Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Software Reviews

Christoph Matthies
christoph.matthies@hpi.de

Software Engineering |l
WS 2018/19 Enterprise Platform and Integration Concepts

"Puzzle piecing a software suite" Juhan Sonin (CC BY 2.0), https://www.flickr.com/photos/juhansonin/12659667364/

Review Definition

“[Formal or informal] meeting during which a software product is
[examined by] project personnel, managers, users, customers, user
representatives, or other interested parties for comment or approval” -
IEEE1028

m Generate commentson software
m Several sets of eyes check
m People instead of using tools

Code Reviews — Software Engineering |

Reviews Motivation E

[Bacchelli ‘13]
m Improve code
: : : Code Quality Measurement:
m Discuss alternative solutions :
WTFs/Minute
m Transfer knowledge
m Find defects WTF / WTF
| e Review I | Code Review I ude.
CodeR od *prF
WTF i
'z
= N 3
ﬁ
Good Code Bad Code
http://commadot.com

Code Reviews — Software Engineering |

Involved Roles

Manager

m Assessmentis an important task for manager

m But: Lack of technical understanding

m But: Assessment of a product vs. assessment of a person

s Outsider in review process, but should support with resources
(time, staff, rooms, ...)

Developer
m Should not justify but only explain their results
m No boss should take part at review

Code Reviews — Software Engineering |

Review Team

Team leader [Giese]

m Responsible for quality of review
m Technical, personal and administrative competence
m Moderation of review meetings

Reviewer

m Study the material before first meeting

m Don’t try to achieve personal targets!

m Gives positive and negative comments on review artifacts
0 Not on the author!

Recorder

m Any reviewer, can rotate even in review meeting

m Protocol as basis for final review document

Code Reviews — Software Engineering |

Task of Review Team

[Giese]
Deliver a good review
m “Don’t shoot the messenger”
m Find problems, but don’t try to solve them

Artifact of interest should be assessed
m Accepted, partly accepted, needs corrections, rejected

m Acceptanceonly possible if no participant speaks against it

Problems should be clearly identified / extracted

Code Reviews — Software Engineering |

Types of Reviews [IEEE1028-97]

Management Review
m Monitor progress and status of plans, confirm requirements
m Evaluate effectiveness of management approaches / corrective actions

Technical Review

m Evaluate entire software on suitability for intended use
m Provide evidence whether software product meets specifications

Code Reviews — Software Engineering |

Types of Reviews [IEEE1028-97]

Inspections

m ldentify software product anomalies, invented at IBM in the 1970’s

m Formal process, can involve hard copies of the code and documents

m Review team members check important artifacts independently,
consolidation meeting with developers

m Preparation time for team members, shorter meetings

Walk-through

m Evaluate software, focus on educating an audience

m Organized by developer for reviewing own work

m Bigger audience can participate, little preparation for team members

Code Reviews — Software Engineering |

What to Review?

Should be reviewed

Parts with complicated algorithms

Critical parts where faults lead to system
failure

Parts using new technologies /
environment / ...

Parts constructed by inexperienced team
members

Code Reviews — Software Engineeringl|

[Galin2004]

Might not have to be reviewed

Trivial parts where no complications are
expected

Parts which won’t break the functionality if
faults occur

Parts which are similar to those previously
reviewed

Reused or redundant parts

Comparison of Review Types

Eigenschaft Formaler technischer Inspektion Walkthrough Persdnlicher
Review Review

Vortreffen Nein Ja Nein Nein

Vorbereitung der Ja - sehr griindlich Ja - griindlich Ja - Nein

Teammitglieder oberflachlich

Sitzung Ja Ja Ja Nein

Nachfolgende Ja Ja Nein Nein

Aktivitaten

Formales Nein Ja Nein Nein

Training der

Teilnehmer

Checklisten Nein Ja Nein Nein

Systematische Nicht formal bendtigt Formal bendtigt Nicht formal Nicht formal

Erfassung von benétigt benbtigt

Fehlern

Reviewdokument

Formal design review
report

1) Bericht zu den
Ergebnissen der
Sitzung

2) Zusammenfassung
der Sitzung

Code Reviews — Software Engineering |

[Giese, 2012]

10

Modern Code Reviews

m Follows more lightweight, flexible process
m Change sizes are smaller
m Performed regularly and quickly,
mainly just before code committed to main branch

m Shift from defect finding to group problem solving activity
m Prefer discussion and fixing code over reporting defects

Code Reviews — Software Engineering |

[Rigby’13]
[Bacchelli‘13]

11

Code Review Hierarchy of Needs ﬂ

Least
Important
A 4
/Style
Hierarchy
- m Findings bugs vs. understanding code
/ Find Bugs , ,g 5 8
m Building a shared mental model
/ Design Discussion " Ensuring sane design
- Correct Solution
|
Mast /

== Mental Alignment

#
Fi

Code Reviews — Software Engineeringll - http://blakesmith.me/2015/02/09/code-review-essentials-for-software-teams.html

12

Recent Research

m Code review coverage and review participation share
significant link with software quality

m Most comments concern code improvements,
understandability, social communication

m Only ~“15% of commentsindicate possible defect

m Developers spend approximately five hours per week
(10-15% of their time) in code reviews

Code Reviews — Software Engineering |

[Bosu’17]
[Mcintosh’14]
[Bacchelli ‘13]

13

Recent Research

Ranked Motivations From Developers

Expectations Top] Second [l Third NN

o Findingdefects| [|7
| Codelmprovement | [|7
Alternative Solutions | | | D
Knowledge Transfer :l:_
Team Awareness |:|:_
Improving Dev Process |:|:-
Share Code Ownership | [[[N
AvoidBuildBreaks | [[N
Track Rationale HEN
Team Assessment | [[N

0 200 400 600

. Responses
Expectations
4 years later Microsoftlloss o /11

Maintainability - |

Knowledge sharing -

: |
Functional defects -

Community building -
Minor Errors, Typos - I—

Other - .

0% 20% 40% 60%
Percentage of respondents
Code Reviews — Software Engineering |

Outcomes .
Comments in each Category [Ba cchelli ’13]

Code Improvement

Understanding

Social Communication

Defects

External Impact
Testing

Review Tool
Knowledge Transfer

Misc

10% 20% 30%
Percentage of Comments

Maintainability and code improvements
identified as most important aspects of
modern code reviews

14

Challenges of the Review Process

m Delay the use of implemented features

m Forces the reviewers to switch context away from their current work

m Offer little feedback for legacy code

m Overloading (too many files),
developers create large patches

m Overcrowding (too many reviewers),
assigning too many reviewers may
lower review quality

Code Reviews — Software Engineering |

NO NEED To DOUBLE CHECK
THiS CHANGE LiST, if SoMme PRO-
BLEMS REMAIN THE REVIEWER

Will CATCH THEM.

—

NO NEED To Look AT
THIS CHANGE LiST ToO cLOSELY,

1'M SURE THE AUTHoR
UNOWS WHAT HE'S DoiNG.

Post-commit Code Review E

m Review after committing to VCS (pull requests are one! way of doing this)
m Used by most projects on GitHub and BitBucket

m Developers can commit continuously ™ Chance of unreviewed code in main repository
m Other team members see code 0 Need to/ can set restrictions

changes in VCS and can adapt their ® Requires branches or similar to work effectively

work m May take a while for developers to come back

m Flexible definition of the code to be to the code and improvement ideas
reviewed (set of commits, whole
branch, some files)

16

Code Reviews — Software Engineeringl|l https://www.devart.com/review-assistant/learnmore/pre-commit-vs-post-commit.html

Pre-commit Code Review

m Review before committingto version control system
(e.g. using mailing lists / Gerrit, Crucible tools)
m Used by e.g. Linux Kernel, Git, Google

+ —

m No code enters unreviewed m Reviewing all code takes time

m Code quality standards met before 0 Deciding what needs a review takes time
commit, no 'fixes' too
m No repository access needed for m Possibly another complex system to handle

reviews 0 Might not want to work on submitted code

m Other developers definitely not until review done (e.g. mailing list)

affected by bugs in reviewed code 17

Code Reviews — Software Engineering |

Reviewer Assighment

m Usually, two reviewers find an optimal number of
defects.

m People who contributed changes (find defects)

m New developers (transfer knowledge)

m Team members with a small review queue

m Reviewers with different fields of expertise

m Let reviewers know what they should look out for

Code Reviews — Software Engineering |

HOW TO MAKE A
GO0OD COPE REVIEW

geek & poke

AT LEAST WE
DON'T NEED TO
OBFUSCATE IT
BEFORE
SHIPPING

AT LEAST SOMETHING
POSITIVE

[Rigby’13]

18

Maximize Usefulness

m "Ask a programmer to review 10 lines of code, he'll find 10 issues.
Ask him to do 500 lines and he'll say it looks good." - Giray Ozil

1 line per
£.||4 second
&
3 '
§ 100 lines
0 0%
o per second

Lines of Code In Revi;w

m Semantically coherent set of changes easier to review than interleaved concerns

http://atlassianblog.wpengine.com/developer/assets_c/2011/07/mt-perloc-thumb-500x263-7290.png 1 9

Code Reviews — Software Engineering |

Code Review In Industry

Microsoft

m Median completion times: 14.7h (Bing), 18.9h (Office), 19.8h (SQL Server)
m Median number of reviewers: 3-4

m Developers spend 4-6 hours per week on reviews

Google

m Mandatory review of every change

m Median completion times: 15.7h (Chrome), 20.8h (Android)
m Median patchsize: 78 lines (Chrome), 44 lines (Android)

m Median number of reviewers: 2

Code Reviews — Software Engineering |

[Rigby’13]

20

Code Review Tools

Gerrit (https://code.google.com/p/gerrit/)

m Integrated with Github: http://gerrithub.io

m Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.
m Plug-ins available (e.g. EGerrit for Eclipse)

Review Ninja (http://review.ninja)
m Github integration

FishEye (https://www.atlassian.com/software/fisheye/overview)
m Visualize, Review, and organize code changes

Code Reviews — Software Engineering |

21

https://code.google.com/p/gerrit/
http://gerrithub.io
http://review.ninja/
https://www.atlassian.com/software/fisheye/overview

Tools

m Testing checks code function via dynamic analysis
m Code reviews manually check code quality via static analysis

Automated static analysis (linters) can help as well

m SimpleCov (code coverage, https://github.com/colszowka/simplecov)

m Flog (code complexity, http://ruby.sadi.st/Flog.html)

m Reek (code smells, https://github.com/troessner/reek)

m Cane (code quality, https://github.com/square/cane)

m Rails_best_practices (Rails specific, https://github.com/flyerhzm/rails best practices)

Code Reviews — Software Engineering | 2 2

https://github.com/colszowka/simplecov
http://ruby.sadi.st/Flog.html
https://github.com/troessner/reek
https://github.com/square/cane
https://github.com/flyerhzm/rails_best_practices

Summary

m Reviews are not a new thing, good reasons to do them
m Different types of review techniques
0 Management Review
0 Technical Review
O Inspection
0 Walk-through
0 Modern / contemporary code reviews
m Method to find faults and improvement opportunities early in the process

Code Reviews — Software Engineering |

23

Code Examples

def self.human attribute name (“azgs)

if arg=s[0].to s = "start date"”
return "Anfangsz-Datum"®
elsif args[0].to 5 == "end date"
return "End-Datum"
end
#F NHOCTE: In our gque=st for 100% code coverage we can't have this=s line.
#F If anyone i= to add a new attribute that uses the default label,
#F reenable this line.
F Super

enﬂ

Code Reviews — Software Engineering |

24

Problems?

Should ‘super’ be there or not?
m If yes, testit!

Better
m Don’t override Rails core methods
m Use proper il8n

Code Reviews — Software Engineering |

25

Code Examples

Code Reviews — Software Engineering |

describe "POST f#create™ do

context "with walid param=" do
it "creates a new Profile™ do
2ign in FactoryGirl.create (:user)
expect {
post :create, profile: walid attributes, sSession: valid session
}.to change (Profile, :count).by(l)
end

it "assigns a newly created profile as @profile™ do
sign in FactoryGirl.create (:user)
post :create, profile: wvalid attributes, seszion: wvalid session
expect (aszigns (iprofile)) .to be a(Profile)
expect (assigns (:profile)) .to be _persisted
end

it "redirects to the created profile™ do
gign in FactoryGirl.create (:user)
post :create, profile: wvalid attributes, session: walid session
expect (response) .to redirect to(Profile.last)
end
end

context "with invalid param=" do
it "assigns a newly created but unsaved profile az @profile™ do
sign in FactoryGirl.create(:user)
post :icreate, profile: invalid attributes, session: valid session
expect (assigns (:profile)) .to be_a new(Profile)
end

it "re-renders the 'new' template™ do
sign in FactoryGirl.create (:user)
post :create, profile: invalid attributes, session: valid session
expect (response) .to render template ("new")

26

Problems?

before(:each)

Code Reviews — Software Engineering |

27

Code Examples

POST /chalr wimis

POST /chalr wimis.json

def create
@chair wimi = ChairWimil.new
@chalir wimi.chalr i1d = params[:chair]
@chair wimi.user 1id = params[:user]

@chairapp = ChalrApplication.find by(:user 1d => params[:user], :chalr i1d => params[:chailr])

@chairapp.status = "accepted’
@chairapp.save

@user = User.find(params[:user])

@user.role = "wimi'
@user.save

Code Reviews — Software Engineering |

28

Problem?

Parameters don’t match params
Business logic vs controller logic

m chair.add wimi
m chair_application.accept!

Code Reviews — Software Engineering |

29

Code Examples

validates_presence_of :last_name

validates_presence_of :source

validates_inclusion_of :potential, :in => 0..10@, :message => " ist in ¥ anzugeben und kan
validates_inclusion_of :status, :in => 1..4, :message => ": 1 - offen | 2 - benachrichtigt
validates_format_of :email, :with => /ACI(([A-Za-z@-9])+_+) I ([A-Za-z0-9]+\-+) | ([A-Za-z@-9]+

def self.newLead (first_name, last_name, source, potential, status, email, adr_street, adr

if first_name == nil or last_name == nil or first_name == or last_name ==
return nil

end

if source == nil or source ==
return nil

end

if potential == nil or potential ==
return nil

end

if status == nil or status ==
return nil

end

or potential < @ or potential > 100

or status < 1 or status > 4

if email != nil and email != "" and (email =~ /ACI(([A-Za-z@-9]+_+)|([A-Za-z@-9]+\-+)I([
return nil
end

lead = Lead.create(:first_name => first_name, :last_name => last_name, :source => source

return lead
end

Code Reviews — Software Engineering |

30

Problem?

Re-implements Active Record Validation Logic

Solution:
m lead = Lead.new({ first_name: first_name, last name: ... })
m lead.valid? => false

Code Reviews — Software Engineering |

31

Code Examples ﬂ

def getSeller
seller_list=[]
for s in Seller.find_by_sql ["SELECT name FROM sellers where id = ?",self.seller_id]
seller_list << Seller.find(s.attributes["name"])
end
return seller_list
end

Code Reviews — Software Engineering | 3 2

Problem?

m Re-implements Active Record Association Logic

m Solution:

O belongs to :seller

Code Reviews — Software Engineering |

33

Code Example

def SupportTicket.select(ClosedTickets
result = Array.new
all.each do |ticketl
if ticket.closed?
result << ticket
end
end
return result
end

Code Reviews — Software Engineering |

34

Problem?

m Re-implements Active Record Finder Logic
m Major performance issue

m Violates Ruby coding conventions
m Solution:

0 SupportTicket.find _all by closed(true)
0 SupportTicket.where(.closed => true)

Code Reviews — Software Engineering |

35

Code Example

def getActualDiscount
@customer = self.opportunity.mockup_customer

if @customer.discount_class == "A"

@customer_discount = 3@

end

if @customer.discount_class == "B"

@customer_discount = 2@

end

if @customer.discount_class == "(C"

@customer_discount = 1@

end

return @customer_discount + self.discount
end

Code Reviews — Software Engineering |

36

Problem?

Code is error prone

Violates Ruby coding conventions

m Camelcase methods

m Indentations

m Superfluous instance variable assignments

Solution:

m Test with uncommonvalues (“D”)
m Suggestion: Move it somewhere else -> Customer?

Code Reviews — Software Engineering |

37

Code Example

def e_r_s (s)
if 5 = nil
return "
else
return s
end

end

Code Reviews — Software Engineering |

38

Problem?

Self-explanatory method and variable names?
Indent?

Solution:

m Why not use ruby standard functionality
m Ternary operator

m returns.nil? ? """ :s

Code Reviews — Software Engineering |

39

Code Example

it "should belong to a customer" do
customer = Factory.build(:customer)
@campaign_response.customer = customer
@campaign_response.customer.should = customer
end

Code Reviews — Software Engineering |

40

Problems?

Solution:
m Do something with the customer

Code Reviews — Software Engineering |

41

Code Examples

GET fevents/1l/ranking
def ranking
Array of RankingEntry 5tructs that gets sorted when filled completely

@ranking_entries = []

Leaves the Array of RankingEnmtry Structs empty when no teams participate in the event
gevent.teams.each do |team|

ranking_entry = RankingEntry.new{nil, team.name, @, @, 8, @, @, @, @, @)

event_matches = @event.matches
Considers only the team's home matches that belong to the event
home_matches_in_event = team.home_matches & ewvent_matches

parsze_matches_data_into_ranking_entry team, ranking_entry, home_matches_in_event, :parse_match_details_for_home

Considers only the team's away matches that belong to the event
away_matches_in_event = team.away_matches & event_matches

parse_matches_data_into_ranking_entry team, ranking entry, awsy_matches_in_event, :parse_match_details for_away

ranking_entry.goals_difference = ranking_entry.goals - ranking_entry.goals_against
@ranking_entries.push ranking_entry

end

Sorts the RankingEntries in the following order:
1. DESCENDING by points

2. DESCENDING by goals

3. ASCENDIMG by name

@ranking_entries = @ranking_entries.sort_by { | ranking_entry | [-ranking_entry.points, -ranking_entry.gosls, ranking_entry.

Adds a rank to each RankingEntry based on its position in the Array

@ranking_entries.each_with_index do |ranking_entry, index|
ranking_entry.rank = index + 1

end

end

Code Reviews — Software Engineering |

42

Problem?

Looks complicated
m Slim controller?
m Small methods!
m Custom Route (No REST)

Solution:
m Create a PORO (Plain old ruby object)

Code Reviews — Software Engineering |

43

References E

[Bosu’17] Bosu, Amiangshu, et al. "Process Aspects and Social Dynamics of
Contemporary Code Review: Insights from Open Source Development and
Industrial Practice at Microsoft." TSE 43.1 (2017): 56-75.

[MclIntosh’14] Mcintosh, Shane, et al. "The impact of code review coverage and
code review participation on software quality: A case study of the gt, vtk, and
itk projects.” MSR’14.

[Rigby’13] Rigby, Peter C., and Christian Bird. "Convergent contemporary
software peer review practices." FSE’13.

[Bacchelli‘13] Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes,
and challenges of modern code review." ICSE’13.

[Feitelson‘13] Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck.
"Development and deployment at facebook." IEEE Internet Computing 17.4
(2013): 8-17.

Code Reviews — Software Engineering |

4.4

lmage Sources

m "ScientificReview" by Center for Scientific Review
Licensed under Public Domain via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:ScientificReview.|pg

m "WTF per Minute" by Glen Lipka
http://commadot.com/wtf-per-minute/

m "The Dark Side of Infrastructure as Code" by Lori Macvittie
https://devops.com/dark-side-infrastructure-code/

m Geek & Poke
http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-
review.html|

Code Reviews — Software Engineering |

45

http://commons.wikimedia.org/wiki/File:ScientificReview.jpg
http://commadot.com/wtf-per-minute/
https://devops.com/dark-side-infrastructure-code/
http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-review.html

