end

if @customer.discount_class == "B"

@customer_discount = 2@

end

if @customer.discount_class == "C"

@customer_discount = 1@

end

return @customer_discount + self.discount
end

Code Reviews — Software Engeneering Il — WS 2014/15

29

Problem?

Code is error prone

At the wrong place

Violates ruby coding conventions
B Camelcase methods

B 2 whitespaces indent per level

Solution:
B Test with uncommon values (“D”)
B Suggestion: Move it somewhere else -> Customer?

Code Reviews — Software Engeneering Il — WS 2014/15

30

Code Example

def e_r_s (s)
if 5 = nil
return "
else
return s
end

end

Code Reviews — Software Engeneering Il — WS 2014/15

31

Problem?

Self-explanatory method and variable names?
Indent?

Solution:

B Why not use ruby standard functionality
m returns ||

B returns.nil?? “’ :s

Code Reviews — Software Engeneering Il — WS 2014/15

32

Code Example

it "should belong to a customer” do
customer = Factory.build(:customer)
@campaign_response.customer = customer
@campaign_response.customer.should = customer
end

Code Reviews — Software Engeneering Il — WS 2014/15

33

Problems?

Solution — At least do something with that customer...

Code Reviews — Software Engeneering Il — WS 2014/15

34

Further Reading

http://guides.rubyonrails.org

http://rails-bestpractices.com/

Code Reviews — Software Engeneering Il — WS 2014/15

35

http://guised.rubyonrails.org
http://rails-bestpractices.com/
http://rails-bestpractices.com/
http://rails-bestpractices.com/
http://rails-bestpractices.com/

