
Behavior-driven Development and
Testing in Ruby on Rails

Christoph Matthies
christoph.matthies@hpi.de

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts

Software Engineering II
WS 2018/19

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Development (BDD)?

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

2

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Development (BDD)?

■ Goals of Automated Testing

■ Writing Software that Matters

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

3

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 5: working registration page

Minute 8: feature is tested (3 times)

Minute 05.00: working test

Minute 10.00: working implementation

Minute 10.30: feature is tested (3 times)

Goals of Automated Testing

4

Feature 1: Website registration

Assumptions: 1min manual testing, 10s automatic test

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 11: implemented

Minute 14: tested (3 times)

Minute 12.30: test ready

Minute 15.30: implemented

Minute 16.00: tested (3 times)

Goals of Automated Testing

5

Feature 2: Special case for feature 1

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 11: implemented

Minute 14: tested (3 times)

Minute 17: refactoring ready

Minute 19: tested feature 1

Minute 21: tested feature 2

Minute 22: committed

Minute 12.30: test ready

Minute 15.30: implemented

Minute 16.00: tested (3 times)

Minute 19.00: refactoring ready

Minute 19.10: tested both features

Minute 20.10: committed

Goals of Automated Testing

6

Feature 2: Special case for feature 1

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Find errors faster

■ Better code (correct, robust, maintainable)

■ Less overhead when testing -> tests are used more frequently

■ Easier to add new features

■ Easier to modify existing features, refactoring

Goals of Automated Testing

7

But

■ Tests might have bugs

■ Test environment != production environment

■ Code changes break tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

■ Goals of Automated Testing

■ Writing Software that Matters

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

8

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

BDD is about implementing an application by describing
its behavior from the perspective of its stakeholders

Principles

1. Enough is enough

2. Deliver stakeholder value

3. It’s all behavior

Writing Software that Matters

9

“
”

– Dan North

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

BDD Cycle

10

Adapted from
[Chelimsky et al.:
The Rspec Book, 2010]

Unit Tests

Acceptance Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■…?

How do I know when to stop?

■ Acceptance criteria fulfilled

■ All tests are green

■ Code looks good

■ Objective quality goals

■ Second opinion

■ Internationalization

■ Security

■ Documentation

Definition of Done:
A team’s consensus of what it takes to complete a feature.

Definition of Done

11

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Maximum BDD Pyramid

12

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

All Stakeholders, one statement

■ Example: Improve Supply Chain

Core stakeholders define the vision

■ Incidental stakeholders help understand

□What is possible

□ At what cost

□With what likelihood

Vision

13

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■How the vision will be achieved.

■ Examples

□ Easier ordering process

□ Better access to suppliers’ information

Goals

14

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Huge themes / feature sets are described as an “epic”

■ Too high level to start coding but useful for conversations

■ Examples

□ Reporting

□ Customer registration

Epics

15

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Describe the behavior we will implement in software

■ Can be traced back to a stakeholder

■Warning: Do not directly start at this level

■ Explain the value & context of a feature to stakeholders

□ Not too much detail

■ Features deliver value to stakeholders

Use Cases / Features

16

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

User Stories are demonstrable functionality

■ 1 Feature -> 1..n User Stories

■ Stories should be vertical (e.g. no database-only stories)

■ User stories are tokens for conversations

■ Attributes (INVEST)

□ Independent

□ Negotiable

□ Valuable (from a business Point of View)

□ Estimable

□ Small enough to be implemented in one iteration

□ Testable
See http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

User Stories

17

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Story content

■ Title

■ Narrative

□ Description, reason, benefit (why?)

□ “As a <stakeholder>, I want <feature> so that <benefit>”

□ “In order to <benefit>, a <stakeholder> wants to <feature>”

User Stories

18

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■ Acceptance criteria

□ Criteria for what needs to be implemented
for PO to accept story

□ Related to Definition of Done

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Scenarios

■ 1 User Story -> 1..n scenarios

■ Each scenario describes one aspect of a User Story

■ Describe high-level behavior

Scenario steps

■ 1 scenario -> m scenario steps + step implementation

■ 1 scenario step -> 0..i tests

■ Describe low-level behavior

Scenarios, Scenario Steps, Test Cases

19

Vision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agile Methodologies

20

Project
Management

Software
Design

Coding
Techniques

Scrum

XP

BDD

TDD

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Principles

■ Story-based definition of application behavior

■ Definition of features

■ Driven by business value

For the developer

■ BDD / TDD Cycle

■ Coding with TDD

■ Automated Testing

Behavior-driven Development

21

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

22

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Test::Unit comes with Ruby

Test::Unit vs. RSpec

23

class UserTest < Test::Unit::TestCase

def test_first_name
user = User.new
assert_nil user.name, "User's name was not nil."
user.name = "Chuck Norris"
assert_equal user.first_name, "Chuck", "user.first_name did not return 'Chuck'."

end

end

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test::Unit vs. RSpec

24

describe User do

it "should determine first name from name" do
user = User.new
expect(user.name).to be_nil
user.name = "Chuck Norris"
expect(user.first_name).to eq "Chuck"

end

end

■ http://blog.thefirehoseproject.com/posts/test-driven-development-rspec-vs-test-unit/

■ RSpec offers syntactical sugar, different structure

■Many “built-in” modules (e.g. mocking)

■ “rspec” command with tools to constrain what examples are run

We’ll use RSpec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

RSpec Basic structure

25

describe Order do
context "with one item" do
it "sums prices of items" do

...
end

end

context "with no items" do
it "shows a warning" do

...
end

end
end

■ Using "describe" and "it" like in a conversation

□ "Describe an order!" "It sums prices of items."

■ describe creates a test / example group

■ it declares examples within group

■ context for nested groups / structuring

■ Aliases

□ Declare example groups using
describe or context

□ Declare examples using
it, specify, or example

■ https://github.com/rspec/rspec-core/blob/master/README.md

https://github.com/rspec/rspec-core/blob/master/README.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

RSpec Matchers

26

■ General structure of RSpec expectation (assertion):

□ expect(…).to <matcher>, expect(…).not_to <matcher>

Object identity

expect(actual).to be(expected) # passes if actual.equal?(expected)

Object equivalence

expect(actual).to eq(expected) # passes if actual == expected

Comparisons

expect(actual).to be >= expected
expect(actual).to be_between(minimum, maximum).inclusive
expect(actual).to match(/expression/) # regular expression
expect(actual).to start_with expected

Collections

expect([]).to be_empty
expect(actual).to include(expected)

■ https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers

https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

27

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

A Rails model

■ Accesses data through an Object-relational mapping (ORM) tool

□ Object-oriented programming languages deal with "objects"

□ Relational databases deal with scalar values (int, string) in tables

□ ORM translates between these worlds

■ Implements business logic

■ Is “fat”, i.e. contains the most code and application logic

Model Tests

28

Model tests in Rails

■ Easiest tests to write

■ Test most of application logic

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Model Tests

■ Tests should cover circa 100% of the model code

■ Do not test framework functionality like “belongs_to”

■ Test your validations

■ How many tests? Let tests drive the code -> perfect fit

Hints for Model Tests

29

Minimal model test set

■ One test for the “happy-path case” (the usual, normal way)

■ One test for each code branch

■ Corner cases (nil, wrong values, …), if appropriate

■ Keep each test small! (why?)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Model Test Example

30

class Contact < ActiveRecord::Base
validates :name, presence: true

def self.by_letter(letter)
where("name LIKE ?", "#{letter}%").order(:name)

end
end

require 'rails_helper'

describe Contact, type: :model do

before :each do #do this before each test
@john= Contact.create(name: 'John')
@tim = Contact.create(name: 'Tim')
@jerry = Contact.create(name: 'Jerry')

end

#the actual test cases
context "with matching letters" do
it "returns a sorted array of results that match" do
expect(Contact.by_letter("J")).to eq [@john, @jerry]

end

it "omits results that do not match" do
expect(Contact.by_letter("J")).not_to include @tim

end
end

end

app/models/contact.rb

spec/models/contact_spec.rb

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

31

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

A Ruby on Rails view

■ Has only minimal logic

■ Should never call the database! (why?)

■ Presents the data passed by the controller

Challenges for view tests

■ Time-intensive

■ How to test look & feel?

■ Brittle regarding interface redesigns

View Tests

32

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Specify and verify logical and semantic structure of views

Goals

■ Validate that view layer runs without error

■ Render view templates in isolation

■ Check that passed data is presented as expected

■ Validate conditional display of information, e.g. based on user's role

Possible anti-patterns (why?)

View Tests

33

■ Validation of HTML markup

■ Evaluating the "look & feel"

■ Testing for the existence of specific text

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

View Tests in RSpec

34

describe "users/index", type: :view do
it "displays user name" do
assign(:user,

User.create! :name => "Bob"
)

path could be inferred from test file
render :template => "users/index.html.erb"

expect(rendered).to match /Hello Bob/
end

end

■ https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec

https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec
https://railsadventures.wordpress.com/2012/07/20/rspec-bang-them-all/

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

RSpec View Tests (with Capybara)

35
■ https://github.com/jnicklas/capybara

require 'capybara/rspec'

Rspec.describe "users/index" do
it "displays user name" do
assign(:user,

User.create! :name => "Bob"
)

path could be inferred from test file
render :template => "users/index.html.erb"

same as before
expect(rendered).to have_content('Hello Bob')
a better idea
expect(rendered).to have_css('a#welcome')
expect(rendered).to have_xpath('//table/tr')

end
end

https://github.com/jnicklas/capybara
https://robots.thoughtbot.com/use-capybara-on-any-html-fragment-or-page
http://www.rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Matchers

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

36

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

A Rails controller

■ Is “skinny”, i.e. contains little code and little logic

■ Retrieves the appropriate models from the database

■ Calls model methods

■ Passes data to the view

Controller Tests

37

Goal of controller tests

■ Simulate a HTTP request

■ Test multiple paths through controller code, e.g. for authentication

■ Verify result and the correct handling of parameters

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Verify that user requests trigger

□Model / ORM calls

□ That the correct data is forwarded to view

■ Verify handling of invalid user requests, e.g. through redirects

■ Verify handling of exceptions raised by model calls

■ Verify security roles / role-based access control

Remember:Model functionality is tested in model tests!

What to Test in Controller Tests?

38

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Rails provides helpers to implement controller tests

■ 3 important variables are automatically imported

□ controller

□ request

□ response

■ Variable getter and setter for

□ session – session[:key]

□ controller variables – assigns[:key]

□ flash – flash[:key]

■Methods to simulate a single HTTP request

□ get, post, put, delete

Inside Controller Tests

39

https://github.com/rails/rails/blob/master/actionpack/lib/action_controller/test_case.rb

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Testing the Controller Response

40

require "rails_helper"

describe TeamsController, :type => :controller do
describe "GET index" do
it "assigns @teams in the controller" do
team = Team.create
get :index
expect(assigns(:teams)).to eq([team])

end

it "renders the index template" do
get :index
expect(response).to render_template("index")

end
end

end

■ http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/controller-specs

http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/controller-specs

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

41

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Setup and Teardown – RSpec

42

As a developer using RSpec
I want to execute arbitrary code before and after examples
So that I can control the environment in which tests are run

before(:example) # run before each example
before(:context) # run one time only, before all of the examples in a group

after(:example) # run after each example
after(:context) # run one time only, after all of the examples in a group

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Setup RSpec – before(:example)

43

■ before(:example) blocks are run
before each example

■ :example scope is also available
as :each

require "rspec/expectations"

class Thing
def widgets
@widgets ||= []

end
end

describe Thing do
before(:example) do
@thing = Thing.new

end

describe "initialized in before(:example)" do
it "has 0 widgets" do
expect(@thing.widgets.count).to eq(0)

end
end

end

https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Setup RSpec – before(:context)

44

■ before(:context) blocks are run
before all examples in a group

■ :context scope is also available
as :all

■ Warning: Mocks are only supported in
before(:example)

require "rspec/expectations"
class Thing
... #as before

describe Thing do
before(:context) do
@thing = Thing.new

end

context "initialized in before(:context)" do
it "can accept new widgets" do
@thing.widgets << Object.new

end

it "shares state across examples" do
expect(@thing.widgets.count).to eq(1)

end
end

end

https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Teardown RSpec

45

describe "Test the website with a browser" do
before(:context) do
@browser = Watir::Browser.new

end

it "should visit a page" do
...

end

after(:context) do
@browser.close

end
end

■ after(:context) blocks are run after
all examples in a group

■ For example to clean up

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test Run

46■ Rails Test Prescriptions. Noel Rappin. 2010. p. 37. http://zepho.com/rails/books/rails-test-prescriptions.pdf

Run setup

Run
teardown

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

47

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Isolation of Test Cases

48Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Tests should be independent

■ If a bug in a model is introduced

□ Only tests related to this model should fail

□ Allow localization of bug

How to achieve this?

■ Don't write complex tests

■ Don’t use complex objects

■ Don’t share complex test data

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Two main ways to provide data to test cases:

Fixtures

■ Fixed state at the beginning of a test

■ Assertions can be made against this state

Factories

■ Blueprints for models

■ Used to generate test data locally in the test

Test Data Overview

49

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Fixtures represent sample data

■ Populate testing database with predefined data before tests run

■ Stored in database independent YAML files (.yml)

■ One file per model, location: test/fixtures/<name>.yml

Fixture Overview

50
■ http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

■ http://guides.rubyonrails.org/testing.html

test/fixtures/users.yml
david: # Each fixture has a name
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development

steve:
name: Steve Ross Kellock
birthday: 1974-09-27
profession: guy with keyboard

http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html
http://guides.rubyonrails.org/testing.html

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Fixtures are global

■Only one set of data, every test has to deal with all test data

Fixtures are spread out

■Own directory

■One file per model -> data for one test is spread out over many files

■ Tracing relationships is challenging

Fixtures are distant

■Fixture data is not immediately available in the test

■ expect(users(:ernie).age + users(:bert).age).to eq(20)

Fixtures are brittle

■ Tests rely on fixture data, they break when data is changed

■ Data requirements of tests may be incompatible

Drawbacks of Fixtures

51

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test data should be:

Local

■ Defined as closely as possible to the test

Compact

■ Easy and quick to specify; even for complex data sets

Robust

■ Independent from other tests

Our choice to achieve this: Data factories

Alternative: Factories

52

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Provide blueprints for sample instances

Rails tool support

■ Factory Bot (was renamed from ‘Factory Girl’)

■Machinist

■ Fabrication

■ FixtureBuilder

■ Cf. https://www.ruby-toolbox.com/categories/rails_fixture_replacement

Similar structure

■ Syntax for creating the factory blueprint

■ API for creating new objects

Data Factories

53

https://www.ruby-toolbox.com/categories/rails_fixture_replacement

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Defining Factories

54

This will guess the User class
FactoryBot.define do
factory :user do
first_name "John"
last_name "Doe"
admin false

end

This will use the User class
(Admin would have been guessed)
factory :admin, class: User do
first_name "Admin"
last_name "User"
admin true

end
end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Build strategies: build, create (standard), attributes_for, build_stubbed

Using Factories

55

Returns a User instance that's _not_ saved
user = build(:user)

Returns a _saved_ User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes_for(:user)

Passing a block to any of the methods above will yield the return object
create(:user) do |user|
user.posts.create(attributes_for(:post))

end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Attributes

56

Lazy attributes
factory :user do
activation_code { User.generate_activation_code }
date_of_birth { 21.years.ago }

end

Dependent attributes
factory :user do
first_name "Joe"
last_name "Blow"
email { "#{first_name}.#{last_name}@example.com".downcase }

end

override the defined attributes by passing a hash
create(:user, last_name: "Doe").email
=> "joe.doe@example.com"

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Associations

57

factory :post do
If factory name == association name, the factory name can be left out.
author

End

factory :post do
specify a different factory or override attributes
association :author, factory: :user, last_name: "Writely“

End

Builds and saves a User and a Post
post = create(:post)
post.new_record? # => false
post.author.new_record? # => false

Builds and saves a User, and then builds but does not save a Post
post = build(:post)
post.new_record? # => true
post.author.new_record? # => false

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Inheritance

58

The title attribute is required for all posts
factory :post do
title "A title"

End

An approved post includes an extra field
factory :approved_post, parent: :post do
approved true

end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Sequences for Unique Values

59

Defines a new sequence
FactoryBot.define do
sequence :email do |n|
"person#{n}@example.com"

end
end

generate :email # => "person1@example.com"
generate :email # => "person2@example.com"

Sequences can be used as attributes
factory :user do
email

end

in lazy attribute
factory :invite do
invitee { generate(:email) }

end

In-line sequence for a factory
factory :user do
sequence(:email) {|n| "person#{n}@example.com"}

end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Callbacks

60

factory_bot makes four callbacks available for injecting code:

■ after(:build)- called after the object is built (via FactoryBot.build, FactoryBot.create)

■ before(:create) - called before the object is saved (via FactoryBot.create)

■ after(:create) - called after the object is saved (via FactoryBot.create)

■ after(:stub) - called after the object is stubbed (via FactoryBot.build_stubbed)

Call customize() after the user is built
factory :user do
after(:build) { |user| customize(user) }

end

multiple types of callbacks on the same factory
factory :user do
after(:build) { |user| customize(user) }
after(:create) { |user| customize_further(user) }

end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■Much documentation still uses the earlier ‘FactoryGirl‘ name

■ Faster tests with build_stubbed
□ Nothing is saved to the database

□ Makes objects look like they’ve been persisted

□ Creates stubbed out associations, whereas build creates them in the db

□ https://robots.thoughtbot.com/use-factory-girls-build-stubbed-for-a-faster-test

■ Tips and tricks

□ http://arjanvandergaag.nl/blog/factory_girl_tips.html

Factory Bot – Further Reading

61

https://robots.thoughtbot.com/use-factory-girls-build-stubbed-for-a-faster-test
http://arjanvandergaag.nl/blog/factory_girl_tips.html

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design

4. Outlook

62

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Isolation of Test Cases

63Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Tests should be independent

■ If a bug in a model is introduced

□ Only tests related to this model should fail

□ Allow localisation of bug

How to achieve this?

■ Don't write complex tests

■ Don’t use complex objects

■ Don’t share complex test data

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test Doubles

64

Generic term for object that stands in for a real object during a test

■ Think “stunt double”

■ Purpose: automated testing

Used when

■ Real object is unavailable

■ Real object is difficult to access or trigger

■ Following a strategy to re-create an application state

■ Limiting scope of the test to the object/method currently under test

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Verifying Behavior During a Test

65

■ Usually: test system state after a test

□ Only the result of a call is tested, intermediate steps are not considered

■ With test doubles: Test system behavior

□ E.g. How often a method is called, in which order, with which parameters

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Ruby Test Double Frameworks

66

Many frameworks available:

■ RSpec-mocks (http://github.com/rspec/rspec-mocks)

■ Mocha (https://github.com/freerange/mocha)

■ FlexMock (https://github.com/jimweirich/flexmock)

A collection of mocking frameworks (as well as many others):

■ https://www.ruby-toolbox.com/categories/mocking

We recommend RSpec-Mocks as it
shares a common syntax with RSpec

http://github.com/rspec/rspec-mocks
https://github.com/freerange/mocha
https://github.com/jimweirich/flexmock
https://www.ruby-toolbox.com/categories/mocking

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Stubs

67

dbl = double(“user”)
allow(dbl).to receive_messages (:name => “Fred”, :age => 21)
expect (dbl.name).to eq(“Fred”) #this is not really a good test :)
dbl.height #raises error (even if your original object had that property)

■ Method call on the real object does not happen

■ Returns a predefined value if called

■ Strict by default (error when messages received that have not been allowed)

■ Alternatively, if all method calls should succeed: Null object double

dbl = double(“user”).as_null_object
dbl.height # this is ok! Returns itself (dbl)

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/null-object-doubles

http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/null-object-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Spies

68

dbl = spy("user")
dbl.height
dbl.height
expect(dbl).to have_received(:height).at_least(2).times

■ Stubs with Given-When-Then structure

■ Allows to expect that a message has been received after the message call

■ Alternatively, spy on specific messages of real objects

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/spies

user = User.new
allow(user).to receive(:height) # Given a user
user.measure_size # When I measure the size
expect(user).to have_received(:height) # Then height is called

http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/spies

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Mocks are Stubs with attitude

■ Demands that mocked methods are called

■ Or as often as desired

■ If test ends with expected calls missing, it fails!

Mocks

69

book = double("book", :title => "The RSpec Book")
expect(book).to receive(:open).once # 'once' is default
book.open # this works
book.open # this fails

user = double("user")
expect(user).to receive(:email).exactly(3).times
expect(user).to receive(:level_up).at_least(4).times
expect(user).to receive(:notify).at_most(3).times

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Stub (passive)

■ Returns a predetermined value for a method call

Mock (more aggressive)

■ In addition to stubbing: set a “message expectation”

■ If expectation is not met, i.e. the method is not called → test failure

Stubs vs. Mocks

dbl = double("a user")
allow(dbl).to receive (:name) => { "Fred" }
expect (dbl.name).to eq("Fred") #this is not really a good test :)

dbl = double(“a user”)
expect(dbl).to receive(:name)
dbl.name #without this call the test would fail

➔ Stubs don‘t fail your tests, mocks can!

70

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Partially Stubbing Instances

71

s = "a user name" # s.length == 11
allow(s).to receive(:length).and_return(9001)
expect (s.length).to eq(9001) # the method was stubbed
s.capitalize! # this still works, only length was stubbed

■ Sometimes you want only part of your object to be stubbed

□ Many methods on object, only expensive ones need
stubbing for a test

■ Extension of a real object in a system that is instrumented
with stub like behaviour

■ “Partial test double” (in RSpec terminology)

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Class Methods

72

u = double("a user")
allow(User).to receive(:find) {u} # “User” is a class
expect (User.find(1)).to eq(u) # the class method was stubbed

■ Class methods can also be stubbed

■ Example: Stubbing the User class

□ The database is not touched, a specific instance is returned

□ “find” cannot be verified anymore but tests based on “find” can be isolated

-> just test the logic that is under test

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

http:///
http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Multiple Return Values

73

die = double("a rigged die")
allow(die).to receive(:roll).and_return(4,5,6) # a better version

puts die.roll # => 4
puts die.roll # => 5
puts die.roll # => 6
puts die.roll # => 6
last value is returned for any subsequent invocations

■ A stub might have to be invoked more than once

■ Return values for each call (in the given order)

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Method Stubs with Parameters

74
■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/setting-constraints/matching-arguments

■ Failure when calling stub with wrong parameters

■ Respond differently based on passed parameters

■ A mock / expectation will only be satisfied when called with matching arguments

calc = double("calculator")
allow(calc).to receive(:double).with(4).and_return(8)
expect(calc.double(4)).to eq(8) # this works

■ Calling mock with wrong parameters fails:

dbl = double("spiderman")
anything matches any argument
expect(dbl).to receive(:injury).with(1, anything, /bar/)
dbl.injure(1, 'lightly', 'car') # this fails, "car" does not match /bar/

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/setting-constraints/matching-arguments

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Raising Errors

75

■ A stub can raise an error when it receives a message

■ Allows easier testing of exception handling

dbl = double()
allow(dbl).to receive(:foo).and_raise("boom")
dbl.foo # This will fail with:

Failure/Error: dbl.foo
RuntimeError:
boom

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/raising-an-error

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/raising-an-error
https://hasno.info/ruby-gotchas-and-caveats/

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Verifying Doubles

76

■ Stricter alternative to normal doubles

■ Check that methods being stubbed are actually present on the underlying
object (if it is available)

■ Verify that provided arguments are supported
by actual method signature

class Post
attr_accessor :title, :author, :body

end

post = instance_double("Post") # reference to the class Post
allow(post).to receive(:title)
allow(post).to receive(:message).with (‘a msg’) # this fails (not defined)

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/verifying-doubles

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/verifying-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Using mocks makes (some) tests more concise

Why Use Mocks?

77

vs.

digger = Digger.new # a tracked vehicle
initial_left = digger.left_track.position
initial_right = digger.right_track.position
digger.turn_right # run method being tested

expect(digger.left_track.position - initial_left).to eq(+5)
expect(digger.right_track.position - initial_right).to eq(-5)

left_track = double('left_track')
right_track = double('right_track')
digger = Digger.new(left_track, right_track)
left_track.expects(:move).with(+5)
right_track.expects(:move).with(-5)

digger.turn_right # run method being tested

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Disadvantages

■Mock objects have to accurately model the behaviour of
the object they are mocking

■ Risk to test a value set by a test double (false positives)

■ Possibility to run out of sync with real implementation

-> Brittle while refactoring

Advantages

■ The test is focused on behavior

■ Speed (e.g. not having to use an expensive database query)

■ Isolation of tests (e.g. failure in model does not affect controller test)

Test Doubles Pro and Contra

78

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

79

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Levels of Testing

80

• Can the program be
deployed?Staging Tests

• Does the program meet
quality standards?Quality Tests

• Do the requirements meet the
users‘ needs?Requirement Tests

• Does the program functionality meet
the requirements?Functional Tests

• Does the program function?Integration
Tests

• Does the code unit function?Unit
Tests

(User Acceptance Tests)

(User Story Acceptance Tests)

Not
automatable!

Partially
automatable

automatable

automatable

automatable

Partially
automatable

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Integration & Acceptance Tests

81

Integration Tests

Acceptance Tests

Test Scope

Technology /
Code

Customer /
Business

Unit
Tests

■ Perform tests on the full system, across multiple components

■ Test end-to-end functionality

■ Integration Tests

□ Build on unit tests, written for developers

□ Test component interactions

□ Consider environment changes
(e.g. database instead of volatile memory)

■ Acceptance Tests

□ Check if functionality satisfies the
specification from a user perspective

□ Accessible for the stakeholders
(e.g. using webpage via a browser)

■ http://www.testfeed.co.uk/integration-vs-acceptance-tests/

http://www.testfeed.co.uk/integration-vs-acceptance-tests/

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

BDD vs Test Levels

82

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Requirement Tests

Functional Tests

Integration Tests

Unit
Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Behavior-driven development (BDD)

■ Story-based definition of application behavior

■ Definition of features

■ Driven by business value

Implementations on different abstraction levels:

■ Domain-specific languages (e.g. Cucumber)

□ Pro: Readable by non-technicians

□ Cons: Extra layer of abstraction, translation to Ruby

■ Executable Code (e.g. using testing frameworks, RSpec, Mini::Test)

□ Pro: No translation overhead

□ Con: Barely readable by domain experts

BDD Implementations

83

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Capybara Test Framework

84

■ Simulate how a real user would interact with a web application

■Well suited for writing acceptance & integration tests for web applications

■ Provides DSL for “surfing the web”

□ e.g. visit, fill_in, click_button

■ Integrates with RSpec

■ Supports different “drivers”, some support Javascript evaluation

□Webkit browser engine (used in Safari)

□ Selenium

– Opens an actual browser window and performs actions within it

■ https://github.com/jnicklas/capybara#using-capybara-with-rspec

https://github.com/jnicklas/capybara

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Integration & Acceptance Tests
(with Capybara)

85

require 'capybara/rspec'

describe "the signin process", :type => :feature do
before :each do
User.make(:email => 'user@example.com', :password => 'password')

end

it "signs me in" do
visit '/sessions/new'
within("#session") do
fill_in 'Email', :with => 'user@example.com'
fill_in 'Password', :with => 'password'

end
click_button 'Sign in'
expect(page).to have_css('div#success')

end
end

■ https://github.com/jnicklas/capybara

https://github.com/jnicklas/capybara

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

■ Model Tests

■ View Tests

■ Controller Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

■ Integration & Acceptance Tests

■ Demo & Optimizations

3. Testing Tests & Hints for Successful Test Design

4. Outlook

86

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

https://github.com/hpi-swt2/Ruby-on-Rails-TDD-example

Demo of TDD and Tests

87

https://github.com/hpi-swt2/Ruby-on-Rails-TDD-example

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Automate test execution

□ e.g. Guard (https://github.com/guard/guard-rspec)

□ Automatically launch tests when files are modified

□ Run only the tests related to the change

■ Parallelize tests

□ E.g. parallel_tests (https://github.com/grosser/parallel_tests)

□ Especially relevant with many time-consuming acceptance tests

Optimizing the Testing Process

88

https://github.com/guard/guard-rspec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

■ Testing Tests & Hints for Successful Test Design

□ Test Coverage

□ Fault Seeding

□Mutation Testing

□Metamorphic Testing

■ Outlook

Agenda

89

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Most commonly used metric for evaluating test suite quality

■ Test coverage = executed code during test suite run / all code * 100

■ e.g. 85 loc / 100 loc = 85% test coverage

Line coverage

■ Absence of line coverage indicates a potential problem

■ Existence of line coverage can mean very little

■ In combination with good testing practices, coverage might say
something about test suite reach

■ Circa 100% test coverage is a by-product of BDD

Test Coverage

90

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Most common approaches

■ Line coverage

■ Branch coverage

Tool

■ SimpleCov (https://github.com/colszowka/simplecov)

■ Uses line coverage

-> 100% line coverage even if one branch is not executed

How to Measure Coverage?

91

if (i > 0); i += 1 else i -= 1 end

https://github.com/colszowka/simplecov

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

SimpleCov

92

■Methods related to failed tests are marked

https://github.com/colszowka/simplecov

https://github.com/colszowka/simplecov

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Independence

■ Of external test data

■ Of other tests (or test order)

Repeatability

■ Same results each test run

■ Potential Problems

□ Dates, e.g. Timecop (https://github.com/travisjeffery/timecop)

□ Random numbers

Test Tips

93

https://github.com/travisjeffery/timecop

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Clarity

■Test purpose should be immediately understandable

■Tests should be simple, readable

■Make it clear how the test fits into the larger test suite

■Worst case:

■ Better:

94

it "sums to 37" do
expect(37).to eq(User.all_total_points)

end

Test Tips

it "rounds total points to nearest integer" do
User.add_points(32.1)
User.add_points(5.3)
expect(37).to eq(User.all_total_points)

end

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Conciseness

■ Use the minimum amount of
code and objects

■ Clear beats concise

■Writing the minimum required
amount of tests for a feature

-> Test suite will be faster

95

def assert_user_level(points, level)
user = User.make(:points => points)
expect(level).to eq(user.level)

end

it test_user_point_level
assert_user_level(0, "novice")
assert_user_level(1, "novice")
assert_user_level(500, "novice")
assert_user_level(501, "apprentice")
assert_user_level(1001, "journeyman")
assert_user_level(2001, "guru")
assert_user_level(nil, "novice")

end

Test Tips

■ Rails Test Prescriptions. Noel Rappin. 2010. p. 277. http://zepho.com/rails/books/rails-test-prescriptions.pdf

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

If a single call to a model results in many model changes:

■ High number of assertions -> High clarity and cohesion

■ High number of assertions -> Low test independence

-> Use context & describe and have 1 assertion per test

Conciseness:
How many Assertions per Test?

96

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Robustness

■ Underlying code is correct -> test passes

■ Underlying code is wrong -> test fails

■ Example: view testing

97

Test Tips

describe "the signin process", :type => :feature do
it "signs me in (text version)" do
visit '/dashboard'
expect(page).to have_content “My Projects”

end
version below is more robust against text changes
it "signs me in (css selector version)" do
visit '/dashboard'
expect(page).to have_css "h2#projects"

end
end

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Robustness

■ Reusable code increases robustness

■ E.g. constants instead of magic numbers

■ But be aware of tests that always pass regardless of underlying logic

98

def assert_user_level(points, level)
user = User.make(:points => points)
expect(level).to eq(user.level)

end

def test_user_point_level
assert_user_level(User::NOVICE_BOUND + 1, "novice")
assert_user_level(User::APPRENTICE_BOUND + 1, "apprentice")
...

end

Test Tips

■ Rails Test Prescriptions. Noel Rappin. 2010. p. 278. http://zepho.com/rails/books/rails-test-prescriptions.pdf

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Troubleshooting

99

Reproduce the error

■Write a test!

What has changed?

■ Isolate commit/change that causes failure

Isolate the failure

■ thing.inspect

■ Add assertions/prints to your test

■ Rails.logger.error

■ save_and_open_page (take a snapshot of a page)

Explain to someone else

■ Rubber duck debugging

http://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg

http://git-scm.com/docs/git-bisect

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Manual Fault Seeding

100

Conscious introduction of faults into the program

■ Run tests

■Minimum 1 test should fail

If no test fails, then a test is missing

■ Possible even with 100% line coverage

■ Asserts functionality coverage

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Mutant: Modified version of the program with small change

■ Tests correctly cover code -> Test should notice change and fail

Mutation Testing

101

if month > 12 then
year += month / 12
month = month % 12

end
Tests pass for

Tests fail for

Test
Cases

mutate

Program
Source

Mutants

if not month > 13 then
year -= month / 12
month = month % 12

end

next_month:

■Mutation Coverage: How many mutants did not cause a test to fail?
Asserts functionality & behavior coverage

□ For Ruby: Mutant (https://github.com/mbj/mutant)

https://github.com/mbj/mutant

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Metamorphic Testing

102

When testing, often hard to find test oracle

■ Establish whether a test has passed or failed

■ Require understanding of input-output-relation

■May be more convenient to reason about relations between outputs

Compare outputs of program runs

■ Describe inherent behavior of the program

■ No need to know exact outputs

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Example: Rendering Lighting

103

Not easy to verify all pixels were rendered correctly

Use relations of outputs for test cases

Position of light source changes

■ Points closer to light source will be brighter

□ Exception: White pixels

■ Points further away from light source will be darker

□ Exception: Black pixels

■ Points hidden behind other objects don't change
brightness

Summary

BDD

■Motivation

■ BDD Cycle

TDD

■ Pros & Cons

Automated Testing

■Model/View/Controller

■ Test Data

■ Test Doubles

Testing Hierarchy

■ Integration Tests

■ Acceptance Tests

Test Quality

■ Coverage

■Mutation Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II 104

Further Reading

http://betterspecs.org – Collaborative RSpec best practices documentation effort

Everyday Rails Testing with RSpec by Aaron Sumner, leanpub

The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends

by David Chelimsky et al.

Rails 4 Test Prescriptions: Build a Healthy Codebase by Noel Rappin, Pragmatic
Programmers 2014

Quizzes

http://www.codequizzes.com/rails/rails-test-driven-development/controller-specs

http://www.codequizzes.com/rails/rails-test-driven-development/model-specs

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II 105

http://betterspecs.org/
http://www.codequizzes.com/rails/rails-test-driven-development/controller-specs
http://www.codequizzes.com/rails/rails-test-driven-development/model-specs

Behavior-driven Development and
Testing in Ruby on Rails

Christoph Matthies
christoph.matthies@hpi.de

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts

Software Engineering II
WS 2018/19

